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Kerr-NUT-(A)dS metric derivation’




4D Kerr-NUT-(A)dS
Derivation in 3 Simple Steps

Step 1: Write flat ST metric in ellipsoidal coordinates

dS* = —dt* +dX* +dY* +dZ°

X =+r*+a? sindcosg, Y —Jr? +a? sin @ sin ¢,

2 2 2
Z=rcosf, -+ =]

r+a r

dr’

2
r+da

2+a’¢92)+

dS® =—dt* +(r* +a’ cos” 0) (

+(r’ +a’)sin” 0 d¢’




Step 2: Rewrite this metric in "algebraic’ form

y=acosO,r=t—ad, y=a ¢

ds? = — R(”)z (dr+y2dw)2+ Y(y)

r’+y r’+y

2 dy2
R(f’) Y(r)
R=r’+a’, Y=a’"-y

~(dr - r’dy)’

+(r’ +y )[ I,

(i) Coefficients are rational functions;
(ii) "Almost symmetric’ form




Step 3: Use this form of the metric to solve Einstein
equations

=—3g,, (A=-AJ3)

J73%

ds? = — R(’”)z (dr + ydw)* + Y(y)

r’+y r’+y

dr’ dy2
R(l’) Y(r)

~(dr - r’dy)’

+(r* + )l ]

[Carter 1968]




Practical hints

GRTensor program (by Kayl Lake et.al.
(for Maple and Mathematica)
grtensor.phy.queensu.ca/




[ > restart:

> grtw();
GRTensorll Version 1.79 (R4)
6 February 2001
Developed by Peter Musgrave, Denis Pollney and Kayll Lake
Copyright 1994-2001 by the authors.
Latest version available from: http://grtensor.phy.queensu.ca/
/home/frolov/grii/metrics

> makeg (sss);

Makeg 2.0: GRTensor metric/basis entry utility

To quit makeg, type ’exit’ at any prompt.

Do you wish to enter a 1) metric [g(dn,dn)],
2) line element [ds],
3) non-holonomic basis [e(l)...e(n)], or
4) NP tetrad [1l,n,m,mbar]?

makeg>2;
Enter coordinates as a LIST (eg. [t,r,theta,phi]):
makeg>[r,y, tau,psil];

Enter the line element using d[coord] to indicate differentials.
(for example, «r”2*(d[theta]”2 + sin(theta)”2*d[phi]"2)

[Type ’exit’ to quit makeg]

- ds”2 =

" makeg>—(RR(r)/(r"2+y”~2))*(d[taul+y"2*d[psi]) "2+ (Y (y)/ (x*2+y*2)) *(d[t
aul -r 2*d[psi]) "2+ (r"2+y”*2) *(d[r]"2/RR(r)+d[y]l1*2/Y(y)):

If there are any complex valued coordinates, constants or functions
for this spacetime, please enter them as a SET ( eg. { z, psi } ).

Complex quantities [default={}]:
makeg>:
{}

The values you have entered are:
Coordinates =[r, y, T, ]
Metric:
r y
8 r=RR(") T RR()
g, ,=0
8 <=0
8 =0
g, ,=0

2




)‘2 y 2

& 7ye) Ty

RR() _Y()
8: =" 2 2%t
Tyt 4y
RR(Dy*  YO)r*
r2+y2 r2+y2
8y =0
8y ,=0
RR(1y’ YO)r
r2+y2 r2+y2
RR(Y'  Y()r!
8 =
vy r2+y2 r2+y2
You may choose to Use the metric WITHOUT saving it,
Save the metric as it is,
Correct an element of the metric,
Re-enter the metric,
Add/change constraint equations,

Add a text description, or
Abandon this metric and return to Maple.

makeg>0;
Calculated ds for sss (0.004000 sec.)
Default spacetime = sss
For the sss spacetime:
Coordinates
X(up)
P XA
Line element
2 2 2 2
r y y RR(n) YY) 5
IR P ERFA P
RR(r) ' RR(r) Yo Ty )Y Py’ P4y
RR(DY® Y RR(DY Yo r')
2.2 "2 2 |drdyH| =T 2.2 |4V
r+y r+y r+y r+y
makeg () completed.

r > grcalc(R(dn,dn),Ricciscalar):
gralter (R(dn,dn),Ricciscalar,1):




grdisplay (Ricciscalar);
Calculated g(dn,dn,pdn) for sss (0.000000 sec.)
Calculated Chr(dn,dn,dn) for sss (0.004000 sec.)
Calculated detg for sss (0.000000 sec.)
Calculated g (up,up) for sss (0.004000 sec.)
Calculated Chr(dn,dn,up) for sss (0.004000 sec.)
Calculated R(dn,dn) for sss (0.028000 sec.)
Calculated Ricciscalar for sss (0.000000 sec.)

CPU Time =0.048
Component simplification of a GRTensorII object:
Applying routine simplify to object R(dn,dn)
Applying routine simplify to object Ricciscalar
CPU Time =0.024
For the sss spacetime:
Ricci scalar

d? a4’
—— RR() |+~ Y(»)
dr’ dy2 o
4y’
> RA:=r—>(r"2+a”2)*(l+lambda*r~2)-2*M*r;
YA:=y—>(a”2-y”*2)*(l-lambda*y"2)+2*N*y;
RA:=r— @ +a )0 +Ar)—2Mr

YAi=y (@@ —y)(1=Ay>)+2Ny
[ > grdef (‘W{p g}:=R{p g}+3*lambda*g{p g}’);
grcalcalter (W(dn,dn),1);
grmap (W(dn, dn) , subs, RR=RA, Y=YA, ‘x‘) ;
Created definition for W(dn,dn)

R =—

Simplification will be applied during calculation.
Applying routine simplify to object W(dn,dn)
Calculated W(dn,dn) for sss (0.028000 sec.)

CPU Time =0.028
Applying routine subs to W(dn,dn)

> grcalc(W(dn,dn)) ;
gralter (W(dn,dn),1);
grdisplay(_);
CPU Time =0.

Component simplification of a GRTensorII object:

Applying routine simplify to object W(dn,dn)

CPU Time =0.008
For the sss spacetime:
W(dn,dn)
W(dn, dn)

W, ,=All components are zero




"Trace equation’ gives:
OIR+0Y =12A(r" +y*),
0,R—124Ar" =c, 0,Y-124y" =,

R:/’tr4+§r2+ar+ﬂ,

Y=ﬁy4—§y2+7/r+5




The other equations fix some constants

and we have
R="+a’ )1+ Ar*)—2Mr,
Y =(a” —y*)1-Ay*)+2Ny

a — rotation parameter, M —mass,

N —"NUT" parameter, A — cosmological term'




In what follows we put A=N =0 and
coordinates back’

y=acosd, r=t—a¢g, w=a g

After this we obtain Kerr solution In
standard Boyer-Lindgquist coordinates

(t,r,0,9).




Kerr metric

= dtde+ dg?

4’ __( 2Mr)dt2_4Mrasin26’ Asin® @
2 2

+Zdress doz,

A

Y=r“+a°cos’d, A=r°—-2Mr+a’,
A=(r*+a’)>—Aa’sin‘@.




At far distances Kerr metric takes the form

=)
dszz—(l—z—M)dtz—A'Masm 9 dtdgls dr? + r(d6? +sin? 9dg?).
r r

From this asymptotic form one can conclude that M is the mass and J=Ma is the
angular momentum of the black hole.

The parameter a in the Kerr metric is called the rotation parameter. Like the mass
M it has a dimensionality of length. Their ratio is a dimensionless parameter

a=a/M

which is called the rotation rapidity.




Infinite redshift surface

From the form of the Kerr metric it is easy to conclude that

. 2 .2
dsZ:—(l——ZMrjdtz—A'Mrasm Oatdp+ 22" g2 Zar2 1 xde?,
2 2 ) A

>—2Mr =r°—=2Mr+a“cos“ € =0,

r=r(0), r,(@)=M +JM2—a%cos? 8.
Surface determined by this condition

for a = 0 is timelike (not null), and hence
thisis not a horizon.

This surface is also called an ergo surface




How to find the horizon surface? Suppose
Its equation 1s S(r, &) = 0. The surface Is
null when its gradient vector S , 1s null

9SS, =0=A SZ+S%=0.
This equation Is satisfied when S = A =0.




2 .2
The event horizon is located at r=r, =M= \/ M- —-a”.
Which are the roots of the equation A(I‘) 0

The event horizon of the Kerr
spacetime is a null 3-dimensional
surface. Its spatial slices have the Static limit
geometry of a 2-dimensional
distorted sphere.

Ergosphere

The rotating black holes exist only for Z

as<M Outer event

p—

For a> M the Kerr solution does horizon
not have a horizon and it describes
a naked singularity. It is generally

believed that such a singularity does Inner event
not arise in real physical processes. horizon

Ring singularity




The embedding diagram of a two-dimensional section of the event horizon
of the Kerr black hole. The diagram is for the critical value of the rotation

parameter A= M ﬁ so that the Gaussian curvature vanishes at the
2

poles.

For higher values of a the internal metric of the horizon can not be obtained
by embedding it into a flat 3d space.




Consider (non-geodesic) circular orbits u” ~n* = & + gy

A condition that u” null implies

—q.. + 2 _
W, = S \/gt¢ gtth, 0, — 940, = Asin® 6.

: 9

Real solutions exist only when A > 0. Vector u” Is timelike

for o_ < w < w, . Vector u” becomes null at the horizon

and one has w_ = w, = Q. This is angular velocity of the
black hole. Inside ergosurface, where g, >0, both w, are
positive. Particle are always co-rotating with the black hole.
Analysis of the Keplerian circular motion of particles in the
equatorial plane shows that radius of ISCO can be arbitrary
closetor,.




Einstein-Rosen bridges
for Kerr spacetime

a/M =0.999 a/M =0.999999 a/M =0.999999999




Negative energy orbits

Then the energy of a particle or a photon may be negative E < O This happens
only when they move inside the ergosphere. This property is related to the fact
that 5{6 is not timelike inside ergosphere. Since the corresponding momentum p,
is a future directed timelike or null vector, the energy of a particle inside the
ergosphere may be both positive and negative.

E=-p,cy,

Penrose process. A particle 0
enters the ergosphere and decays
there into two particles, 1 and 2.
One of them with a negative
energy (2) falls into the black
hole. The other one (1) escapes
the ergosphere with the energy
exceeding the energy of the
original particle.




Particle and light propagation in Kerr ST :
Integrals of motion.

Let £“ be a Killing vector and u” is 4-velocity of
the particle (photon). Then P =& u” Is conserved.
dP dx”
dr N dr

— 14V Hyvo
P,=u’ug, +gu“u, =0.

Let K, be a symmetric tensor obeying the property
K

() =0- Then P =K u”u” is conserved.

dP  dx“
dr dr
Such an object K is called a Killing tensor.

—11#n V¢ Ho o v
P,=u"u"u“K . +2K u“u“u, =0.




Metric g, Is a trivial example of the Killing tensor.

Kerr metric has 2 Killing vectors & and &7

Carter (1968) found that it also has a Killing tensor.
This gives 4 integral of motion and make particle anf

light equationscompletely integrable.




Energy extraction from
rotating black holes

Consider Penrose process in more details. Local conservation

low requires p; = p;’ + p, . For each of the particles we define
their energy and angular momentum &, =—p{’s, , J; = p{’S; .
Denote by 1” = & + Q& a null generator of the horizon. Here

a
r’+a®

Q Is the angular velocity of the black hole Q=




Assume that particle 2 has negative energy. Then

0>1"p,, =—¢,+Q),= |,<&,/Q=

h—lo=—J,2—-¢6,/Q

This means that the extraction of the energy Is always
accompanied by the extraction of the angular momentum.
Parameters of the black holes change

oM =¢,,6) =], =M -Q6J >0.

For the most economic ( reversable’) process oM = QoJ.




A=4r(r’+a?)=8z(M?+JM*—J?)
M 3

NIVER

If the process Is not reversable, the surface area

of the black hole grows.

This Is a special case of the general theorem proved

by Hawking: In the absence of a singularity the

surface area of the black hole is a non-decreasing

function of time, provided the weak energy condition

IS satisfied.

OA=167(M +

_)[6M - Q53] 20,




Irreducible mass

M. =(A/167)"?, Mif:%(M2+\/M4—J2)

M?=M:Z+ N >M?
Ir 4M ii Ir
Consider a black hole with parameters M, J,,.
After energy extraction it has mass M, > M. (M,, J,).
I J,=0 then In the most efficient (reversable) process

AM =M, -M. (M, J,). For extremal black hole
J,=MZ2=M, =M, /+/2. So that

AM = (1—1/\/§)M0 =0.29M,. For a stellar mass BH
with M, =10M this gives the energy 0.6 x10>erg.




Superradiance
D ~ f(r,0)exp(—lwt +Img)
e=ho, |=nm,
oM -Q6J >0, 6J/o6M =m/ o,

0

hi
Energy Is extracted when o < mQ.

dd [ico — hmQ] > 0.
0,




Black hole in magnetic field

The black hole electrodynamics is quite non-trivial if we deal not with an isolated
black hole, but with a black hole surrounded by matter. In a generic case a black
hole is surrounded by accreting matter, which forms an accretion disk. This
matter is usually hot enough and is in the form of plasma.

The plasma is an ideal
conductor and the magnetic
field (if it is present) is frozen
into it. In the presence of the
rotating plasma the well
known dynamo mechanism
can amplify the magnetic
field. As a result of this
mechanism magnetic field

in the black hole vicinity is
generated, which can
produce observable effects.
(Blandford-Znajek mechanism)




Twin paradox in Kerr spacetime

A free motion of objects along a

circular trajectory gives an interesting
example of the twin paradox inthe  Ajice
General Relativity. Consider two

observers, Alice and Bob, moving

in the opposite directions along a

circular orbit of the same radius r

in the equatorial plane of the Kerr

black hole. Let us assume that

Bob is moving in the direction of

rotation of the black hole and

Alice is counter-rotating. Because

the black hole drags into rotation

the space around it, Alice should move faster than Bob to stay at the same circular
orbit. Therefore Alice covers more distance than Bob after their first encounter till
the next one. Her higher speed in combination with other relativistic effects leads
to the slower proper time pace for Alice. So Bob grows old faster than Alice, in
spite of the fact that both move geodesically along the same orbit. The rotation of
the black hole makes a big difference.




Black hole “shadow”

Imagine that behind the rotating black hole there is a source of light. Let its
angular size be much larger than the angular size of the black hole. Then a
distant observer will see a dark spot on the (x-y)- plane, which is an apparent
image of the black hole. This is what is called the black hole shadow.

o

The rim of this shadow corresponds to photons which are marginally trapped
by the black hole. They revolve around the black hole many times before nally
reach the distant observer. The size and shape of the rim depends on the black
hole parameters (M and a) as well as on the inclination angle 0 between the
direction to the distant observer and the axis of symmetry.




The observer is looking in the direction of the black hole. On the background of
the sky the black hole will be visible as a black spot (“shadow") with the shape of a
deformed disk which is slightly shifted in the direction of rotation of the black hole
(to the right). For an extremal black hole a=M, when observed from the
equatorial plane, the left edge of the shadow is a vertical straight line between the
points (—2M, —+/3M) and (—2M,+/3M) . The right edge is at x = 7M.




