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Abstract: We investigated whether a normalization model or view combination model fit the performance of scene recognition of 3-D

layouts using a virtual-reality paradigm. Participants learned a layout of seven objects from two training views (e.g., 0° and 48°) by

discriminating the “correct” layout from distracters. Later, they performed a discrimination task using the training views (e.g., 0° and 48°),

an interpolated view (e.g., 24°), an extrapolated view (e.g., 72°), and a far view (e.g., 96°). The results showed that the interpolated view

was easier to discriminate than the extrapolated view and even easier than the training views. These results extend the applicability of view

combination accounts of recognition to 3-D stimuli with stereoscopic depth information.
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People often have to recognize objects and scenes from

views that they have not previously experienced. An ongoing

theoretical issue in vision research is to understand what

spatial representation(s) people form when they learn par-

ticular views of an object or scene and how these are used in

the recognition of novel objects or scenes.

One theory of object and scene recognition—a normal-

ization approach—stipulates that mental representations of

space are viewpoint dependent, such that people represent

only experienced views. According to this approach, in order

to recognize a novel view after training, the novel percept is

transformed with respect to the representation of the closest

(single) training view (Christou, Tjan, & Bülthoff, 2003;

Diwadkar & McNamara, 1997; Nakatani, Pollatsek, &

Johnson, 2002; Tarr, 1995; Tarr & Pinker, 1989). Thus, the

normalization approach predicts that scene recognition will

be viewpoint dependent, insofar as familiar views should be

easier to recognize than novel views, and novel views should

be recognized as a monotonically slower or less accurate

function of their distance from the learned views. The nor-

malization approach thus predicts that novel views with the

same transformational distance to a familiar view should be

equally easy to recognize.

The initial evidence for viewpoint-dependent scene rec-

ognition came from a study by Diwadkar and McNamara

(1997, Experiment 2). Using a discrimination task, Diwad-

kar and McNamara had people learn a desktop-sized layout

from one perspective to a criterion before learning the same

layout from three other perspective views simultaneously.

Latency appeared to be a linear function of the angular

distance between the novel view and the nearest training

view. The authors therefore concluded that the spatial

relations of the layout were represented in a viewpoint-

dependent manner. They also concluded that recognition of

the novel views generally involves a process of normaliza-

tion to the nearest training view.

However, it is still not clear how multiple training views

affect scene recognition performance in the normalization

model. For example, recently, Friedman and Waller, and their

colleagues (Friedman, Spetch, & Ferrey, 2005; Friedman,

Vuong, & Spetch, 2010; Friedman & Waller, 2008;

Friedman, Waller, Thrash, Greenauer, & Hodgson, 2011;

Spetch & Friedman, 2003; Waller, Friedman, Hodgson, &

Greenauer, 2009) proposed the view combination model for

scene recognition based on the framework developed by

Edelman and others (Bülthoff & Edelman, 1992; Edelman,
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1999; Edelman & Bülthoff, 1992; Edelman, Bülthoff, &

Bülthoff, 1999). They demonstrated that novel views of

scenes that were between two training views were recog-

nized more easily than novel views outside of two training

views, despite being at the same distance from a learned

view. Furthermore, in some cases, the novel views were

recognized even more easily than the learned views. Neither

result is predicted by a normalization model.

This type of view combination effect was first described

as a model of object recognition (Bülthoff & Edelman,

1992; Edelman, 1999; Edelman et al., 1999; Edelman &

Bülthoff, 1992). In this approach to object recognition,

when a novel view (or even a novel object) is presented, all

the learned representations in a parametric shape space that

are above a certain threshold of similarity to the input are

activated as a function of their similarity, which may be

measured in several ways, for example, Gabor similarity

(Gabor, 1946), which indicates that the nearer (or more

similar) a training view is to the novel view, the greater the

contribution of that training view is to overall recognition of

the scene. In this approach, the activation of all learned

views that are similar to the novel input is summed and used

to construct a new view, based on mathematically interpo-

lating between all the parameters that have been activated in

the similarity space. If this constructed view is above a

threshold of similarity to the novel input, the input is “rec-

ognized.” For the present purposes, the critical distinction

between this model and the normalization model is that the

view combination framework allows for multiple familiar

views to be activated during the process of recognition, and

thus for the recognition of some novel views to be relatively

easy.

Friedman and Waller (2008, Experiment 1) had people

learn pictures of a playground from two ground-level train-

ing views (e.g., 0° and 48°) by discriminating the correct

layout from distracters. The targets and distracters were dif-

ferentiated from one another using either the movement of

one object or a switch in position between two objects. The

latter manipulation in particular was hypothesized to “force”

subjects to learn the locations and spatial relations among

the objects; that is, with a “switch” distracter, it was impos-

sible to discriminate the targets from the distracters without

learning at least the relative target locations and the targets’

identities.

During the test phase, participants discriminated the

learned layout from distracters at all five viewpoints (the two

training views in addition to three novel views). The novel

interpolated view was between the span of the two training

views (i.e., at 24°), the extrapolated view was outside that

range by an equal amount of angular distance (i.e., at 72°,

which is 24° from the 48° training view), and the far view

was the most distant from the training views (i.e., at 96°).

Both accuracy and response latency for the interpolated view

was better than that for the extrapolated view, and equal to

the performance on the training views. This pattern is the

behavioral signature of the view combination effect (some-

times also called viewpoint interpolation). More strikingly,

in a subsequent study, Waller et al. (2009, see also Friedman

et al., 2011) had subjects discriminate a virtual playground

from “switch” distracters using four elevated perspective

views that surrounded a central view. The central view and

the four extrapolated views were never presented during the

learning phase. The participants recognized the interpolated

central view faster and more accurately than the training

views. They referred to this pattern of data as an enhanced

prototype effect.

Although the stimuli used by Friedman and Waller (2008)

and Waller et al. (2009) were depictions of 3-D scenes, they

were still presented as 2-D images on a computer screen.

Other research (Friedman et al., 2011; McNamara, Diwad-

kar, Blevins, & Valiquette, 2006) has used even more sim-

plified 2-D images, such as arrays of colored dots. However,

there is currently no evidence in the literature that has dem-

onstrated view combination results for actual 3-D layouts.

Generalizing view combination effects to the types of

layouts and situations commonly experienced by people is an

important next step in understanding the scope of a general

theory of scene recognition.

Although several cues to 3-D layout have been present in

the 2-D stimuli used in previous research, there are addi-

tional depth cues (e.g., stereoscopic depth information,

motion parallax) that have generally not been available.

These cues, which are available from motion and stereo

vision, may be critical in 3-D object and scene recognition

and may moderate the view combination effects obtained

with 2-D computer displays, even when they depicted 3-D

scenes. For example, there is some evidence that object

recognition differs when the object is presented as flat, 2-D

images and when the object is presented with stereoscopic

depth information (e.g., Friedman et al., 2005; Pasqualotto

& Hayward, 2009). In contrast, Friedman et al. (2011) claim

that view combination is a “general recognition mechanism”

and, as such, should be evident in a wide range of visual

learning situations.
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To test the generality of this claim, in the current study

we used an immersive virtual-reality paradigm to provide

participants with additional cues (e.g., stereoscopic depth)

to the 3-D layout that are not present in static 2-D images

of scenes. We then addressed which model, the normaliza-

tion model or the view combination model, fit the data

better.

The participants learned a 3-D object array on a virtual

desktop from two training views, which were 48° apart from

each other, using the discrimination procedure that was used

by Friedman and Waller (2008). The distracters were com-

posed of the same objects as the target scene, but two of the

objects had switched places with each other (Friedman &

Waller, 2008). During each of the five test blocks, the scene

was presented from the two training views as well as three

novel views (interpolated, extrapolated, and far; Figure 1).

We assumed that if the data fit the view combination model,

the performance on the interpolated view should be better

than that from the extrapolated view and approximately

equal to the learned views. A normalization model would

assume no performance differences between the interpolated

and extrapolated views.

Previous work has shown that, even though learning

effects occurred during the testing session (Waller et al.,

2009), the interpolated view was responded to more effi-

ciently than the extrapolated view, even on the very first test

trial. We speculated that the participants in our study would

also display good performance on the interpolated view

early in testing, even though they would also learn from all

the testing views. Thus, we further hypothesized that the data

from the earlier testing trials (e.g., the first test block) would

better distinguish between these two models.

Method

Participants
Sixty-four university students (32 male and 32 female)

participated in the study in return for monetary compen-

sation. All were right-handed according to self-report and

had normal or corrected-to-normal vision. They gave

written informed consent to participate in the study. Of

these, 53 (82.6%) participants (26 male and 27 female) met

the accuracy criterion of scoring at least 90% correct on

each of the two training views during the test trials. The

data from the 11 individuals (six male and five female)

who did not pass the accuracy criterion were not consid-

ered further.

Material and design
The virtual environment with layouts of the objects on a

table was displayed in stereo with lightweight (approxi-

mately 200 g) glasses-like I-glasses and a PC/SVGA Pro 3-D

head-mounted display (HMD; I-O Display Systems, Sacra-

mento, CA). The participants’ head motion was tracked with

an InterSense IS-900 motion-tracking system (InterSense,

Billerica, MA). The HMD supplied 3-D images at a resolu-

tion of 800 pixels ¥ 600 pixels and a field of view (FOV) of

26° diagonally for each eye. The virtual objects and the

virtual table were rendered with a GeForce 6600GT graphics

accelerator. The virtual objects and the virtual table were

presented on the origin of the coordinates (superimposed at

the center of the table), which was defined by the tracking

system and could be recognized by the tracking marker

mounted on the HMD. The participants were required to look

at the center of the virtual table, so the virtual objects and the

virtual table could be seen at the center of the FOV through

the HMD.

The apparatus was placed in a 6 m ¥ 6 m laboratory with

each wall covered by homogeneous black curtains. As illus-

trated in Figure 1, the layout consisted of seven common

virtual objects (lock, apple, candle, hat, ball, bottle, and

battery) with the longest dimension approximately 5 cm. The

distance between two nearest objects was 18 cm (e.g., hat

and ball).

The objects were placed on a circular virtual table (80 cm

in diameter) with a gray matt texture. The table was pre-

sented on the floor in the middle of the room. A real chair

(seated 42 cm high) was placed 1.9 m away from the center

of the virtual table. The participants sat on the chair during
Figure 1. The target layout used in Experiments 1 and 2, viewed from
above.

84 View combination

© 2012 The Institute of Psychology, Chinese Academy of Sciences and Blackwell Publishing Asia Pty Ltd



both the learning and test phases. A real bar stool with a

mouse on it was placed on the preferred-hand side of the

chair for each participant.

Five views of the layout were represented in the HMD.

One view was arbitrarily labeled 0°, and the other four views

were labeled, with a step size of 24° counterclockwise, as

24°, 48°, 72°, and 96°. The target versions of each view are

shown on the left-hand panel of Figure 2.

Half of the participants were trained with the views of 0°

and 48° and were tested with those views, as well as with

three novel views that were interpolated (24°), extrapolated

(72°), and far (96°), relative to the trained stimuli (see

Figure 1). The other half of the participants were trained with

the 48° and 96° views and tested with those views, as well as

with three novel views at 72° (interpolated), 24° (extrapo-

lated), and 0° (far). All of the objects were fully visible from

all the viewpoints without overlap of any two objects.

Distracters were constructed by randomly switching the

positions of two objects in the layout (e.g., apple and candle,

see Figure 2). One of the distracters at each view is shown in

Figure 2.

A training block consisted of two target trials and two

distracters for each training view, for a total of eight trials in

the two learning views. The trials in each block were pre-

sented in a random sequence. The participants completed at

least five blocks of training trials. We calculated their per-

formance online starting with the fifth block. When the par-

ticipant achieved a 100% accuracy rate on the fifth or later

block of training trials, they proceeded to the test trials;

otherwise, they continued to do training blocks until the

criterion was reached. All the participants reached the crite-

rion during the training session.

A test block consisted of two target trials and two distract-

ers for each of the five views, for a total of 20 trials. The

participants received five test blocks. The order of the stimuli

was randomized within each block.

Procedure
After the instructions, the participants were blindfolded and

guided into the virtual reality room. They were then seated in

the chair and put on the HMD.

Before the experimenter initiated the program, a red arrow

was presented at the position where the virtual table would

be presented. The participants were encouraged to move

their head freely to become accustomed to the HMD and

then to keep their eyes fixed on the red arrow. The partici-

pants held the mouse on the bar stool with their right hand.

After the participants indicated that they were ready for the

experiment, the first training trial was initiated with a key

press by the experimenter. On each training trial, there was a

warning sound for 1 s, followed immediately by the stimu-

lus. One of the training arrays was presented on the virtual

table and the participants were required to judge whether it

was the target array or a distracter. Half of the participants

were asked to press the left mouse button when a target array

was presented and the right mouse button when a distracter

array was presented, while the other half responded the

opposite way.

The participants received auditory feedback during the

training trials. If the participants made a correct response in

less than 2 s on a training trial, the feedback informed them

they had received two points. If they were correct but theFigure 2. The materials used in Experiments 1 and 2.
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response time was longer than 2 s, the feedback informed

them that they had received one point. If they were wrong,

the feedback said “wrong.” All auditory feedback was

prerecorded.

The participants were informed that initially they must

guess about whether a given arrangement was correct or not

and, once they had made a decision, they should respond by

pressing the mouse keys as quickly and accurately as pos-

sible. They were also informed that there was no feedback in

the test phase, but they would still get one or two points for

each correct response and no point for wrong responses. This

point system was used solely to encourage the participants to

engage in the task and had no tangible reward.

Results

In all the tests reported, we adopted a two-tailed alpha level

of .05 and an effect size measure of ηp
2 .

Response times
ANOVAs with variables of viewing angle (4) and testing

block (5) found a significant interaction between viewing

angles and testing blocks, F(12, 624) = 2.58, p < .01,

ηp
2 = .05, as well as a significant main effect of viewing

angle, F(3, 156) = 13.58, p < .001, ηp
2 = .21, and testing

block, F(4, 208) = 10.81, p < .001, ηp
2 = .17. The mean

response times of all correct responses for different views

across all the testing blocks are shown in Figure 3a. Consis-

tent with previous research (e.g., Friedman & Waller, 2008;

Waller et al., 2009), because we intended to perform specific

comparisons among views from the outset, we used planned

comparisons (Rosenthal & Rosnow, 2009) on the theoreti-

cally important difference between the interpolated and

extrapolated views. The mean response times across all the

testing blocks showed that the response time for the interpo-

lated view was significantly shorter than for the extrapolated

view, t(52) = 2.34, p = .023, and was even shorter than that

for the training view, t(52) = 2.46, p = .01.

Additional analyses examined how and whether the view

combination effect evolved over the testing blocks. We fit a

logarithmic model to the latency data for the extrapolated

and interpolated views, respectively. Figure 4 illustrates the

simulated data for the response times for the interpolated and

extrapolated views across the five testing blocks.

Finally, we examined the differences between the views

for only the first test block (Figure 5a, 5b). We again found

a significant main effect of response time across training,

interpolated, and extrapolated views, F(2, 104) = 4.61,

p = .012, ηp
2 = .081. Planned comparisons showed that,

even in the first testing block, the response time for the

interpolated view was significantly shorter than that for

the extrapolated view, t(52) = 2.3, p = .025. However, no

Figure 3. (a) Response latency in discriminating the target layout from
the distracters across all the test blocks. (b) Response error in discriminating
the target layout from the distracters across all the test blocks. Error bars are
the confidence interval corresponding to �1 standard error of the mean, as
estimated from the analysis of variance.

Figure 4. The simulated trend of the performance of the interpolated and
extrapolated views across the testing blocks.
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significant difference was found for the response time

between the interpolated and training views in the first

testing block, t(52) = 1.1, p = .28.

Response accuracy
The same ANOVA as above was performed for the response

accuracy and a main effect of viewing angle was found,

F(3, 156) = 3.56, p = .016, MSE = .0034, ηp
2 = .07. The

mean response accuracy across all the testing blocks is

shown in Figure 3b. Planned comparisons of the mean

response accuracy between the interpolated and extrapolated

views across all the testing blocks showed that there was

no difference in the accuracy between them, t(52) = .51,

p = .62, nor was there a difference between the interpolated

and training views t(52) = 1.00, p = .32. This result is not

surprising, given the training criterion.

For the 11 subjects who failed to reach the 90% accuracy

criterion, the mean response latencies for training, inter-

polated, extrapolated, and far were 1729 ms, 1583 ms,

1770 ms, and 2039 ms, respectively. Their response accura-

cies for training, interpolated, extrapolated, and far were

80%, 91%, 94%, and 79%, respectively. Here, both the reac-

tion time and the accuracy data mimic those from the sub-

jects who did reach the accuracy criterion.

Discussion and conclusion

In our experiment, by using a virtual reality paradigm, we

provided participants with a vivid 3-D layout in which they

learned the locations of objects from two training views and

then performed a recognition task that required them to

discriminate the target layouts from the distracters for the

training views as well as for novel views of the layouts. The

discrimination performance supported the existence of view

combination effects for the first time in a situation in which

the participants could receive “natural” cues as to depth.

These results extend the findings about scene recognition

(Friedman & Waller, 2008; Waller et al., 2009) as well as

object recognition (Bülthoff & Edelman, 1992; Edelman,

1999; Edelman et al., 1999; Edelman & Bülthoff, 1992;

Friedman et al., 2005; Spetch & Friedman, 2003; Spetch,

Friedman, & Reid, 2001) to virtual displays with stereo-

scopic depth information. Previous studies have shown that

people are able to obtain more spatial information from

immersive virtual reality than from static visual images of

the environment (Waller, Beall, & Loomis, 2004). Accord-

ingly, in comparison with previous studies, our use of an

immersive virtual reality paradigm should have enabled the

participants to obtain information closer to an actual envi-

ronmental situation. There are still some constraints on our

paradigm, however, because we cannot know the extent to

which immersive virtual reality actually simulates a real

situation.

Both the view combination and normalization models are

able to explain a linear decrease in performance with an

increase in offset from the training view, such as the signifi-

cant linear decline in the response latencies among the train-

ing, extrapolated, and far views, F(1, 52) = 16.26, p < .001,

as seen in the current data. Normalization models cannot

readily explain, however, the relative ease we observed in the

recognition of interpolated views after training with multiple

views. However, a view combination model can explain such

a result by positing that all prior training views contribute to

scene recognition for a novel view, in proportion to their

similarity to the training views. For example, in the current

study, after a participant trained with the 0° and 48° views,

the 48° view could contribute the same to the 24° interpo-

lated view as it could to the 72° extrapolated view. The 0°

view, in contrast, would likely contribute more to the 24°

view than to the 72° view. Thus, performance for the inter-

polated view is better than for the extrapolated view. Such

findings run counter to Tarr’s (1995) proposal that object

Figure 5. (a) Response latency in discriminating the target layout from
the distracters in the first test block. (b) Response error in discriminating the
target layout from the distracters in the first test block.
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recognition of a novel view is based on normalization to the

nearest training view, which predicts the same performance

for the interpolated and extrapolated views. Thus, the view

combination model provides a better explanation of how

people perform scene recognition tasks after learning from

multiple views.

In the current study, the participants were first trained

from two views and then tested from these two training

views and three novel test views. Thus, in the current study

as well as that of Waller et al. (2009), the participants pos-

sibly encoded new information about the layout from the test

session. In other words, the initially defined extrapolated

view (e.g., 72°), could have become the “interpolated view”

between one of the training views (48°) and the far view

(96°). We believe that, because of this extra “training” during

the test phase, the difference in the performance for the

interpolated view and the extrapolated view diminished for

the later testing blocks (Figure 4).

In the current experiment, the participants responded to

the interpolated view significantly faster than the extrapo-

lated view (Friedman et al., 2011; Friedman & Waller, 2008;

Waller et al., 2009). In contrast, there were no differences in

the response accuracy among the training, interpolated, and

extrapolated conditions. As noted, this may not be surprising,

because all the participants had to achieve 100% correct on

each of the two training views during the training trials in

order to proceed to the test phase. Furthermore, we only

analyzed the data from the participants whose response

accuracy was higher than 90% on the training views during

the test trials. Thus, a ceiling effect for response accuracy

probably limited our ability to detect the view combination

effects for the accuracy measure.

In sum, in the current experiment we used a virtual reality

paradigm with a 3-D table-sized virtual layout of common

objects and verified that the view combination model fit our

data better than the normalization model. It is now the case

that the view combination model has received support for

stimulus arrays as simple as dots (Friedman et al., 2011) and

as complex as the present 3-D virtual arrays. View combi-

nation thus seems a much more general description of visual

recognition than does normalization.
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