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onstationary phase estimation using regularized
ocal kurtosis maximization
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ABSTRACT

Phase mismatches sometimes occur between final pro-
cessed seismic sections and zero-phase synthetics based on
well logs — despite best efforts for controlled-phase acquisi-
tion and processing. Statistical estimation of the phase of a
seismic wavelet is feasible using kurtosis maximization by
constant-phase rotation, even if the phase is nonstationary.
We cast the phase-estimation problem into an optimization
framework to improve the stability of an earlier method
based on a piecewise-stationarity assumption. After estima-
tion, we achieve space-and-time-varying zero-phasing by
phase rotation.

INTRODUCTION

Controlled-phase acquisition and processing play an important
ole in current acquisition and processing strategies �Trantham,
994�. Despite best efforts to control the phase of the wavelet during
he entire acquisition and processing sequence, phase mismatches
egularly occur between final processed data based on deterministic
ero-phase shaping and zero-phase synthetics created from well
ogs. Existing well logs act here as ground truth, and a further phase
orrection is applied to the data such that they match the zero-phase
ynthetics.

Unfortunately, well logs are not always available, and different
ells can predict different phase corrections or the phase mismatch

an vary with time. Statistical wavelet-estimation methods do not re-
uire well logs and analyze the seismic data directly. Van der Baan
2008� recently developed such a statistical method suitable for esti-
ating nonstationary nonminimum-phase wavelets by extending

arlier work by Levy and Oldenburg �1987�, Longbottom et al.
1988�, and White �1988�.
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These authors search for a constant-phase rotation that renders the
ata maximally non-Gaussian. Their statistical methods estimate
hase using a consequence of the central limit theorem: Convolution
f any filter with a time series, which is white with respect to all sta-
istical orders, renders the amplitude distribution of the outcome

ore Gaussian �Donoho, 1981�.
If we assume that the seismic wavelet can be described adequately

y a frequency-dependent amplitude spectrum but a constant phase,
hen the phase can be found by phase rotating the seismic data until
hey become maximally non-Gaussian. The constant-phase assump-
ion seems to hold in practice except for dispersive wavelets �van der
aan and Pham, 2008�.
Van der Baan �2008� extends the constant-phase rotation method

o handle nonstationary �e.g., time-varying� data and shows how to
xtract the time-varying wavelet, which can serve as a more familiar
uality-control tool for interpreters than phase information alone.
is approach involves moving analysis windows. In each window, a

ingle constant-phase wavelet is estimated by kurtosis maximiza-
ion. Linear interpolation between evaluation positions then yields
he desired wavelet phase and amplitude spectrum at each time in-
tant. This approach thus invokes a piecewise-stationarity assump-
ion; the wavelet and its phase are assumed to be constant within in-
ividual analysis windows. Furthermore, rapid variations in phase
stimates are not uncommon in the previous method if the chosen
indow length is too short. This renders the moving-window tech-
ique less suitable as an interpretational tool, for instance, to high-
ight subtle stratigraphic features.

In this paper, we show how to eliminate the piecewise-stationarity
ssumption by casting the problem into the framework of local at-
ributes �Fomel, 2007a�, where the problem of local kurtosis maxi-

ization within individual windows is recast as regularized least-
quares optimization across the entire seismic section �Fomel et al.,
007�. Tests with synthetic and field data sets demonstrate that the
roposed extension also makes the previous method more robust
ith respect to smaller window sizes or regularization lengths.
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A76 van der Baan and Fomel
We demonstrate how a statistical analysis provides pertinent in-
ormation about the data that can be used for zero-phasing, as a qual-
ty control tool to check deterministic phase corrections, or even as
n interpretational tool for highlighting areas of potential interest.
irst we describe the method in detail. Then we show both a realistic
ynthetic and two real data examples, and finally, we briefly discuss
he underlying statistical assumptions and a performance compari-
on between statistical wavelet estimates and deterministic ones
riginating from seismic-to-well ties.

METHOD

We apply a series of constant-phase rotations to the data to esti-
ate the desired wavelet phase. The angle where the resulting output

s maximally non-Gaussian corresponds to the desired zero-phase
race �Levy and Oldenburg, 1987; Longbottom et al., 1988; White,
988; van der Baan, 2008�. The rotated trace xrot�t� can be computed
rom the original trace x�t� by

xrot�t��x�t�cos � �H�x�t��sin �, �1�

here � is the phase rotation angle and H� . � denotes the Hilbert
ransform. Note that equation 1 allows for both a constant and time-
ependent rotation angle �.
We measure the maximum deviation from a Gaussian time series

sing the kurtosis, a fourth-order statistical measure already used by
iggins �1978� in his blind deconvolution algorithm. Kurtosis � is

omputed for a discrete time series x�t� using

��x��
E�x4�

�E�x2��2 �3, �2�

here E� . � indicates the expectation �i.e., averaging� operator ap-
lied on data x. Thus, maximizing the kurtosis reveals the desired
avelet phase. It is equal to ��kurt, the rotation angle at the maxi-
um kurtosis value. This angle is easiest estimated using a grid

earch with test angles � between �90° and 90°.
Van der Baan �2008� divides a seismic section into partially over-

apping time windows and estimates the optimum phase-rotation an-
le � in each individual window. Linear interpolation of phase esti-
ates then obtains the phase at each time sample thus softening the

nvoked piecewise-stationarity assumption. Large overlaps in the
nalysis windows are required to render the method stable and for
uality control on the optimum window size.

The recorded signal x�t� can be considered as a single realization
f a stochastic process. This means that we cannot compute the local
urtosis ��x��t� at each individual time sample t without invoking
rgodicity; ensemble averaging then can be replaced by spatial or
emporal averaging �van der Baan, 2001�. One possibility then con-
ists of assuming piecewise stationarity, that is, by computing the
urtosis within some time window leading again to the method of
an der Baan �2008�.Alternatively, we can obtain a local estimate by
ormulating this as a regularized optimization problem �Fomel,
007b�.

Fomel et al. �2007� factorize the kurtosis ��x�, equation 2, as fol-
ows:

��x��� 1

E�x2�
��E�x4�

E�x2�
��3�p�1q�1�3. �3�

urthermore, the constant p is the global solution of the least-squares
inimization problem
Downloaded 08 Dec 2009 to 129.128.7.251. Redistribution subject to 
L�p��min
p

�
t

�x2�t��p	2, �4�

nd constant q is the global solution of the least-squares minimiza-
ion problem

L�q��min
q

�
t

�1�qx2�t�	2. �5�

ocal estimation of the time-varying quantities p�t� and q�t� is then
ossible by solving independently the following two optimization
roblems �Fomel et al., 2007�:

L�p��t��min
p�t� ��t

�x2�t��p�t�	2�R�p�t��� �6�

nd

L�q��t��min
q�t� ��t

�1�q�t�x2�t�	2�R�q�t��� . �7�

inally, the local kurtosis ��x��t� is given by ��x��t��1 /
p�t�q�t�	�3, as suggested by equation 3.

To avoid trivial solutions and to stabilize the inverse problem, we
mpose a regularization constraint R� . �. Several constraints are fea-
ible, including smoothness options �e.g., minimizing first deriva-
ives of p�t� and q�t��. In our case, we apply shaping regularization
nd invoke triangular smoothing of the estimates p�t� and q�t� with-
n each internal iteration in a conjugate-gradient approach �Fomel,
007b�. A triangle shaper uses local predictions from both left and
ight neighbors of a sample and averages them using triangle
eights. Different triangle sizes can be used for regularization in the

ime and spatial dimensions.
After inverting for the time-varying phase �kurt�t� obtained by

urtosis maximization, we can apply phase-only deconvolution us-
ng equation 1. We also note that wavelet estimation becomes
traightforward once the phase is known because only the amplitude
pectrum is left to be estimated. This can be done by �1� averaging
he amplitude spectra of all traces in each time window and �2� mul-
iplying the averaged window in the time domain by a Hanning taper
or enhanced robustness, while �3� ensuring that the amplitude at the
yquist frequency remains zero. In the frequency domain, the final

stimated wavelet then is given by

Wt�f�� 
Wav,t�f�
exp�� i�kurt�t�sgn�f�	, �8�

here 
Wav,t
 is the averaged amplitude spectrum, �kurt�t� is the con-
tant-phase angle determined by evaluating the kurtosis at discrete
ime t, and sgn� . � is the sign function. These wavelets then can be
sed for time-varying amplitude-and-phase deconvolution using the
rocedure outlined in van der Baan �2008�.

EXAMPLES

In this section, we provide examples of applying the proposed
echnique and compare them with results of the previous moving-
indow approach.

ynthetic example

To illustrate the whole procedure, we use a realistic synthetic ex-
mple composed of a super-Gaussian reflectivity convolved with
wo superposed Ricker wavelets with time-varying peak frequencies
SEG license or copyright; see Terms of Use at http://segdl.org/
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Nonstationary phase estimation A77
nd phases. The amplitude distribution of a super-Gaussian signal
as longer tails and a sharper peak than that of a Gaussian signal with
qual variance. At zero time, the composite wavelet has peak fre-
uencies at 30 and 60 Hz and a constant phase of �45°, which linear-
y changes to peak frequencies at 15 and 30 Hz and a constant phase
f �45° at the bottom of the recording. The peak frequencies thus
re halved from top to bottom, and a total phase rotation of 90° oc-
urs. Figure 1a displays the true wavelet at various times, and Figure
a and b shows the reflectivity series and resulting seismic input
ata. This example is challenging because both the amplitude spec-
rum and phase of the composite wavelet are highly nonstationary.

Figure 1b and c shows the extracted wavelets, and Figure 1d dis-
lays the estimated wavelet phase. The phase is estimated using both
he previously developed moving-window approach employing a
7% overlap between windows and the described regularized inver-
ion technique. The extracted and instantaneous wavelets compare
ell for both methods, as do the estimated and averaged phases, yet

he regularized approach leads to less fluctuations in the phase esti-
ates with a more natural appearance. It should be noted that phase

erturbations of up to 20° are difficult to detect by eye.
Reducing the number of windows from 12 to nine in the moving-

indow approach leads to less fluctuations in the resulting phase es-
imates, yet the regularized estimates remain smoother and with
maller deviations from the true trend. The moving-window ap-
roach is therefore more sensitive to the chosen window length de-
pite the 67% overlap between adjacent windows.
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igure 1. Wavelet-estimation results for the synthetic example. �a�
he true wavelet is strongly nonstationary. Instantaneous wavelets
re shown at 12 timings, numbered 1–12 with increasing time. Ex-
racted wavelets using �b� moving overlapping windows and �c� lo-
al regularized kurtosis estimation. �d� Estimated phases using both
ethods compared with the true phase. The regularized local kurto-

is maximization is more stable than a windowed approach.
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A constant-phase rotation on a monofrequency signal amounts to
simple time shift of the entire trace.Applying a time-varying phase

otation on a seismic signal often results in a gentle squeezing, or
tretching, of the time series. Phase mismatches on continuous se-
uences of events thus might give the impression that a timing error
s occurring. Only if an isolated event is detected can it become pos-
ible to see whether the phase rotation is done properly because a ze-
o-phase wavelet is symmetric. This is evident in Figure 2c-e, which
isplays the resulting traces after phase-only deconvolution. A com-
arison with the true zero-phase trace demonstrates again that the
egularized phase estimate is more accurate �e.g., at 1.4 s�.

ata application 1

Next we consider the same stacked section as in van der Baan
2008�, which has known phase problems. Phase has been estimated
sing the method outlined above. Triangular shaping employs 100
ime samples �400 ms� and 50 traces. Figure 3 displays the data be-
ore and after phase corrections. The waveforms in the corrected
ata are more symmetric, which is a characteristic feature of zero-
hase data. This can be seen best in the zoomed-in areas in Figure 3c
nd d.
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igure 2. Phase-only deconvolution results for the synthetic exam-
le. �a� Reflectivity series, �b� input data with added noise, results af-
er �c� windowed phase estimation, �d� regularized phase estimation,
nd �e� true zero-phase data. The regularized estimates perform bet-
er, in particular at about 1.4 s.
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A78 van der Baan and Fomel
Figure 4 shows the associated phase angles and, for quality-con-
rol purposes, the maximum and minimum kurtosis values found and
heir ratio. Strong temporal and lateral phase variations are visible.
he lateral averages agree broadly with the results displayed in Fig-
re 5c of van der Baan �2008� showing a steplike change in the wave-
et phase from �78° in the top 1 s, �40° between 1.5 and 3 s, and

20° at 4 s. Relative kurtosis variations range between 1 and 1.22,
hich is low. However, both the highest relative and absolute kurto-

is values are found near the ocean bottom and the prominent dip-
ing layer at 2.5 s, which boosts our confidence that the phase angles
re estimated correctly. In addition, the resulting seismic section af-
er phase correction looks reasonable with many symmetric wave-
orms �Figure 3�.
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loseup on �c� the original and �d� the phase-corrected result, respect
ourtesy of Shell.
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ata application 2

Finally, we consider a stacked section from the Boonsville data set
Hardage et al., 1996�, where zero-phasing already has been applied.

e include this second data set to illustrate that phase estimation
ay also have potential applications in seismic interpretation and

ata analysis.
Figure 5 displays the stacked section and the estimated phase an-

les. Triangular shaping involved 50 time samples �100 ms� and 15
races. These small values are set intentionally to emphasize areas
here rapid phase variations occur, which we believe reflect chang-

s in the local geology instead of acquisition or processing artifacts,
s shown in the previous example. We are confident in our belief be-

T
im

e
(s

)

0 200 400 600 800

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Position (m)

After phase correction

1000 1200

)

Position (m)

After phase correction

500 600 700 800 900 1000

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

� Original data; �b� outcome after space-and-time-varying rotation.
everal phase rotations are visible, indicated by gray arrows. Data are
0

b

d

T
im

e
(s

)

ple. �a
ively. S
SEG license or copyright; see Terms of Use at http://segdl.org/



c
p
�

t
T
c
t
s
l
d
s
t

t
t
d
t
a
g
c
k
l
w
r
B
s
t
n
b
�
t

a
B
l
t
t
v
s
m
f
q

l
B
o
f
f
y
l
p
t
i
t

t
fl
p
s

F
e
t
m

Nonstationary phase estimation A79
ause imposing large lateral regularization in the inversion leads to
hase estimates, which are nearly constant in time with an average of
4°.
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igure 4. Phase estimates and kurtosis values for the first real data
xample. �a� Estimated phase at each data point; �b� maximum kur-
osis values; �c� minimum kurtosis values; �d� ratio of maximum and

inimum kurtosis.
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Nearly all phase estimates are less than 20°, and the stacked sec-
ion after phase-only deconvolution is highly similar to the original.
he most dramatic phase rotations occur at the upper left and right
orners at 0.3 s and within the plumelike structure originating from
he bottom between traces 50 and 90. This area includes the small
ynclinal dip on the major reflector starting at 1.1 s on the left. Such
ateral variations in estimated phase angles can, for instance, be in-
uced by subtle changes in thin-bed layering and their reflectivity re-
ponse. Nonstationary phase analysis thus can serve as a useful tool
o highlight variations in local geology.

DISCUSSION

The described wavelet and phase-estimation technique assumes
hat the earth’s reflectivity series has a white non-Gaussian distribu-
ion. The non-Gaussian character of the reflection coefficients is
emonstrated by well-log analyses �Walden and Hosken, 1986�. On
he other hand, it is unlikely that the earth’s reflectivity series is white
t all depths because this implies that there is no correlation between
eologic processes occurring over time �i.e., current geologic pro-
esses would not be influenced by the recent past�. Indeed, it is
nown that the earth’s reflectivity series is blue instead of white, thus
acking low frequencies �Walden and Hosken, 1985�, yet this non-
hiteness generally is considered a second-order problem, which is

emedied easily if local well logs exist �Saggaf and Robinson, 2000;
rowaeys and Fomel, 2009�. Saggaf and Robinson �2000� describe

everal workflows on how well logs can be used to correct for sta-
ionary nonwhite reflectivity series. We recommend applying any
onwhiteness corrections prior to nonstationary phase estimation to
etter honor the invoked whiteness assumption. Van der Baan
2008� provides more background on the assumptions that underlie
he described wavelet-estimation technique.

An isolated thin bed such as a high-velocity chalk marker leads to
seismic response with an approximately 90° phase shift. Zeng and
ackus �2005� argue in favor of 90° �rather than zero-phase� wave-

ets for interpreting the seismic response of thin layers. To achieve
he result that they advocate, it is sufficient to apply a 90° phase shift
o the output of our method. An irregular sequence of thin beds of
arying thicknesses, on the other hand, is unlikely to display the
ame characteristic response. It is in such an environment that seis-
ic phase analysis is most likely to help detect subtle stratigraphic

eatures including pinch-outs and variations in turbidite and coal se-
uences, meandering channels, and carbonate reefs.

Ajustification to employ statistical methods to estimate the wave-
et phase and amplitude spectrum is presented by Edgar and van der
aan �2009�. These authors compare statistical wavelet estimates
btained directly from the data with deterministic wavelets resulting
rom seismic-to-well ties for three marine data sets. In all cases, they
ound that the phase of the resulting wavelets is in close agreement,
et the deterministic seismic-to-well tie wavelets depict more side-
obes and had a more complex character. They conclude that the sim-
ler character of the statistical wavelet estimates looked more realis-
ic and that the extra sidelobes in the deterministic estimates could be
ntroduced to improve the seismic-to-well ties. Thus, these are at-
ributed to a nonphysical transfer function.

We recommend that kurtosis maximization by constant-phase ro-
ation is incorporated as a routine step in seismic data-processing
ows. It can reveal the presence of nonstationary nonminimum-
hase wavelets without the need for well control. A statistical analy-
is provides pertinent information about the data that can be used for
SEG license or copyright; see Terms of Use at http://segdl.org/
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A80 van der Baan and Fomel
ero-phasing, as a quality control tool to check deterministic phase
orrections, or even as an interpretational tool for highlighting areas
f potential interest.

CONCLUSIONS

Kurtosis maximization by constant-phase rotation is a useful tool
or nonstationary phase estimation. Casting this method into an opti-
ization framework leads to more robust phase estimates than a

impler approach employing individual overlapping analysis win-
ows. The incorporation of shaping regularization in the inversion
llows for the use of shorter analysis windows and provides more
onfidence in obtained phase estimates. The developed technique
hus can be used not only to extract nonstationary seismic wavelets
uitable for deconvolution but also as an interpretional tool to high-
ight areas of subtle stratigraphic variations in the local geology.
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