
Brief course of lectures at 18th APCTP Winter 
School on Fundamental Physics 

Pohang,   January 20 -- January 28, 2014   





2

7

2 2

(Show that  is equa

Curvature at the surfac

l to a tidal force  on 

e of a black hole of very 

large mass  is:    

the surface 

of the Earth for a black hole of 

 /

 mass 6 10 )

gM c r

M

M   





2

In the limit  an observer at rest near the horizon, 

at distance  from it, has 4-acceleration equal to / . 

In this limit a ST in his/her vicinity is practically flat, and 

hence such an observer
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 is equivalent to a uniformly accelerated 

observer in Minkowsky ST. This is nothing but the

equivalence principle.
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Spacetime model in special relativity is a 4D affine space . 

ST events are represented by points in this space . 

A vector  connecting two points (events)  and ,   ,

belongs to a linear s
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pace with a scalar product [in Cartesian

coordinates ( , , , )]   ( , ) .

The ST interval between two close points  and  is

, diag( 1 1 1 1).
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0 0;     are translations;   are 

matrices of Lorentz rotations  that form the Lorentz group.

For infinitely small Lorentz transformation one has

Show that  are antisymmetr
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ic matrices and total

number of parameters of the Poincare group is 10.

Linear transformations of the coordinates 
which preserve the form of the interval form 
the Poincaré group of symmetries. These 
transformations are of the form  
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Consider now how spacetime points are moved under the symmetry 

transformation. For infinitely small transformation one has

( , )

Vectors  generating these transformations are called

Killing vectors. They obey equations 0.



 



 

Integral lines of the Killing vectors are determined

be the equations  ( ).
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Boost transformations in ( )-plane: , .

Integral lines:  ,
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Consider a world line in the Minkowski spacetime given by 

the following equation 

( ) ( sinh( ) cosh( ) 0 0)

Simple calculations give the velocity   and acceleration   

for such a motion 

X a a a a

u

u w



 



      

  

 

2 2 2 1

cosh( ) sinh( ) 0 0

sinh( ) cosh( ) 0 0

1, , ( 1)

dX
a a

d

du
w a a a a

d

u w a a c






 


 




    

     

    



(i) ( ) coincides with an integral

line of the boost generator on ( )-plane;

(ii)  is the proper time parameter;

(iii) ( ) is a world line of a uniformly 

      accelerated object.

Observations  :
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Consider a charged (with charge ) particle of mass   which 

is initially at rest. Suppose at the moment of time  0 one switches 

on a constant electric field  2 .  Prove that at 0 the
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particle moves with a constant acceleration  / . a eE m
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 is a set of events simultaneous with ( ) in a 

reference frame of the accelerated observer. Its distance

to the origin  remains constant: ( ) .
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Introduce new (so called Rindler) coordinates in 

( cosh( ), sinh( ), , ). Minkowski

metric in these coordinates takes the form

.

This is a metric of a homogeneous gravitati
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onal field.
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An inertial particle, ( , ,0,0), [ (1 ) ]

in Rindler coordinates has the following equation of motion

cosh( )
= , tanh( ) .

cosh[ ( )]

In the Rindler frame it takes infinite time  to 
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reach the horizon .=0
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Consider now a massless scalar field  0 propagating in the 

Rindler space. Its solution in the Cartesian coordinates can be 

decomposed into monohromatic plane wave modes

 exp( ), .i k X T kX





  



      

For a plane wave in -direction:  ( ).

In the Rindler frame exp( ),  and its frequency is

exp( ).
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(i)  Rindler coordinates cover only `quarter’ of  
      the total Minkowski ST; 
(ii) To `cover’ all the ST it is required 4 of them; 
(iii) Rindler observer sees only `half’ of ST; 
(iv) `Visible’ and `invisible’ domains are separated 
       by the null surface of the event horizon; 
(v) It takes infinite Rindler time for a particle to 
      reach the event horizon, while the proper time 
      is finite; 
(vi) Light emitted by a falling particle is red-shifted. 
       Red-shift infinitely grows near the horizon. 


