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In 1974 Hawking theoretically discovered that the 
vacuum in the presence of a black hole is unstable. The 
quantum vacuum decay generates particles. Part of the 
particle created by the black hole reaches an infinity 
observer and form the Hawking radiation. This radiation 
has thermal distribution over energies and the 
corresponding temperature (as measured at infinity) is 
known as the Hawking temperature. For a black hole of 
mass M it is 3
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In a domain where  is timelike energy  of any particle

is positive energy conservation forbids a process of creation

of a pair if both of them are in this 
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Hawking radiation (for pedestrians)

Consider a non-rotating BH. In this  case 2 types of processes

are allowed: (1) creation of one particle outside BH and the other

inside it; (2) creation of two particles inside the black h
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Particles of type (1i) form Hawking radiation.





2 2

3

2

2

[ ][ ] [ ][ ]
  [ ] , [ ] ,

[ ] [ ]

. This relation is valid in any 

number of dimensions.

S

m L m L
E

T T

c
E

r

Order of magnitude estimation



As a result of the Hawking radiation the 
black hole looses its mass. The rate of the 
mass loss is 
 
 
 
Here C is dimensionless coefficient which 
depends of the number and properties of 
the emitted (massless) fields. Negative 
energy flux through the horizon (quantum 
effect)! 
 
The life time of the black hole with respect 
to the Hawking evaporation is 
 
 
 
 
This effect might be important for the 
small mass primordial black holes. 
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Barvinsky, V.F., Zelnikov, “Wavefunction of a Black  
Hole and the Dynamical Origin of Entropy”,  
Phys.Rev. D51, 1741 (1995) 



This regular four dimensional Euclidean space is called the Euclidean 
black hole or the Gibbons-Hawking instanton. The inverse period in Euclidean 
time is equal  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      is called the Hawking temperature of the black hole. 
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ˆ is a wavefunction of (free) quantum field .
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No-boundary wave function

 in the eternal black hole.
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ˆ  is a Hamiltonian of the field  in 
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For simplicity we consider scalar  
massless field in the Schwarzschild ST 
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We write a spherically symmetric metric in the form  
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In a spherically symmetric spacetime one can 
decompose  the field into spherical modes  



0

2
2

2

( )
( , )

( 1)
0,

l
lm

lm

l m l

lm l lm

x
Y

r

l l r
W W

r r


  

 



 




   



   
*

2 3

2 2

( 1) 22

[ ] 0,

1

t r l l

l

l l M

r r

M
r

U

U





    

  



* *

2
2

2

*

exp( ) ( ), /(1 / )

            0

lm S

l lm

i t u r dr dr r r

d
U

dr

 

 

   

 
   

 



, ;
( )

,

;
( )

.

i r

in i r i r

in out

i r i r

out in
up i r

e r
ru

A e A e r

B e B e r
ru

e r



  

 

 

 
 



 

 






  

  



  
 



  
  

   

    
  

   

1 1

2 2 2 2

, , , ;

| | | | 1, | | | | 1;

out in

in in out out

A B

A A B B
T R t r

T R t r

 

      

   

 

   
   

   



`Left-movers’ `Right-movers’ 



,
0

0

,

, *

,

Pole of  in a complex plane 
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A black hole radiates as a hot black body. Consider a black hole in a thermostat. If 
its temperature is the same as Hawking temperature of the black hole, the complete 
system, that is the black hole and surrounding it radiation, is in equilibrium. Such a 
system can be studied by using standard thermodynamic laws, provided the black 
hole subsystem has such characteristics as the energy, entropy and so on. The basic 
ideas of the black hole thermodynamics were formulated by Bekenstein and 
Hawking in 1975 According to this analogy a non-rotating black hole of mass M has 
the entropy 
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Wheeler seems to have been the first to notice that the very existence of a 
black hole in the classical theory of gravitation contradicts to the law of 
non-decreasing entropy. Indeed, imagine that a black hole swallows a hot 
body possessing a certain amount of entropy. Then the observer outside of 
it finds that the total entropy in the part of the world accessible to his 
observation has decreased. This disappearance of entropy could be 
avoided in a purely formal way if we simply would assign the entropy of 
the ingested body to the inner region of the black hole.  
 
In fact, this “solution" is patently unsatisfactory because any attempt by 
an “outside" observer to determine the amount of entropy “absorbed" by 
the black hole is doomed to failure. Quite soon after the absorption, the 
black hole becomes stationary and completely “forgets", as a result of 
“balding", such “details" as the structure of the ingested body and its 
entropy.  



If we are not inclined to forgo the law of non-decreasing 
entropy because a black hole has formed somewhere in 
the Universe, we have to conclude that any black hole by 
itself possesses a certain amount of entropy and that a 
hot body falling into it not only transfers its mass, angular 
momentum and electric charge to the black hole, but its 
entropy S as well. As a result, the entropy of the black 
hole increases by at least S. Bekenstein (1972, 1973a) 
noticed that the properties of one of the black hole 
characteristics -- its area A resemble those of entropy. 
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are temperature, entropy, and internal energy 

of the black hole.
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The surface gravity  of a stationary black hole 

is constant everywhere on the surface of the event horizon. 

 

When the system incorporating a black hole switches 

from one statio
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In any classical process, the area of a black 

hole A and hence its entropy  do not decrease.

 

 It is impossible to reduce the temperature of 
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Quantum effects violate the condition for the applicability of 
Hawking’s area theorem. Thus, quantum evaporation 
reduces the area of black holes, and the second law  is 
violated. On the other hand, black hole radiation is thermal 
in nature, and the black hole evaporation is accompanied by 
a rise in entropy in the surrounding space. 

Generalized entropy: H mS S S 

Generalized second law. In any physical process involving 
black holes, the generalized entropy 
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