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The most common setup to monitor microseismic events during 
hydraulic fracturing experiments includes a single obser-

vation well. This type of setup can lead to biases in event detection, 
location and magnitude computation. We statistically analyse simulated 
catalogues of events that represent common hydraulic fracturing exper-
iments and especially focus on the symmetry/asymmetry of the event 
clouds. Results show that the radial orientation of the event clouds 
with respect to the observation well is the key factor in event cloud 
asymmetry. The detection threshold due to the distance from the obser-
vation well can significantly increase this asymmetry and has a strong 
influence on the observed magnitude distribution. Using a minimum 
common magnitude threshold corrects for asymmetry if caused by 
detection deficiency. The distance-magnitude detection threshold 
negatively impacts other derived quantities such as b-values. 

b-values (coefficients representing the ratio between small and large 
magnitude events) in excess of 1.5 are likely to be underestimated due to 
elimination of the smaller magnitude events. Application of a common 
minimum threshold at all distances can correct for systematic biases in 
b-values but at the expense of increased estimation variances because 
of the reduced number of events. The developed simulation strategy 
can be used to assess potential biases in various statistical parameters 
due to existing or planned acquisition geometry.

Introduction
Monitoring of microseismic events is widely used to evaluate the success 
of hydraulic fracturing in oil, gas and geothermal reservoirs and to 
follow almost in real-time the development of fracture networks (van 
der Baan et al., 2013). The spatial distribution of events is thought to 
reflect the fluid induced fractured zone in the reservoir (Cipolla et al., 
2011). The distribution of magnitudes is used to make inferences on the 
in-situ changes in the stress field (Grob and van der Baan, 2011) or to 
distinguish between fluid injection or fault reactivation related events 
(Maxwell, 2012) through the value of the fractal dimension b that quanti-
fies the ratio between large and small events. But care should be taken 
when interpreting the shape and attributes from microseismic events 
(Cipolla et al., 2011; Zimmer, 2011).

Indeed not all microseismic events are recorded because of energy loss 
during wave propagation, and often only one observation well is used to 
monitor the microseismicity, which leads to inaccurate positioning and 
detection failure for events happening far from that well. Magnitude- 
detection thresholds could result in systematic biases in b-values. 
Maxwell (2012) suggests focusing on quality over quantity by 
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normalizing the event pattern using a magnitude cutoff to interpret 
fracturing. The question is how much information is actually lost with this 
strategy and how to quantify that loss.

Modeling is a convenient way to quantify information loss. In simula-
tions all events are known and a detection threshold can be specified 
to mimic the loss in recorded microseismic events due to the distance 
from the observation well. Quantification can be achieved by computa-
tion of systematic biases and uncertainties in relevant parameters. The 
question of quality over quantity can then be tested by thresholding the 
event magnitudes with distance and assessing the resulting change in 
statistical parameters. This can be done for various acquisition setups.

Simulation strategy
Catalogs of events are created to study the influence of acquisition 
geometry on event clouds. In order to be as close as possible to reality, 
the event magnitude distribution in the simulated catalogs follow the 
power-law defined by Gutenberg and Richter (1944) as:

	  log N(m > M) = a – bM.		                   (1)

N is the number of events with a magnitude m superior to a certain 
magnitude M. The value b is the coefficient of the power law and 
represents the slope of the curve in a semilog plot of N versus M. 
The parameter a defines the background seismicity. To simulate a 
catalogue of events obeying equation 1, we define the coefficient b, the 
total number of events Ntot and the minimum and maximum desired 
magnitudes Mmin and Mmax. Scalar a is then given by:

		      a = log10(Ntot) + b *Mmin.		                   (2)

The number of events Ni for each bin ΔM between Mmin and Mmax is 
given by:
		                Ni = 10a-b*iΔM.		                   (3)

Random magnitudes are assigned for every magnitude bin for the 
number of events Ni determined by equation 3. The maximum observed 
magnitude may be less than the maximum defined magnitude Mmax as 
a minimum of one event has to occur in each bin. A high b value leads to 
a smaller observed magnitude range. Minor variations between chosen 
and simulated b-values may occur because Ni has to be an integer but 
the theoretical Ni could be a float number which has to be rounded.

For simplicity we assume that the microseismic cloud occurs within a 
horizontal plane. Extensions to 3D clouds are straightforward but do 
not yield significantly different insights. The two dimensional, spatial 



    MAY 2016    CSEG RECORDER 31

Continued on Page 32

distribution of events in our simulations is characterized by an ellipsoid 
with axes A and B (defined in order of length). A unit circle area is 
uniformly filled with random points. The circle is then stretched out 
linearly to form an ellipse with semi-length axes A and B. The spatial 
distribution of points within the ellipse is thus still uniform. Each point in 
the ellipse is then attributed a magnitude randomly from the distribu-
tion defined above.

A typical simulation to represent hydraulic fracturing has the following 
features: one observation well and one cloud of simulated events per 
stage, parallel to one another and perpendicular to a virtual horizontal 
well. In our simulations we consider three different horizontal wells: one 
at the same level as the observation well along the vertical axis (well 1), 
one 100 units further (well 2) and one 200 units further from observa-
tion well (well 3). Figure 1 illustrates the configuration of the simulations. 
The stage numbers are counted from bottom to top, stage 1 being 
the closest to the observation well. Well 1 has only four stages as the 
first one would have been just under the observation well, so for better 
visualisation this stage was not considered. The other wells have a total 
of five stages, one of them aligned with the observation well along the 
horizontal axis.

Figure 1. Simulations setup with colored contour detection threshold. The 
black triangle represents the observation well. The open circles are used for the 
events which disappear after the detection threshold is applied whereas the 
filled symbols are for events left for further analysis. The color contours show the 
magnitude detection threshold. The slope of the detection line is equal to 0.002 in 
this example. The dashed grey lines represent the horizontal treatment wells.

Next we consider a magnitude-distance threshold given by the 
following equation:

		          M = slope * d +Md0, 		                   (4)

where slope is the parameter describing the detection limit, and d is the 
distance between events and geophones. This threshold is shown as the 
oblique black line in Figure 2, and the parameters slope and Md0 shown 
in the figure equal 0.002 and -3.15, respectively. It is also illustrated 
as the colored contours in Figure 1. This detection threshold is then 
applied to simulate missing events due to distance to the observa-
tion well as seen in the magnitude-distance plots for real microseismic 

events. All events below that line are no longer considered in the 
analysis. They are shown as gray open circles in Figure 1.

In some cases a minimum common magnitude threshold (horizontal 
dashed line in Figure 2) is applied to take into account only the high 
magnitude events as in Maxwell (2012). This threshold corresponds 
to the lowest magnitude found at the furthest distance above the 
detection threshold. The purpose of that simple magnitude cutoff is to 
ensure analyses of events are performed over a homogeneous set of 
data with similar conditions, which should allow for a more meaningful 
interpretation (Cipolla et al., 2011; Maxwell, 2012).

Two examples are shown in the result section, example 1 with a slope 
parameter of 0.002 and example 2 with a slope of 0.005. The 0.002 
value is similar to a slope value found for real microseismic data (see 
case study section) and the increase in the slope to 0.005 is chosen to 
illustrate the influence of detection limit on the shape of event clouds 
for a highly attenuating medium or equivalently a greater distance 
between the treatment and observation wells. The minimum common 
magnitudes are -2.6 and -2 in each example respectively.

Figure 2. Magnitude versus distance plots for each simulation scenario. Colors 
are chosen according to the stage number (and so position along the y-axis), blue 
being for the first stage and purple for the last one. The black line represents the 
detection threshold applied. Its slope is fixed at 0.002. The dashed line shows the 
minimum common magnitude across all stages based on the magnitude-distance 
plot for well 2, here set at -2.6.

Results

Event cloud asymmetry assessment
For better visualization the examples shown in the following figures 
contain only 500 events, and the theoretical b-value chosen for each 
cloud is 1.8. Figure 1 shows the three different simulation scenarios 
with colored contours showing the magnitude corresponding to 
the detection threshold as shown in Figure 2. Figure 1 clearly points 
out that the radial orientation of an event cloud with respect to 
the observation well will determine the influence of the detection 
threshold. Indeed the clusters whose major axis is most aligned to a 
radial direction from the observation well will be more affected by a 
detection threshold as they spread over a wider range of magnitude 
thresholds, thus increasing their asymmetry.

To assess the asymmetry of the clouds after the detection and 
magnitude thresholds are applied, histograms showing event 
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distributions projected onto the major axis of each event cloud are 
computed for each stage and each well. The results averaged over 50 
iterations are displayed in Figure 3 for example 1. The histograms start 
out symmetric with slightly higher densities in the center than at the 
edges due to the elliptic cloud shape if no magnitude thresholding is 
applied. Clearly event counts decrease with increasing distance from 
the observation well. Stages with major axis oriented predominantly 
radially away from the observation well have the strongest asymmetric 
distributions (e.g. stage 1 of well 2). Stages 5 for every well have a rather 
homogeneous distribution of events. All stages for well 1 also show a 
more symmetric event distribution as this well is oriented radially to the 
observation well such that magnitude thresholding occurs symmetrically 
along the major axis. Stage 2 of well 1 is least affected by the detection 
threshold and still contains 500 events, whereas stage 5 of well 3 is most 
affected due to its distance from the observation well. The number of 
events is reduced by a factor two between the first and the last stages 
with the parameters chosen for example 1.

Figure 3. Distribution of events projected onto the major axis of the clouds for 
the original clouds (light blue), after detection thresholding (medium blue) and 
after common magnitude thresholding (dark blue). The positions of the histograms 
correspond to the positions of the event clouds in Figure 1. The histograms are 
based on averaged results of 50 iterations of the same scenario.

Figure 4 displays in a similar way the removal of events (open circles) 
after a minimum common magnitude threshold is applied to all 
observed events as suggested by Cipolla et al. (2011) to remove 
potential biases due to the distance-magnitude threshold. As all clouds 
of events obey the same Gutenberg-Richter relation, the same number 
of events is left in all clusters after the magnitude threshold (94 events 
are still in the clouds in this particular example). The distributions of 
events along the cloud major axis for all stages are more symmetric than 
after the detection threshold is applied (Figure 3). This is due to the 
magnitudes being randomly attributed to spatial points and produces a 
more similar distribution to the true one.

Next we consider the case of more severe magnitude thresholding 
with distance (or equivalently wells and clouds spaced out over a larger 
area). If the slope of the detection threshold line in Figure 2 is doubled 
(here set at 0.005 for example 2), the removal of events is even more 

dramatic. There are only very few events left in the far-out stages in this 
scenario. The corresponding distributions of events along the cloud 
major axis display an increasing asymmetry (Figure 5) with no remaining 
events in the right part of the cloud (between 10 to 40 units) for stages 
4 and 5 of well 3. The histograms for well 1 are still characterized by a 
more symmetric distribution as expected given the well orientation. The 
reduction in observed events for wells 1 and 2 is two orders larger than 
for the stage 1 of well 1 and for the previously considered scenario with 
a more gentle distance detection threshold.

Figure 5. Distribution of events projected along the major axis of the clouds for 
the original clouds (light blue), after detection thresholding (medium blue) and 
after common magnitude thresholding (dark blue) for example 2. The histograms 
are based on averaged results of 50 iterations of the same scenario.

One solution to increase the number of recorded events is to use 
a second monitoring well. Figure 6 displays contour plots with 
corresponding clouds of events when two observation wells are in place. 
Two scenarios are considered here, one where the detection slope is 

Figure 4. Simulations setup after a common minimum magnitude threshold is 
applied (set at -2.6 in this example). The black triangle represents the observation 
well. The open circles are used for the events which disappear after the magnitude 
threshold is applied whereas the filled symbols are for events which are left for 
analysis. The color contours show the detection threshold.
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the same from both observation wells (Figure 6(a)) and one where detection slopes are different 
(which could be due to anisotropy, different laterally distributed rock properties or simply 
mimicking an increased distance to the observation well; Figure 6(b)). The use of two observation 
wells clearly increases the amount of events recorded and improves the symmetry of event clouds 
which would lead to better interpretation of event locations, even in the case of two different 
detection slopes. However these events are recorded by at least one well but not necessarily 
both. Taking into account only events recorded by both wells would lead to much sparser clouds.

Figure 6. Simulations setup with colored contour detection threshold with two observation wells. The black 
triangles represents the observation wells. The open circles are used for the events which disappear after both 
detection thresholds are applied whereas the filled symbols are for events which are left for further analysis. 
The color contours show the magnitude detection threshold. The detection line has a slope of 0.005 for both 
wells in (a) and of 0.005 and 0.002 in (b).

b-value analysis
To test the changes in b-values after detection and magnitude thresholding, the number of 
events in the original clouds is increased to 2000 for reliable statistical evaluation. In example 1, 
estimated and true b-values are one standard deviation apart (Figure 7(a)). These changes are not 
large enough to be interpreted as a meaningful change. Only 380 events are left after applying 
the common minimum magnitude threshold of -2.6. The b-value then decreases to 1.72 ± 0.07, 
still within error bars. In example 2 the b-value falls below the error bars for the last stages of wells 
2 and 3 (Figure 7(b)), implying a significant change in the magnitude distribution. And only 32 
events remain after a magnitude cutoff at -2.

Figure 7 shows that estimation variances increase with a decreasing number of events (i.e., for the 
far-out stages or more severe distance-magnitude thresholding). There seems to be an increasing 
bias in the estimated b-values for the stages most affected by the distance-magnitude threshold. 

One possible explanation for this phenom-
enon is that estimation of the b-value for these 
stages is dominated by a few relatively rarely 
occurring larger events, combining bias and 
variance in population occurrence with estima-
tion bias and variance. Increasing the number 
of events in the original clouds emphasizes 
that behavior as the uncertainty on b-value 
computation is reduced and the decrease in 
b-value is more obvious. These results hold 
true when changing the original value of b.

Case studies

Dataset 1
To illustrate the interest in the preceding 
simulations, real data are analyzed in a similar 
manner. The microseismic events in dataset 1 
were recorded during the hydraulic fracturing 
treatment of gas shales. Four successive 
stages from the same treatment well are 
displayed in Figure 8(b). The event clouds for 
the first three stages (in blue, red and green) 
are rather diffuse whereas the event cloud of 
stage 4 is more linear and transverse to the 
observation well.

In order to determine the detection threshold, 
magnitudes of events are plotted against 
distances between events and the observa-
tion well (Figure 8(a)). The detection slope 
equals 0.0017. Figure 8(b) shows the contour 
plot based on the inferred detection threshold 
with overlaid events for the four stages. Most 
recorded events for stages 1 to 3 spread 
towards the observation well and no events 
beyond the magnitude -2.6 contour line are 
mapped for these stages. This indicates a 
potential bias in the event cloud shape due to 
the detection threshold. Stage 4 created more 
events, and the cloud spreading transversely 
to the observation well, its shape is well 
defined and does not seem to be affected 
by the detection threshold on the left side 
of the treatment well. However much fewer 
events are mapped on the right side of the 
well, suggesting again a possible bias due 
to the detection limit. A minimum common 
magnitude threshold cannot be inferred from 
the magnitude-distance plot (Figure 8(a)), 
which is also an indication that the whole 
fracture was not mapped (Cipolla et al., 2011).

Figure 7. Variations of the b-value for each simulated stage. The original number of events in each cloud 
is 2000. The black line at stage 0.5 represents the b-value estimated from all occurring events (no distance 
thresholding). Its simulated value is 1.74 pm 0.05 (theoretically set at 1.8). The blue, red and green colors are for 
stages in well 1, 2 and 3 respectively. The detection line slope is equal to 0.002 for (a) and 0.005 for (b).
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Dataset 2
The second dataset of microseismic events was also recorded during the hydraulic fracturing 
treatment of gas shales but in a different reservoir than dataset 1. Eight stages from the same 
treatment well are analyzed. The microseismic events for the first four stages were recorded 
using only a single observation well A (Figures 9(a)). In that particular case the detection slope 
reaches about 0.0004, much lower than for the previous dataset. This discrepancy is certainly 
due to different geology of the reservoir. The minimum common magnitude is equal to -3. The 
major axes of event clouds are oriented radially to the observation well (Figure 9(a)), but no clear 
asymmetry can be seen the event cloud shapes.

Figure 9. Contour plot of the inferred detection threshold with overlaid microseismic events of dataset 2 for 
stages 1 to 4 (a) and stages 5 to 8 (b). The black triangles represents the observation wells A (position (0,0)) and 
B. Colors of the dots correspond to the different stages.

Stages 5 to 8 from the same horizontal treatment well were recorded using two observation 
wells A and B (Figure 9(b)). The detection slopes from observation wells A and B are respectively 
0.0004 and 0.0001. The two different detection thresholds could indicate changes in the geology 
or could be due to different orientations of event clouds to both observation wells. Indeed event 
clouds are oriented rather radially to observation well A but transversely to observation well B. 
Microseismic events of stage 5 (brown dots) spread rather evenly on both sides of the treatment 
well and are thus not affected by the detection threshold. Most events of stage 6 (purple dots) 
are mapped on the right side of the treatment well, but this is certainly due to the mechan-
ical behaviour of the reservoir as magnitude threshold is similar along the major axis of the 
event cloud for that stage. Event clouds for stages 7 and 8 spread quite far on both sides of the 
treatment well and are even a bit denser on the left side of it although the detection threshold 
is slightly higher on that side. This leads to the same conclusion as for the single observa-
tion well: the detection threshold slope is too low to introduce a real bias in the event clouds. 

Using two monitoring wells in that particular 
case does not improve the interpretation of 
microseismic events.

Discussion
Some authors use the Gutenberg-Richter 
relationship to account for possible non-de-
tected small events and then compare the 
reconstructed seismic energy with the total 
injected energy (Boroumand and Eaton, 2012; 
Maxwell et al., 2008). Our study demonstrates 
that the b-value is strongly influenced by the 
detection threshold. So the estimated b-value 
may be an under-estimation of the real b-value. 

Isolated events in real datasets are often 
considered as outliers to the closest cloud of 
events and included in its statistical analysis. 
We showed that these isolated events could 
also simply belong to a cloud of events in 
which most of the events have a magnitude 
lower than the detection threshold and thus 
are not recorded (see especially clouds from 
well 3 in Figure 1). Williams and Calvez (2013) 
suggest a method to reconstruct part of the 
magnitude distribution to improve the b-value 
estimation and help the interpretation.

Other factors not mentioned in this work could 
affect the shape of event clouds such as signal 
to noise ratio, uncertainty in event locations, 
anisotropy due to geological features or 
radiation patterns linked to failure mechanisms 
(Cipolla et al., 2011; Zimmer, 2011). If using 
our method to plan an acquisition geometry, 
those factors will have to be included in the 
computation of the detection threshold. 

Conclusions
The radial orientation of the event clouds and 
the slope of the magnitude-distance threshold 
are the dominant parameters influencing 
the asymmetry of event clouds further from 
the observation well. The frequency-magni-
tude parameter b changes significantly and 
variances of that parameter increases drasti-
cally with increasing detection threshold, thus 
leading to less accurate values of b. Care must 
be taken when trying to use these variations for 
interpretation as they may result from detection 
deficiency. Recording events with two observa-
tion wells helps limiting the influence of the 
detection threshold and ensures the overall 

Figure 8. (a) Magnitude-distance plot for dataset 1. The slope of the detection threshold is equal to 0.0017. 
Colors correspond to different stages. (b) Contour plot of the inferred detection threshold with overlaid 
microseismic events for dataset 1. The color of the dots describes the different stages as in plot (a). The black 
triangle represents the observation well. The gray dashed line defines the treatment well.
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shape of the microseismic event clouds is captured. Despite its simplicity 
the simulations presented above are a useful tool to qualify and quantify 
the loss of information linked to a chosen acquisition geometry.
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