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Spacetime model in General Relativity is a differential manifold. 
Its points represent events. In the vicinity of each point there 
exist a domain covered by a local coordinate system. These 
coordinate maps are consistent and cover all the manifold. 



Basic elements and facts of the Riemannian geometry:

(1)  By a coordinate transformation metric at a given point  can be put

      in

Gravitational field is described by a metric  on the ST manifold.
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 the form  ( ) diag( 1,1,1,1);

(2) These coordinates can be choosen so that ( ) 0;

(3) A scalar product of two vectors is ( , ) ;
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     Its action on a tensor is again tensor.

(5) Covariant derivative do not commute. Their commutator is 
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(6) Parallel transport along a curve: Let ( ) be a curve and

      ( ) /  be a tangent vector to it. Then  is paralell

      transported if 0,  ( 0);

(7)  Geodesic line (partic

u

x

u dx d A

u A A u A



  

    

 



 

    

;

2

2

le world line)  0;

(8)  Interval between two close events  and  is

      ;

(9)  Causal structure. Local null cones: 0.
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(10)  ( ) is a generator of 1-parameter diffeo:

         / ( );

(11)   Symmetry is diffeo preserving the metric. It is 

         generated by Killing vector fields 0;
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In the presence of matter the Einstein-Hilbert action must be modified by 
adding the matter action which we write in the form  
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The variation of the Einstein-Hilbert action is  
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The variation of the matter action over the metric gives the symmetric 
tensor of rank two 
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This tensor is called the (metric) stress-energy tensor or energy-momentum 
tensor of the matter. 
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The terms on the left-hand side depend only on the spacetime geometry, 
while on the right-hand side we have the stress-energy tensor of the matter 
fields. 
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A spacetime is called spherically symmetric if there exist 
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One may consider ln  as a new scalar   field, which 

together with   determines 2D dilaton  gravity. 

Variation of the reduced action gives equations
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A spherically symmetric vacuum solution of Einstein equations with a 
cosmological constant is determined by one essential constant (mass M) 
and can be written in the form 
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The radius =2M is known as the gravitational radius or the Schwarzschild 
radius. In physical units, after restoring G and c constants, it has the value 
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describes the gravitational field in vacuum, outside a spherical distribution of 
matter. This matter may be either static or have radial motion preserving the 
spherical symmetry. According to Birkhoff's theorem, the external metric does 
not depend on such motion. In the absence of matter, the metric describes an 
exterior of a spherically symmetric static black hole. In this case          is the 
radius of its event horizon. 
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Schematic picture illustrating  
a black hole formation.  
Time goes in the vertical 
direction. Collapse of the  
matter results in the creation  
of the event horizon. It is  
formed some time before  
the surface of the collapsing  
body crosses the gravitational  
radius. Soon after the formation the horizon becomes stationary. Future directed 
local null cones are shown. Inside the horizon these cones are strongly tilted, so that 
the motion with the velocity less or equal to the speed of light brings a particle 
closer to the singularity. 



The null surface separating the black hole exterior and interior is, in fact, a 
regular surface of the spacetime manifold. This can be tested by calculating 
curvature invariants. For example, the so called Kretschman invariant for the 
Schwarzschild metric is finite at the gravitational radius.  
 
 
 
 
 
In the other coordinate systems the horizon is perfectly regular. At the center 
of the black hole at r = 0 the curvature is infinite. Near this singularity the 
tidal forces infinitely grow. This is a physical singularity. It cannot be removed 
by coordinate transformation. 

2
2 S

6

12r
R R R

r



 



Consider the (t-r)-sector of the Schwarzschild metric 
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In the vicinity of the horizon:  S(1 ) 1r r y y   

the proper length distance from the horizon  
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S1 (2 ) 1 (4 )r M     is the surface gravity of the black hole. 
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If we consider region, which in the transverse direction has the size much smaller 
than      , then this sphere can be approximated by a 2D plane. In such a near 
horizon region this approximation gives the 4D Rindler metric. 
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Main facts of the near-horizon physics: 
 
Many properties of the black hole in the near horizon region directly follow from the 
analysis in the Rindler. 
 
1. For a particle (light ray) falling into a black hole it takes a finite proper time 
(afine parameter) to reach the event horizon; 
2. The time t measured by an external observer for the same process is infinitely 
large; 
3. The redshift factor for the light emitted by an object freely-falling into the black 
hole as measured by a distant observer, is                    , where        is the surface gravity 
of the black hole; 
4. Infinite redshift surface                              coincides with the event horizon. 
 
 
The spacetime described in the Schwarzschild coordinates is geodesically incomplete. 
The Rindler approach allows one to conclude that beyond the Schwarzschild 
horizon there exists a continuation of the geometry. In particular, one can expect that 
there must exist regions where the Killing vector becomes spacelike. 
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The Schwarzschild metric does not cover a complete spacetime. In this sense, 
the Schwarzschild coordinates (t; r) are similar to the Rindler coordinates 
acting in the           domain 
 
 
In Schwarzschild geometry one  
can use an analogue of  null  
Rindler coordinates 
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In Kruskal coordinates,

the Schwarzschild metric reads 
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Synge (1950); Fronsdal (1959); Kruskal (1960);  
Szekeres (1960); Novikov (1963,1964) 



Instead of the null coordinates U and V it is possible to introduce timelike and 
spacelike coordinates 
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The global structure of the Kruskal spacetime is illustrated in Figure 





There is a special modification of the spacetime diagrams, similar to Kruskal 
one, which makes the global causal structure of the spacetime, including its 
properties at infinity, more profound. Let us denote 
 
 
 
 
 
The spacetime diagrams where the infinity is brought to finite coordinate 
distance are known as Carter-Penrose conformal diagrams. 
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The equation U = -V determines a three-dimensional spacelike slice of the 
Kruskal spacetime. This slice passes through the bifurcation surface of the 
horizons. It has two branches. This subspace is called the Einstein-Rosen 
bridge. Its internal geometry 
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The geometry of a two-dimensional section                     of the metric can be 
embedded in a  at three-dimensional space as a revolution surface 
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The Schwarzschild spacetime can be represented in many different coordinate 
systems, each being convenient for different applications. In the acoustic 
analogue models of gravity the Painleve-Gullstrand metric appears naturally. The 
Schwarzschild geometry in the Painleve-Gullstrand coordinates is 

2 2 2 22 2 1ds g d g dtdr dr r dt       

1 ( )

( )

g r
t t dr

g r


   2S1

3

r
g r

r


   

Here the sign + correspond to the coordinate patch covering the usual 
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Another useful representation of the Schwarzschild black hole is related to 
coordinates associated with the free falling photons. The geodesics of radially 
moving photons are described by the equation. 
 
 
 
It is convenient to introduce a tortoise coordinate  
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Sometimes it is convenient to use the retarded time coordinate  
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These coordinates are called the outgoing Eddington-Finkelstein coordinates 
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If an electrically charged particle falls into the Schwarzschild black hole it becomes 
charged. To describe such a charged black hole one has to solve the Einstein-
Maxwell equations and take into account the stress-energy tensor of the 
electromagnetic field. The spherically symmetric solution of the problem can be 
found in a similar way as the Schwarzschild solution. It is easy to check that for the 
spherically symmetric electric field the condition is satisfied, so the the generalized 
Birkhoff's theorem is valid and the metric is of the form 

2 2 1 2 2 2ds g dt g dr r d    

2
2

2

2
1

3

t

M Q
g r

r r

Q
A

r
 


    

  

For                this solution 
is known as the Reissner-
Nordström spacetime. 
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The radius of the horizon of the charged black hole is 
 
For the charged black hole the function   g(r)   has two roots  
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        is an inner or Cauchy horizon,  
located inside the black hole.  
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Note that in astrophysical applications the electric charge is usually 
negligibly small. This is because the electromagnetic coupling constant is 
many orders of magnitude stronger than the gravitational one. For two 
electrons the electromagnetic interaction is proportional to  
 
 
 
while for their gravitational attraction  
 
 
 
Because of this huge disparity electrically charged black holes in the 
interstellar medium will attract charges of the opposite sign and repel 
charges of the same sign. Eventually they become almost neutral. The charge  
of such a black hole of mass  obeys an inequality 
 
 

2 1 137 036e c     

2 45

e 1 75 10Gm c    

210 5 10emQ

M e

   



If there were magnetic monopoles in nature then black holes could acquire a 
magnetic charge. The metric of the magnetically charged black hole coincides 
with that of the electrically charged one 
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In the `physical' spacetime the signature of the metric is ( - ; + ; + ; + ). The 
Schwarzschild metric is static and it allows an analytical continuation to the 
Euclidean one ( + ; + ; + ; + ) . This continuation can be obtained by making the 
Wick's rotation                      . The corresponding space, called a Euclidean black hole, 
has interesting mathematical properties and has important physical applications. 
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Consider the (t-r)-sector of the Schwarzschild metric 
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In the vicinity of the horizon:  S(1 ) 1r r y y   

the proper length distance from the horizon  
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2 2 2 2 2d dt d    

S1 (2 ) 1 (4 )r M     is the surface gravity of the black hole. 
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Euclidean time. 

 



This regular four dimensional Euclidean space is called the Euclidean 
black hole or the Gibbons-Hawking instanton. The inverse period in Euclidean 
time is equal  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      is called the Hawking temperature of the black hole. 
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(D-2)-dimensional unit sphere 

If the matter distribution has the property                        one can prove that the 
generalized Birkhoff’s theorem is valid. 
Birkhoff's theorem states that any spherically symmetric solution of the 
vacuum field equations must be static and asymptotically flat. 
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This vacuum spherically symmetric solution is known as the  

Tangherlini metric. It describes higher dimensional spherically 

symmetric black hole in an asymptotically flat spacetime.  
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The global structure of the complete spacetime for this metric is similar to 
the Kruskal 4D solution. 
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It describes the Euclidean black hole which is regular at the Euclidean horizon  

S

3

2

D

r



 

2
H




  

In the case of the Schwarzschild-(anti) de Sitter metric 
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1. gravitational capture; 
2. hyperbolic motion (scattering; 
3. bounded orbits; 
4. stable circular orbits; 
5. unstable circular orbits 
6. near horizon trapped motion; 
7. marginal outer  and inner orbits; 



In astrophysical black holes matter falling onto a black hole usually forms an 
accretion disk. Particles are moving approximately along circular (Keplerian) orbits. 
As a result of loss of energy and angular momentum the radius of their orbits 
slowly decreases. They move closer and closer to the black hole. A particle may 
loose up to 
 
 
 
 
of its proper rest-mass energy until it reaches the innermost stable circular orbit 
(ISCO). After this, it falls into the black hole.  
 
This scenario gives the estimation for the efficiency of a static black hole. Namely 
this part of the total energy can be extracted from the accreting matter.   
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Additional material 
to this section 
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For a given           the gravitational capture occurs when                         . Let us 
calculate the capture cross-section 
 
 
 
for a particle which has the velocity         at infinity.           is an impact parameter. 
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Combining these equations we obtain the cross-section  
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Circular motion around a black hole is an important special case of motion of a 
particle at constant radius. The point at the minimum of potential corresponds 
to stable motion; and that at the maximum, to unstable one. The latter motion 
has no analogue in Newtonian theory.  
 
The maximum and minimum appear on the U curve when 
If                           the U curve is monotonic.  
 
When                          the minima of the curves correspond to  

3

3

3 S3r r

Thus, stable circular orbits exist only for  S3r r

At smaller distances there are only unstable circular orbits corresponding to 
the maxima of the potential. 



The critical circular orbit which separates stable trajectories from unstable ones 
corresponds to 
 
 

This orbit is called an innermost stable or marginally stable orbit 

(ISCO).  Particles move along it at the velocity   
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2v c 

min 3
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This is the motion with the maximum possible  
 
 
 
The velocity of motion on (unstable) orbits with                grows from c/2 to c  on 
the last circular orbit with   
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There is a variety of effects connected with action of the gravitational 
field of a black hole on the light propagation in its vicinity:  
 
1. Light rays are bended, so that images of bright objects are distorted;  
2. A point-like source may have many images;  
3. A cross-section of a beam of light rays after its passing near the black 
hole may shrunk;  
4. Beam’s shape is distorted;  
5. Visible brightness of images depends on their position;  
6. Time of a light signal arrival is delayed when it passes near the black 
hole;  
7. Registered frequency of radiation, emitted by an object moving near 
the black hole, is shifted.  





The turning points for the radial motion can be found from geodesic equations for 
null rays. One can show that the there is a minimum angular momentum parameter 
 
 
corresponding  to the turning point  at 
 
For                    a null ray propagates from infinity to the horizon. Such a null ray is 
captured by the black hole. Thus the capture cross-section for photons is 
 
 
 
 
For                       a null ray has a radial turning point. 
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A black hole as any other gravitating body acts on light as an optical lens 
with distortion. But a black hole is a very special gravitating object. Its 
main feature is a strong gravitational field. 



Let us consider a visible shape of the circular orbit near the black hole as seen by 
a distant observer. If the orbit is very far away from the horizon and we look at it 
from some finite inclination angle to the orbit plane then, evidently, the orbit will look 
like an ellipse because null rays emitted from the objects on the orbit and observed by 
us never enter the region of the strong gravitational field. Though, if we look in the 
direction of the black hole we nd out also many images of this orbit, concentrated at 
angles close to the angle corresponding to the critical impact parameter 
 
 
The picture is much more interesting when the orbit is located closer to the black hole 
and the observer is looking from inclination angles  
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