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(1) Extra-dimensions and string theory

(2) Brane-world models

(3) Black holes as probes of extra dimensions

(4) Micro BHs production in colliders?

(5) Generic and non-generic pr

Motivations :

operties of BHs
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Higher dimensional gravity is stronger at small scales and 

weaker at large scales than the 4D one: 

If extra dimensions are compact with size , then at the distance 

larger than  one
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( ) ( 4) has standard 4D gravity with

For higher dim. gravity may be as strong as other 

interactions.

Properties of HD black holes with  are determined by 
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o that testing their properties in 

our 4D experiments one probes extra dimensions  (e.g. micro BH 

at colliders?) 



Gravity in Higher Dim. Spacetime 
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No bounded orbits (prove!) 

Gravity at small scales is stronger than in 4D 



4D Newton law is confirmed for r>l.  
 
Q.: How to make gravity strong (HD) at small scales 
without modifying it at large scales? 
 
A.: Compactification of extra dimensions 

`Our space dimensions’ 

Extra 
dims 



Gravity in ST with Compact Dims 
Example:  (4) 4 3 10, R S    M
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One can introduce a function ( ) such that

for ( )  a

For ;  for

In a general case: # STdimensions is ,

# non-compactified dimensionsis 4 :   .
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At small scales, that is at large energy, the running coupling

`constant' becom

r ( ) .

( )
Then  R

es large and gravitational interaction becomes

as strong 

unning gr.coupling `con

as

stant'.
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other physical interaction.
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`Solution' of the hierarchy problem 
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Kaluza-Klein tower 
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Brane World Models 

Fundamental scale of order of TeV.  Large extra 

dimensions generate Planckian  scales in 4D space 

Gravity is not localized and `lives’ in D-dim bulk 

space 

Bosons, fermions and gauge fields are localized 

within the 4D brane 



Black Holes as Probes of Extra Dims 
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We consider  black holes in the mass range 

Mini BHs creation in colliders 





BH formation 
 
Bolding Phase 
 
Thermal (Hawking) decay 
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Angular momentum in Higher Dimen ns
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5D vac. stationary black holes 



(1) No Uniquness Theorem: For given  

      and  more than one BH solution

(2) Complete integrability and separation 

     of variables are generic properties 

     of HD analogues of Kerr H
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We focus on higher dimensional rotating 

black holes with the spherical topology of 

horizon in a ST which asympotically is either 

flat or (Anti)DeSitter:

                      = gR 



Main Results 

( ( ) )

:

(1) .

(2)

In the most general Kerr NUT A dS

higher dimensional black hole spacetime

Geodesic motion is completely integrable

Hamilton Jacobi and Klein Gordon equa

tions allow the complete separation of variables

 



  



Motivations 

Separation of variables allows one to reduce a physical 
problem to a simpler one in which physical quantities 
depend on less number of variables. In case of complete 
separability original partial differential equations reduce 
to a set of ordinary differential equations 

Separation of variables in the Kerr metric 

 is used for study: 

(1) Black hole stability 

(2) Particle and field propagation 

(3) Quasinormal modes 

(4) Hawking radiation 



Main lesson: Properties of higher  
dimensional rotating BHs and the  

4D Kerr metric are very similar. 
 

HDBHs give a new wide class of  
completely integrable systems 



Higher Dimensional Black Holes 

Tangherlini '63 metric (HD Schw.analogue)

                .....................

Myers&Perry '86 metric (HD Kerr analogue)

                .....................

Kerr-NUT-AdS '06  (Chen, Lu, and Pope;

The most general HD BH solution with 

spherical topology of the horizon)



"General Kerr-NUT-AdS metrics in all dimensions“,  Chen, Lü and 
Pope, Class. Quant. Grav. 23 , 5323 (2006).  
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#Total of parameters is D 
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Generator of Symmetries 

PRINCIPLE CONFORMAL  KY TENSOR 

[ ]

1
1

2-form  with the following properties:

(i)   Non-degenerate (maximal matrix rank)

(ii)  Closed  0

(iii) Conformal KY tensor

,

       is a primary Killing vector
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All Kerr-NUT-AdS metrics possess a 
PRINCIPLE CONFORMAL  KY 

TENSOR 
    (V.F.&Kubiznak ’07) 



 

A solution of Einstein equations with 
the cosmological constant which 

possess a PRINCIPLE CONFORMAL  KY 
TENSOR is a Kerr-NUT-AdS metric  

     
(Houri,Oota&Yasui ’07 ’09;  

Krtous, V.F. .&Kubiznak ’08;) 

Uniqueness Theorem 
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4D Kerr metric example
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All of this is valid for arbitrary functions 

( ) and ( ) (`off shel') :
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BRIEF REMARKS ON 

COMPLETE INTEGRABILITY 



Dynamical System 
2

2

,

Phase space:  { , , };  is a non-degenerate 

2-form (symplectic structure);   is a scalar function on 

 called a Hamiltonian.  is a generator 

of the Hamiltonian flow    
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uation of motion is    = . Its solutions determine 

evolution of the system.

Poisson brackets { , } .  One has   { , }.  

If { , } 0   is called an integral of motion.

One can always int
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in which ( ,..., , ,..., ) and = .A m i

m iz q q p p dq dp  



Liouville theorem: Dynamical equations in 2m dimen-
sional phase space are completely integrable if there 
exist m independent commuting integrals of motion. 
In such a case a solution can be found by using 
algebraic   relations  and integrals. 

( , ) and ( , ) commute if their Poisson 

brackets vanish,   { , } 0

F p q Q p q

F Q 

These integrals of motion  can be used as coordinatesi

on the phase space.  Moreover, there exist canonical coordinates 

( ( ), ),  called action-angle variables, in which the equations

of motion are
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Relativistic Particle as a 
Dynamical System 
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K =

1 1 2{ } 0 [ , ] 0.

Motion of particle in D-dimensional ST is completely 

integrable if there exist D independent commuting

Killing tensors (vectors)

K K  2K , K



If  and  are 2 monomial integrals 

of order  and , then  is a monomial 

integrals of order . The corresponding 

Killing tensor is called reducible.
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Metric is a best known example of 
rank 2 Killing tensor 
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D-dimensional Kerr-NUT-AdS metric

has  Killing vectors. For complete

integrability of geodesic equations one 
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GENERAL SCHEME 
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Killing - Yano tensor



CKY=Conformal Killing-Yano tensor 
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Closed conformal Killing - Yano tensor (CCKY)



Properties of CKY tensor 

Hodge dual of CKY tensor is CKY tensor 
 
Hodge dual of closed CKY tensor is KY  tensor: 
*CCKY=KY and *KY=CCKY  
 
External product of two closed CKY tensors  
is a closed CKY tensor  

(Krtous,Kubiznak,Page&V.F. '07; V.F. '07)



CCKY 

KY 

CKY 
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R2-KT 



Killing-Yano Tower 



Killing-Yano Tower 
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Total number of conserved quantities: 

The integrals of motion are functionally 

independent and in involution. The 

geodesic equations in the Kerr-NUT

-AdS  ST ar
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Separation of variables in  
HD Black Holes 

Separation of variables in HJ and KG equations  
in 5D ST (V.F. Stojkovic ’03) 
 
Separability depends on the choice of coordinates 



In 2  dimensional ST the Principal CKY 

tensor (as operator) has  2D eigenspaces with 

eigenvalues
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Complete separability takes place in these
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Complete separation of variables in KG and HJ eqns in 
Kerr-NUT-AdS ST (V.F.,Krtous&Kubiznak ’07) 
 
Separation constants KG and HJ eqns and integrals of 
motion (Sergyeyev&Krtous ‘08) 
 
Separation of variables in Dirac eqns in Kerr-NUT-AdS 
metric (Oota&Yasui ‘08, Cariglia, Krtous&Kubiznak ’11) 



FURTHER DEVELOPMENTS 



Charged particle 

Separability of g

motion in a weakl

ravitational perturbations in 

Kerr

y charged

HD black holes (Krtous&V.

-NUT-(A)

F. '11)

M

dS Spacetime (Oota  andYa

etrics admitting a princi

sui '10)

pal Killing-Yano

tensor with torsion (Houri, Kubiznak, 

Warnick and Yasui '12)



SUMMARY OF 
THIS PART 



   The most general spacetime admitting PCKY tensor is 
Kerr-NUT-(A)dS. It has the following properties: 
 

● It is of the algebraic type D 
 

● It allows a separation of variables for the Hamilton-
Jacoby, Klein-Gordon, Dirac, tensorial gravitational 
perturbations. 
 

● The geodesic motion in such a spacetime is 
completely integrable.  



Possible generalizations to degenerate PCKY tensor and 
non-vacuum STs 



“Hidden Symmetries and Integrability in Higher 
Dimensional Rotating Black Hole Spacetimes”, 
(Cariglia, Krtous and  Kubiznak ’11) 

“Hidden Symmetry and Exact Solutions in Einstein 
Gravity” (Yasui and Houri ’11) 

“Higher-Dimensional Black Holes: Hidden 

Symmetries and Separation of Variables”  
(V.F. and  Kubiznak ’08) 

Review Articles 



A Problem 

BLACK HOLES HIDE THEIR SYMMETRIES. 
WHY AT ALL HAVE THEY SOMETHING  

TO HIDE? 


