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Kerr-NUT-(A)dS metric `derivation’ 



4D Kerr-NUT-(A)dS  
Derivation in 3 Simple Steps 

Step 1: Write flat ST metric in ellipsoidal coordinates 
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Step 2: Rewrite this metric in `algebraic’ form 
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(i)  Coefficients are rational functions; 
(ii) `Almost symmetric’ form 
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Step 3: Use this form of the metric to solve Einstein 
equations 

    3   ( =- /3)R g

[Carter 1968] 
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GRTensor program (by Kayl Lake et.al.   
(for Maple and Mathematica) 

grtensor.phy.queensu.ca/‎ 
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In what follows we put = 0 and

coordinates `back'

cos , , .

After this we obtain Kerr solution in

standard Boyer-Lindquist coordinates
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At far distances  Kerr metric takes the form 
 
 
 
 
 
 
From this asymptotic form one can conclude that M is the mass and J=Ma is the  
angular momentum of the black hole. 
 
The parameter a in the Kerr metric is called the rotation parameter. Like the mass 
M it has a dimensionality of length. Their ratio is a dimensionless parameter  
 
 
 which is called the rotation rapidity.  
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From the form of the Kerr metric it is easy to conclude that  
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for 0 is timelike (not null), and hence

thisis not a horizon.
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This surface is also called an ergo surface 
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How to find the horizon surface? Suppose

its equation is ( , ) 0. The surface is

null when its gradient vector  is null
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The event horizon is located at 
Which are the roots of the equation 
 
The event horizon of the Kerr  
spacetime is a null 3-dimensional  
surface. Its spatial slices have the 
geometry of a 2-dimensional  
distorted sphere. 
 
The rotating black holes exist only for  
 
 
For                the Kerr solution does  
not have a horizon and it describes  
a naked singularity. It is generally  
believed that such a singularity does  
not arise in real physical processes.  
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The embedding diagram of a two-dimensional section of the event horizon 
of the  Kerr black hole. The diagram is for the critical value of the rotation 
parameter                               so that the Gaussian curvature vanishes at the 
poles.  
 
For higher values of a the internal metric of the horizon can not be obtained 
by embedding it into a flat 3d space. 
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Consider (non-geodesic) circular orbits .

A condition that  null implies
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Then the energy of a particle or a photon may be negative                    This happens 
only when they move inside the ergosphere. This property is related to the fact 
that          is not timelike inside ergosphere. Since the corresponding momentum 
is a future directed timelike or null vector, the energy of a particle inside the 
ergosphere may be both positive and negative.  
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Penrose process. A particle 0 
enters the ergosphere and decays 
there into two particles, 1 and 2. 
One of them with a negative 
energy (2) falls into the black 
hole. The other one (1) escapes 
the ergosphere with the energy 
exceeding the energy of the 
original particle. 
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Let  be a Killing vector and  is 4-velocity of

the particle (photon). Then  is conserved.
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Particle and light propagation in Kerr ST :

              Integrals of motion.
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Metric  is a trivial example of the Killing tensor.

Kerr metric has 2 Killing vectors  and .

Carter (1968) found that it also has a Killing tensor.

This gives 4 integral of motion and make parti
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Consider Penrose process in more details. Local conservation 

low requires  . For each of the particles we define 

their energy and angular momentum  , .
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Assume that particle 2 has negative energy. Then
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This means that the extraction of the energy is always

accompanied by the extraction of the angular momentum.
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Consider a black hole with parameters , .
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The black hole electrodynamics is quite non-trivial if we deal not with an isolated 
black hole, but with a black hole surrounded by matter. In a generic case a black 
hole is surrounded by accreting matter, which forms an accretion disk. This 
matter is usually hot enough and is in the form of plasma.  
 
The plasma is an ideal  
conductor and the magnetic  
field (if it is present) is frozen  
into it. In the presence of the  
rotating plasma the well  
known dynamo mechanism  
can amplify the magnetic  
field.  As a result of this  
mechanism magnetic field  
in the black hole vicinity is  
generated, which can  
produce observable effects. 
(Blandford-Znajek mechanism ) 



A free motion of objects along a  
circular trajectory gives an interesting 
 example of the twin paradox in the  
General Relativity. Consider two  
observers, Alice and Bob, moving  
in the opposite directions along a  
circular orbit of the same radius r  
in the equatorial plane of the Kerr  
black hole. Let us assume that  
Bob is moving in the direction of  
rotation of the black hole and  
Alice is counter-rotating. Because 
the black hole drags into rotation  
the space around it, Alice should move faster than Bob to stay at the same circular 
orbit. Therefore Alice covers more distance than Bob after their first encounter till 
the next one. Her higher speed in combination with other relativistic effects leads 
to the slower proper time pace for Alice. So Bob grows old faster than Alice, in 
spite of the fact that both move geodesically along the same orbit. The rotation of 
the black hole makes a big difference. 



Imagine that behind the rotating black hole there is a source of light. Let its 
angular size be much larger than the angular size of the black hole. Then a 
distant observer will see a dark spot on the (x-y)- plane, which is an apparent 
image of the black hole. This is what is called the black hole shadow. 
 
 
 
 
 
 
 
 
 
 
The rim of this shadow corresponds to photons which are marginally trapped 
by the black hole. They revolve around the black hole many times before nally 
reach the distant observer. The size and shape of the rim depends on the black 
hole parameters (M and a) as well as on the inclination angle 0 between the 
direction to the distant observer and the axis of symmetry. 



The observer is looking in the direction of the black hole. On the background of 
the sky the black hole will be visible as a black spot (“shadow") with the shape of a 
deformed disk which is slightly shifted in the direction of rotation of the black hole 
(to the right). For an extremal black hole   a=M ,  when observed from the 
equatorial plane, the left edge of the shadow is a vertical straight line between the 
points                              and                             . The right edge is at x = 7M. ( 2 , 3 )M M  ( 2 , 3 )M M


