BLACK HOLE PHYSICS

Valeri Frolov

University of Alberta, Edmonton

Brief course of lectures at 18th APCTP Winter School on Fundamental Physics

Pohang, January 20 -- January 28, 2014
. PMYSICS IN
ACCEEERATED
FRAMES

Curvature at the surface of a black hole of very
large mass M is: $\quad \Re \sim \nabla \nabla \varphi / c^{2} \sim r_{g}^{-2} \sim M^{-2}$
(Show that \mathfrak{R} is equal to a tidal force on the surface of the Earth for a black hole of mass $\sim 6 \times 10^{7} M_{\odot}$)

In the limit $M \rightarrow \infty$ an observer at rest near the horizon, at distance ℓ from it, has 4-acceleration equal to $a=c^{2} / \ell$. In this limit a ST in his/her vicinity is practically flat, and hence such an observer is equivalent to a uniformly accelerated observer in Minkowsky ST. This is nothing but the equivalence principle.

Uniformly accelerated fremes

Spacetime model in special relativity is a 4D affine space M^{4}. ST events are represented by points in this space $p \in M^{4}$. A vector \vec{a} connecting two points (events) p and $q, \vec{a}=q-p$, belongs to a linear space R^{4} with a scalar product [in Cartesian coordinates $(T, X, Y, Z)] \quad(\vec{a}, \vec{b})=-a^{T} b^{T}+a^{X} b^{X}+a^{Y} b^{Y}+a^{Z} b^{Z}$.
The ST interval between two close points X^{μ} and $X^{\mu}+d X^{\mu}$ is $d s^{2}=\eta_{\mu \nu} d X^{\mu} d X^{\nu}, \eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)$.

Linear transformations of the coordinates

 which preserve the form of the interval form the Poincaré group of symmetries. These transformations are of the form$X^{\mu}=X_{0}^{\mu}+\Lambda^{\mu}{ }_{\nu} \tilde{X}^{\nu} ; \quad X_{0}^{\mu}$ are translations; $\Lambda^{\mu}{ }_{\nu}$ are matrices of Lorentz rotations that form the Lorentz group.
For infinitely small Lorentz transformation one has
$\Lambda^{\alpha}{ }_{\mu}=\delta^{\alpha}{ }_{\mu}+\zeta^{\alpha}{ }_{\mu}$.

Show that $\zeta_{\mu \nu}$ are antisymmetric matrices and total number of parameters of the Poincare group is 10 .

Consider now how spacetime points are moved under the symmetry transformation. For infinitely small transformation one has

$$
X^{\mu} \rightarrow X^{\mu}+\xi^{\mu}, \quad \xi^{\mu}=\varepsilon^{\mu}+\eta^{\mu \alpha} \zeta_{\alpha v} X^{v}
$$

Vectors ξ^{μ} generating these transformations are called Killing vectors. They obey equations $\xi_{(\mu, \nu)}=0$.

Integral lines of the Killing vectors are determined
be the equations $\frac{d X^{\mu}}{d \lambda}=\xi^{\mu}(X)$.

Boost transformations in $(T-X)$-plane: $\xi^{\mathrm{T}}=X, \xi^{\mathrm{X}}=T$. Integral lines: $\frac{d T}{d \lambda}=X, \quad \frac{d X}{d \lambda}=T \Rightarrow T^{2}-X^{2}=$ const

Consider a world line in the Minkowski spacetime given by the following equation
$X^{\mu}(\tau)=\left(a^{-1} \sinh (a \tau), a^{-1} \cosh (a \tau), 0,0\right)$
Simple calculations give the velocity u^{μ} and acceleration w^{μ} for such a motion
$u^{\mu}=\frac{d X^{\mu}}{d \tau}=(\cosh (a \tau), \sinh (a \tau), 0,0)$,
$w^{\mu}=\frac{d u^{\mu}}{d \tau}=(a \sinh (a \tau), a \cosh (a \tau), 0,0)$,
$u^{2}=-1, \quad w^{2}=a^{2}, \quad \ell=a^{-1} \quad(c=1)$

Observations:

(i) $X^{\mu}(\tau)$ coincides with an integral
line of the boost generator on ($T-X$)-plane;
(ii) τ is the proper time parameter;
(iii) $X^{\mu}(\tau)$ is a world line of a uniformly accelerated object.

Consider a charged (with charge e) particle of mass m which is initially at rest. Suppose at the moment of time $t=0$ one switches on a constant electric field $F_{\mu \nu}=-2 E \delta_{[\mu}^{0} \delta_{\nu]}^{1}$. Prove that at $t>0$ the particle moves with a constant acceleration $a=e E / m$.

Π_{τ} is a set of events simultaneous with $X^{\mu}(\tau)$ in a reference frame of the accelerated observer. Its distance to the origin O remains constant: $\left(X^{\mu}\right)^{2}=\ell^{2}=a^{-2}$.

Introduce new (so called Rindler) coordinates in R_{+}

$X^{\mu}=(\rho \cosh (a \tau), \rho \sinh (a \tau), y, z)$. Minkowski metric in these coordinates takes the form
$d s^{2}=-a^{2} \rho^{2} d \tau^{2}+d \rho^{2}+d y^{2}+d z^{2}$.
This is a metric of a homogeneous gravitational field.

An inertial particle, $X^{\mu}=(\gamma T, b+v \gamma T, 0,0), \quad\left[\gamma=\left(1-v^{2}\right)^{-1 / 2}\right]$ in Rindler coordinates has the following equation of motion
$\rho=\frac{b \cosh \left(a \tau_{0}\right)}{\cosh \left[a\left(\tau-\tau_{0}\right)\right]}, \quad \tanh \left(a \tau_{0}\right)=v$.
In the Rindler frame it takes infinite time τ to reach the horizon $\rho=0$.

Consider now a massless scalar field $\square \varphi=0$ propagating in the Rindler space. Its solution in the Cartesian coordinates can be decomposed into monohromatic plane wave modes

$$
\varphi=\varphi_{0} \exp (i \Phi), \quad \Phi=k_{\mu} X^{\mu}=-\omega T+\vec{k} \vec{X}
$$

For a plane wave in X-direction: $\Phi=-\omega(T-X)$.
In the Rindler frame $\Phi=\frac{\omega}{a} \exp (-a \tau)$, and its frequency is

$$
\varpi=-\frac{d \Phi}{d \tau}=\omega \exp (-a \tau)
$$

Lessons

(i) Rindler coordinates cover only `quarter' of the total Minkowski ST; (ii) To 'cover' all the ST it is required 4 of them; (iii) Rindler observer sees only 'half' of ST; (iv) `Visible’ and 'invisible’ domains are separated by the null surface of the event horizon;
(v) It takes infinite Rindler time for a particle to reach the event horizon, while the proper time is finite;
(vi) Light emitted by a falling particle is red-shifted. Red-shift infinitely grows near the horizon.

