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SUMMARY

Simultaneous estimation of origin time, location and moment tensor of seismic events is
critical for automatic, continuous, real-time monitoring systems. Recent studies have shown
that such systems can be implemented via waveform fitting methods based on pre-computed
catalogues of Green’s functions. However, limitations exist in the number and length of the
recorded traces, and the size of the monitored volume that these methods can handle without
compromising real-time response. This study presents numerical tests using a novel waveform
fitting method based on compressive sensing, a field of applied mathematics that provides
conditions for sampling and recovery of signals that admit a sparse representation under a
known base or dictionary. Compressive sensing techniques enable us to determine source
parameters in a compressed space, where the dimensions of the variables involved in the
inversion are significantly reduced. Results using a hypothetical monitoring network with a
dense number of recording stations show that a compressed catalogue of Green’s functions
with 0.004 per cent of its original size recovers the exact source parameters in more than
50 per cent of the tests. The gains in processing time in this case drop from an estimated
90 days to browse a solution in the uncompressed catalogue to 41.57 s to obtain an estimation
using the compressed catalogue. For simultaneous events, the compressive sensing approach
does not appear to influence the estimation results beyond the limitations presented by the
uncompressed case. The main concern in the use of compressive sensing is detectability issues
observed when the amount of compression is beyond a minimum value that is identifiable
through numerical experiments. Tests using real data from the 2002 June 18 Caborn Indiana
earthquake show that the presence of noise and inaccurate Green’s functions require a smaller
amount of compression to reproduce the solution obtained with the uncompressed catalogue.
In this case, numerical simulation enables the assessment of the amount of compression that
provides a reasonable rate of detectability. Overall, the numerical experiments demonstrate
the effectiveness of our compressed domain inversion method in the real-time monitoring of
seismic sources with dense networks of receivers. As an added benefit of the compression
process, the size of the monitored volume can also be increased under specific restrictions
while maintaining the real-time response.

GJI Seismology

Key words: Computational seismology; Early warning; Inverse theory.

seismically active areas (e.g. Dreger & Helmberger 1993; Pasyanos

1 INTRODUCTION et al. 1996; Dreger 2003; Bernardi et al. 2004; Clinton et al. 2006;

Fast and accurate recovery of seismic source parameters (location,
origin time and seismic moment tensor) is a problem of interest
in different areas of geophysics. For earthquake monitoring, fast
source parameter estimations are routinely conducted at institu-
tions such as the Lamont-Doherty Earth Observatory, where the
Global Centroid Moment Tensor project (Dziewonski et al. 1981)
is presently based, the United States Geological Survey (Sipkin
1982) and the Earthquake Research Institute of Japan (Kawakatsu
1995). Fast inversions are also often performed in the vicinity of
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Scognamiglio et al. 2009). Furthermore, quick estimations of the
source parameters are important for hazard mitigation in mining
operations (Trifu & Shumila 2002; Gibowicz 2009), for the evalua-
tion of potential adjustments during/after hydraulic injections in the
oil industry (Maxwell et al. 2002; LeCampion et al. 2004), as well
as for monitoring volcanic activities (McNutt 1996; Foulger et al.
2004) and fluid injections in geothermal areas (Julian et al. 2010).
Most inversion algorithms employed in the aforementioned appli-
cations do not provide simultaneous estimations of all three source
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parameters. Information about origin time and source location is
determined by independent systems and/or algorithms, with the
source moment tensor being estimated in a secondary step. There-
fore, an inherent lag time is required, thus preventing efficient and
simultaneous estimation of the three source parameters. Algorithms
that do not require a lag time are grid search (Kawakatsu 1998;
Tsuruoka et al. 2009) and matching pursuit (Vera Rodriguez et al.
2012) approaches. Despite their advantages, however, these two
methods are also constrained by the maximum numbers of grid
nodes and recording stations that can be considered without com-
promising their real-time response.

Compressive sensing (CS) is a relatively new field of signal pro-
cessing and applied mathematics that investigates sampling and
recovery conditions for signals susceptible to a sparse representa-
tion via a known basis or dictionary (Candes et al. 2006; Donoho
2006). A major result of CS is the specification of protocols for
sampling of signals using a number of non-adaptive measurements
that is below the number of samples required with the traditional
Nyquist criterion. The non-adaptive measurements are linear com-
binations of the information contained in the signal weighted by
coefficients prescribed in the form of a sensing matrix. In other
words, using CS, a signal can be acquired and transmitted in a com-
pressed form, and ultimately uncompressed without perceptive loss
of information. This represents an important improvement in effi-
ciency from the traditional practice where a signal is acquired in full
form, then compressed throwing away information, transmitted, and
finally uncompressed. CS principles have found application in the
fields of magnetic resonance imaging (MRI) (Lustig et al. 2007),
digital camera design (Takhar et al. 2006) and acquisition of astro-
nomical data (Bobin et al. 2008). In geophysical applications, CS
has been implemented for earthquake location (Yao et al. 2011), si-
multaneous estimation of origin time, location and seismic moment
tensor (Vera Rodriguez et al. 2010), and acquisition of seismic data
with simultaneous active sources (Herrmann 2010).

In this study, we introduce the principles of CS into the problem
of seismic source parameter estimation. We demonstrate through
numerical experiments that the introduction of CS extends the real-
time applicability of grid search and matching-pursuit-only meth-
ods. Improvements in processing time due to compression enable the
monitoring of larger subsurface volumes using significantly denser
receiver arrays without compromising real-time response.

2 THEORY AND METHOD

2.1 Parametrization of the source parameter inversion

The forward parametrization of the problem follows that proposed
in Vera Rodriguez et al. (2012). For brevity, this section mainly re-
views the general aspects of this parametrization. Consider a domain
of interest for monitoring seismic activity. The region with latent
seismicity is enclosed and partitioned using a grid where every grid
point is considered a potential or virtual source (Kawakatsu 1998).
To record the seismic activity, a network of stations is positioned
at arbitrary locations around the monitored volume (Fig. 1). There
are no restrictions on the positions of the recording stations, the
grid shape and/or the separation between grid nodes. The far-field
displacement recorded by a receiver due to a point source at a node
of the monitored volume is given by eq. (3.23) in Aki & Richards
(2009)
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Figure 1. Diagram of the seismic event monitoring setting. The monitored
volume (grid) encloses a region with potential seismic activity.

where x is the location of the recording station and £ is the loca-
tion of the seismic source. The term M,,(?) is the moment tensor
of the seismic source with origin time ¢y, and G,, are the point
source Green’s functions containing information about the wave
propagation between x and €. The subscript # is related to the sta-
tion component and the symbol * denotes convolution. Assuming
that the source geometry can be separated from its time variation
(Madariaga 2007), the seismic moment tensor can be split into a
source time function and a scalar moment tensor. Considering the
observations from all the stations in the recording network and ar-
ranging terms in matrix—vector notation, the displacement field can
then be expressed as

u = Gy My ) - @

In eq. (2), the column vectors u and m,, ¢) contain the observations
from all recording stations and the six independent elements of
the source moment tensor, respectively. The columns of the matrix
G(;,.£), on the other hand, contain the derivative of the corresponding
Green’s functions convolved with the source time function. For the
rest of the description, it will be of advantage to use the notation

Gy eyMy 6) = G, [i]m;[i],

where the subindex j is the origin time of the source in number of
samples with respect to the first sample of the observations vector
u, and the subindex 7 is manually assigned to the grid node where
the source took place. The moment tensors m;[i] and the matrices
containing Green’s functions G [i] will be referred to as blocks and
column-blocks, respectively (Eldar et al. 2010). If all virtual sources
in the monitored volume are considered at once, eq. (2) becomes

Niotal

u= Z G)[ilm,;[i] = G,;m;, )
i=1

where the variable Ny, is the total number of nodes in the grid. Eq.
(3) is a sum of the contributions to the displacement field of virtual
sources occurring at all grid nodes with the same origin time. The
matrix G; contains the six Green’s functions for all node-station
combinations with origin time given by the index j (Fig. 2), whereas
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Figure 2. Construction of a dictionary of Green’s functions. The grid nodes
are assigned a linear index 7, in other words, every index i is related to a
position in space (x;, yj, z;). The position index 7 is also related to virtual
sources with origin times specified by a delay index j and moment tensors
represented by m[7]. The Green’s functions that expand the virtual source
with moment tensor coefficients m;[i] are represented with G;[i]. A dic-
tionary of Green’s functions with origin time given by the index j (G;) is
the concatenation of the sets of six Green’s functions of all the nodes in the
grid delayed by j samples with respect to the first sample of the observations
vector u.

the column vector m; includes the moment tensors of all the virtual
sources in the grid with origin time j. This formulation can also
be extended to consider sources with different origin times in the
interval j € [0, N,,], that is

Ny

UZZGjijGm, (4)

Jj=0

where N,, is the length of the processing window. Note that matrix
G« is simply a delayed version of matrix G; by k samples. In
Vera Rodriguez et al. (2012), the matrix G; is called dictionary,
while the matrix G is referred to as super-dictionary, a term used in
that analysis to differentiate G; and G. A dictionary G; is formed
by the concatenation of the column-blocks G/[i], Vi € [1, Nyl
(see Fig. 2). Equivalently, a super-dictionary G is formed either
by the set of dictionaries G; defined by a single index j (from
now on the delay index), or by the set of column-blocks G;[i]
defined by pairs of indexes (i, j). In a similar way, the vector m
is formed by concatenation of the column vectors m; or of the
blocks m;[i]. As an example, the sets of six Green’s functions that
expand the displacement field of sources located at nodes n; and n,
with origin times ¢, and ¢, are the column-blocks G;, ,)/a/[71] and
G, —1,)/ar[n2], respectively, where ¢, is the acquisition time of the
first sample in u and Af the sampling rate. In such case, the only
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virtual sources in m with moment tensors different from zero would
be those given by the blocks m, _;,y/a¢[11] and mg,_,)/a:[72].

The vector of moment tensors m is a representation of the dis-
placement field u under the super-dictionary G. Solving eq. (4) for
m Yyields the location (index i), origin time (index j) and moment
tensor (magnitude of the coefficients in the blocks m;[i]) of the
seismic sources that reproduce the observations vector u. In most
seismic monitoring applications of interest, plausible solutions to
eq. (4) are block sparse (Eldar et al. 2010). In other words, only
a small number of blocks m;[7] in the solution vector m contain
coefficients that are different from zero. Eq. (4) can be solved in
a form that leads to a continuous automatic system; however, im-
mediate limitations for real-time performance are imposed by the
number of nodes in the grid, the size of the processing window
[0, N,,], and the number and length of the seismic records that
enter the system. Augmenting the number of nodes in the grid
adds new column-blocks G;[i] to each of the dictionaries G;.
Similarly, augmenting the time window [0, N,,] increases the re-
quired number of dictionaries G;. In both cases, the total number
of columns of the super-dictionary G and the length of the solu-
tion vector m are increased. By adding more input records, the
observations vector u and the super-dictionary G grow in row di-
mension. The size of the super-dictionary G has a direct impact
on the speed of the algorithms that can be used to solve eq. (4).
Seeking sparse solutions presents the advantage that computational
speed can increase with the sparsity of the solution. Additionally,
computational speed and, for instance, the limits of real-time ap-
plicability can also be improved through the use of compressive
sensing.

2.2 Compressed domain inversion

As mentioned earlier in Section 1, CS states conditions that per-
mit the signal u to be recovered from a number of non-adaptive
measurements below the minimum number of samples required by
the Nyquist criterion. The non-adaptive measurements are random
combinations of the samples of the original signal obtained through
a sensing matrix ® (Fig. 3), that is,

du = ®GDD 'm = ®Ab, %)

where A = GD and b = D~'m. The variable D is a diagonal matrix
with scalar factors that normalize by energy the columns of G. The
energy in g;, the ith column of matrix G, is given by

E; = gl-Tgi .

Hence, the element d;; of D is given by the square root of the recip-
rocal of £;. The sensing matrix ¢ contains energy-normalized rows
and complies with the restricted isometry property (RIP) (Candes
et al. 2006). Although proving that a matrix complies with the RIP
is rather a non-trivial task, it has been showed that matrices with
random entries meet with high probability the RIP (Baraniuk ef al.
2008). Between the most recurred sensing matrix ensembles, it can
be counted Gaussian and Bernoulli matrices. In the applications de-
scribed in this study, Gaussian ensembles are employed. A Gaussian
sensing matrix is constructed by drawing random entries from a nor-
mal probability density function with zero mean and variance 1/K
(Baraniuk 2007). The scalar K is the number of measurements left
after applying ® and, for instance, is related to the desired amount
of compression. Clearly, the random variables that form a sensing
matrix are non-adaptive, in other words, the same sensing matrix
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Figure 3. Diagram showing the encoding process of the seismic observa-
tions. The sensing matrix ® acts as an encoder compressing the samples in
the observations vector u. Assuming that the original signal is sampled at
a Nyquist rate, it turns out that the number of non-adaptive measurements
that result from encoding u is less than the number of samples required
to sample u through the Nyquist criterion. CS provides conditions for the
encoding and posterior decoding of f to recover u. Practical CS aims at
the development of recording instruments that allow the acquisition of the
encoded signal f. In this study, however, CS principles are applied to signals
already recorded at a Nyquist rate, where further advantages arise from the
processing of those signals in a compressed domain.

can be used for completely different applications. For this reason,
the compressed samples are called non-adaptive measurements. The
practical effect of the sensing matrix in the system of equations is a
dimensionality reduction in the row direction. Consider the dimen-
sions of all the variables in eq. (4): u € R”*! where M = number
of recording stations x number of components in each recording
station x number of time samples in each component, G € R**V,
where N = 6 (Green’s functions) X Ny, (number of nodes in the
grid) x N,, (length of the processing window) and m € R"*!, Then,
by definition, ® € RX*™ where K < M. Hence, by multiplying
eq. (4) times ®, the resulting system of equations is ‘compressed’
from an original domain with dimensions M x N to a ‘compressed
domain’ with dimensions K x N. The minimum number of non-
adaptive measurements K required to recover the original signal u
is related to the sparsity of its representation under A but not to
the original dimensions of A. In the setting of the source monitor-
ing problem, this is a powerful result that indicates the amount of
permissible compression is independent of the number of record-
ing stations used for monitoring. As a practical rule of thumb in
the noiseless case, more than four non-adaptive measurements per
non-zero coefficient in m (or b) are the minimum required number
of samples to recover u from its compressed version ®u (Candes
& Wakin 2008). CS also imposes the following conditions on the
signal u and the matrix A: (1) m (or b) is a sparse representation of
u or has non-zero coefficients that decay quickly in absolute magni-
tude when sorted (i.e. u is compressible under A); and (2) ®A also
complies with the RIP. The first condition can easily be met since
the observations vector u possesses a sparse representation under

A for most monitoring scenarios of interest (see previous section).
However, the condition related to the product ®A is not met. The
high coherence between the blocks A;[i] hinders the recovery of
sparse solutions (Vera Rodriguez et al. 2012). Given that a practical
implementation of the source parameter inversion is far from the
settings where the theoretical results of CS can be used to analyse
the recovery of optimal solutions, we resort to numerical modelling
to assess the applicability of CS in the source parameter inversion
problem.

3 NUMERICAL MODELLING

3.1 Seismic monitoring with dense receiver coverage

The first numerical example highlights the advantages of the CS
approach in a dense network of recording stations. The monitor-
ing experiment consisting of a network of 441 three-component
receivers deployed on the surface to monitor a grid of 45 x 45 x
11 =22 275 virtual sources (Fig. 4). The separation between virtual
sources is 5 km in the three coordinate directions. Green’s functions
in real applications should be ideally full waveform traces. In this
example, however, we simplify the analysis by using only direct P-
and S-wave arrivals in a homogeneous medium computed with ray
tracing theory. Considering the longest arrival time of S waves from
the ray tracing results and a sampling rate At = 0.5 s, the length
of a Green’s function for a single component of a receiver is set at
603 samples (301.5 s). To study the impact of the compression on
the detectability and accuracy of the source parameters, we select
500 sets of Green’s functions with random locations inside the grid
and generate synthetic wavefields for each location from a set of
six random numbers as the independent elements of the moment
tensor. Finally, the synthetic displacements are padded with zeros
on both ends to produce observations with duration of 331.5 s with
a common origin time at 15 s (this implies a processing window
of 30 s or N,, = 60). The sensing matrix ® contains independent,
identically distributed (i.i.d.) random variables drawn from a Gaus-
sian probability distribution, and five non-adaptive measurements
are considered per non-zero coefficient in the expected solution.
In other words, assuming that a single source will be represented
in each observations vector u, only K = 30 samples (six moment
tensor coefficients in one source x five non-adaptive measurements
per coefficient) are used to invert for source parameters using the
CS approach. If explicitly expressed, the matrix A with the library
of Green’s functions should occupy a total memory size of ~52
TB. On the other hand, the compressed version of the library of
Green’s functions (®A) requires a memory size of ~2 GB, and the
inversion is solved using a modified version of block orthogonal
matching pursuit (BOMP) (Vera Rodriguez et al. 2012) that only
requires the compressed matrix ®A, of ~32 MB (A, is a version
of the dictionary G, with columns that are energy-normalized) as
input. Hence, with CS, the inversion process becomes easily

200 100 X (km)

Figure 4. Distribution of recording stations (blue-red triangles) and grid of virtual sources (grey volume) used in the numerical example.
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Figure 5. Estimation errors for 500 simulations of source parameter inversion using CS principles. (a) Normalized Misfit of the solution NM = |[lu—a| \%/| |u] |§.

(b) Location error = ||x — X||,, where x is the true location vector of the source. (¢) Origin time error = OT — OT, where OT is the true origin time.
(d) Normalized mean square error of the estimated moment tensor NMSE = ||m — m| |% /lim]| |%. Variables with a hat denote estimations from the inversion.

tractable using a desktop computer, for example, a four-core desktop
computer with 8 GB in RAM and 2.9 GHz processor speed in this
study. In this numerical example, we aim to evaluate the efficacy of
the inversion method in the source parameter estimation when exact
solutions exist, assuming accurate Green’s functions and no noise.

The errors in the estimated source parameters for the numerical
experiment are presented in Fig. 5. For 500 trials, 51.6 per cent of
the sources were detected with no error in the three source param-
eters, whereas 86.4 per cent had acceptable normalized misfits of
0.35 or below. Finally, 5 per cent of the results showed normalized
misfits between 0.35 and 0.8 that, in a practical setting, correspond
to undetected sources. In this experiment, 8.6 per cent of the sources
had normalized misfits >0.8 (not presented in Fig. 5 due to their
large errors). The average processing time to obtain a solution was
41.57 s. In comparison, the estimated time required for the modi-
fied BOMP to browse a solution in the full 52 TB library of Green’s
functions is about 90 days. For the processing window of 30 s, our
result can be considered as near real time for the hypothetical mon-
itoring setting. Further improvements to the speed of the inversion
algorithm could be achieved by an efficient implementation using
parallel processing.

3.2 Simultaneous events

An important benefit of matching pursuit methods when compared
to other automatic source parameter inversion algorithms is the pos-
sibility to estimate multiple sources embedded in the same observa-
tions vector. The second numerical example is aimed to detect the
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effect of the inversion method over the estimation of simultaneous
events. This objective is addressed by using the same hypothet-
ical monitoring setting of the previous section and the modified
BOMP. Two different settings are studied, the first corresponds to
two seismic sources with the same source mechanism and location
but different origin times. The second scenario consists of the two
sources with the same source mechanism and origin time but differ-
ent locations. For the first case, assume that the seismic sources take
place at location # with origin times #, and #,. Setting the acquisi-
tion time of the first sample in the observations vector u to zero, the
origin times for the two seismic events in terms of the delay index
jares; = t;/At and s, = t,/At, respectively. Random numbers are
used to simulate a source mechanism for both sources. Using the
CS approach, the sources are simultaneously inverted by applying
various differences in origin time between them. When the origin
time difference is zero, there is technically only one event and the
algorithm detects it estimating a moment tensor that is double the
size of each individual source (Fig. 6a). As the difference in origin
time between the two sources increases, the algorithm’s output be-
gins to be affected by the presence of the two displacement fields.
For small time differences, the algorithm is unable to resolve the
two events. In some cases, the events are not even detected, while
biased solutions of the estimated source parameters are given by
the algorithm in others. After a certain difference in origin time,
the algorithm starts to resolve the presence of the two events; how-
ever, we still observe cases where the estimated solutions are biased
for one or both events. For the second scenario (Fig. 7), the two
seismic sources are inverted while varying the distance between
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(a) (b) (c) (d)

t2 - t1 =0 seconds t2 - t1 = 25 seconds t2 - t1 = 30 seconds t2 - t1 =70 seconds
p=1.65 p =4.10e-03 p =1.90e-18 p =3.52e-20
NRE =1 NRE =1 NRE =2 NRE =2
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Figure 6. Resolvability of two seismic sources in the same vector of observations. Only observations for one receiver are presented. From top to bottom, the
traces correspond to the x (east), y (north) and vertical components of the receiver. NRE is the abbreviation for the number of resolved events by the inversion
algorithm. (a) and (b) The algorithm cannot resolve the two sources. (c¢) and (d) The algorithm is able to resolve the two sources that are also reflected in a
sharp decrease in the spectral norm measurement p.

(a) (b)
c=1.65 NRE = 1

1100
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¢=0.50 NRE =2
£ 20 = 20
= : o
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- 0]
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Figure 7. Resolvability of two seismic sources in the same observations vector. The two seismic events have the same origin time and source mechanism.
These plots show a snapshot of the objective function used in the modified BOMP at the exact origin time of the sources. (Top) Both sources have the same
location. (Middle) Separation between locations is 4 nodes in the y direction (20 km). (Bottom) Separation between locations is 6 nodes in the y direction (30
km). (a) and (b) Columns are, respectively, iterations 1 and 1 of the modified BOMP. Each iteration finds the source parameters of a seismic source. Variable p
is the spectral norm measurement for each case. NRE stands for number of resolved events.

their locations in the horizontal y direction. In this case, both events maximum (Fig. 7a—top and middle plots). After the first iteration,
have the same origin time and moment tensor. When the locations this maximum is extracted and no further sources can be identi-
of the two sources are close, the group sparsity function calculated fied (see Fig. 7b—top and middle plots). When the locations of the
by the modified BOMP across space and time presents only a single two sources are far enough, the algorithm is able to determine the
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presence of the two seismic events (Fig. 7a—Dbottom plot). The first
event is extracted after the first iteration and the second source is
identified as a maximum in the second iteration (Fig. 7b—bottom
plot). One way to identify the resolvability limit where the algorithm
begins to resolve the two events is by analysing the measure

p((G, )G [n1).

where p(-) is the spectral norm operator (Strang 2006). As the spec-
tral norm measurement reduces, the algorithm is able to resolve the
presence of the two events. In the case of the events with differ-
ent origin time, the limit of resolvability is particularly evident as a
sharp drop in the spectral norm measurement (see Fig. 6); this might
also partly result from the simplicity of the Green’s functions used
in this example. In both multiple source experiments, we identify
detectability issues that seemed unrelated to the resolvability of the
algorithm. The detectability of the algorithm is mainly influenced
by the coherence of the dictionary of Green’s functions. The high
coherence nature of the dictionary is expressed in the presence of
multiple local maxima in the objective function (correlation be-
tween compressed Green’s functions and residuals) calculated by
the modified BOMP (see Fig. 7). The modified BOMP partially
improves detectability by re-visiting a number of maxima in the
objective function. The objective of re-visiting only a subset of
maxima values is to reduce computational time; however, this is at
the cost of potentially missing observed seismic events. In the limit
when the modified BOMP re-visits the whole objective function,
this becomes equivalent to a standard grid search method. Resolv-
ability and detectability considerations in these numerical examples
arise from the combined use of sparse representation theory with
CS. The following example using real earthquake data isolates the
effect of the compression process on the detectability of seismic
events.

3.3 Earthquake monitoring

The final example explores the influence of different compression
rates and realizations of sensing matrices into the inversion results.
This example utilizes data from an earthquake that occurred on
2002 June 18 in Caborn Indiana. The Caborn event is a moderate-
sized earthquake (M, = 4.6) that took place within the limits of the
Wabash Valley Fault System (WVES) (Fig. 8). The WVFS is a part
of the Wabash Valley Seismic Zone (WVSZ) located in the central
eastern area of the United States (Langer & Bollinger 1991). The
WVES is a system of high-angle subsurface normal faults that run
parallel to the Wabash River Valley. The source parameters of this
earthquake have been previously estimated in an earlier analysis
using a combination of inversion methods (Fig. 8, Table 1), and
also with a hypothetical real-time monitoring system based on a
sparse representation (Table 1). Based on an analysis that included
the 2002 June 18 Caborn earthquake, Kim (2003) interpreted the
reactivation of a possible Precambrian rift system by the contem-
porary regional stresses. The objective of computing the source
parameters of the Caborn earthquake in this study is not to obtain
new or refined estimates of already accepted values, but to test if the
CS approach can reproduce previous estimations. In the best case
scenario, the CS approach should reproduce the results obtained
with the uncompressed dictionary with the advantage of improved
processing speed.

For comparison purposes, we test the CS approach using the same
hypothetical monitoring system described in Vera Rodriguez et al.
(2012). The system continuously inverts the recordings of eight
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Figure 8. Distribution of recording stations considered in the inversion
tests for the 2002 June 18 Caborn earthquake (black triangles). The black
square represents the surface projection of the monitoring grid. The dotted
line delimits the WVSZ, and the dashed line the WVFS. The beach ball
representation corresponds to the solution determined by Kim (2003) joined
by a line to its epicentral location. Image after Vera Rodriguez et al. (2012).

broadband seismic stations located within 300 km from WVFS (see
Fig. 8). The monitored volume comprises 2205 virtual sources ar-
ranged in a regular grid of 21 x 21 x 5 nodes with separations of
5 km in the three coordinate directions. Both Green’s functions and
observations are rotated to a radial, transverse and vertical system,
and the velocity seismograms are band-limited to the frequency
range of 0.01-0.1 Hz. Green’s functions are calculated with the
reflectivity method of Randall (1994) using a three-layer velocity
model with compressional velocities: 5.9, 6.5 and 8.0 kms™', shear
velocities: 3.4, 3.7 and 4.5 kms™', and layer interface depths: 7
and 28 km (Kim 2003). The duration of a Green’s function is 150
s that also corresponds to 150 samples given the sampling rate
of 1 s in the seismic traces. The processing window is N,, = 30
samples; hence, the total length of a vector of observations u is
180 samples. To simulate the continuous monitoring of seismic ac-
tivity, a time window of [—60, 240] s is selected relative to the
origin time (Kim 2003). The inversion is solved using the modi-
fied BOMP methodology with the same parameters employed in
Vera Rodriguez et al. (2012) that include (1) a deviatoric constraint
and (2) re-visiting the 200 highest local maxima of the objective
function in the modified BOMP to look for optimal solutions. The
monitoring simulation is performed six times with different de-
grees of compression corresponding to 5, 10, 20, 30, 40 and 120
non-adaptive samples per non-zero coefficient (NNA) in the solu-
tion vector m. In each simulation, 500 realizations of sensing ma-
trix are examined, where each matrix is generated by drawing i.i.d.
random variables from a Gaussian probability distribution. The CS
approach recovers successfully the source parameters of the Caborn
earthquake within a negligible variation margin (Table 1). The pa-
rameter with a slightly larger variation is the depth, though the CS
results still fall between the depth of 18 km determined by Kim
(2003) and 20.5 km by Vera Rodriguez et al. (2012). The main
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Table 1. Comparison of different solutions for the June 18, Caborn earthquake. NNA stands for the number of non-adaptive
measurements per non-zero coefficient in the CS solution. DS stands for dictionary size after compression, where 100 per cent
corresponds to the uncompressed dictionary. Success rate refers to the percentage of times that the event was detected using the

CS approach in 500 realizations of sensing matrix.

Success rate

Origin time 17 hr 37 min +

Solution (per cent) Location Source mechanism
Kim (2003) N/A 17.2 37.99° N
87.77° W
Depth (18 & 2) km
Vera Rodriguez et al. (2012) N/A 16.0 37.988° N
87.770° W
Depth 20.5 km
NNA =5 4.6 16.0 £ 0.2 (37.988 £+ 0.000)° N
DS = 0.7 per cent (87.770 + 0.000)° W
Depth (18.98 £ 2.35) km
NNA =20 314 16.0 0.0 (37.988 4+ 0.000)° N
DS = 2.8 per cent (87.770 = 0.000)° W
Depth (20.21 £ 1.17) km
Cs
NNA = 40 60.0 16.0 £ 0.0 (37.988 £ 0.000)° N
DS = 5.6 per cent (87.770 = 0.000)° W
Depth (20.47 £ 0.41) km
NNA = 120 96.8 16.0 = 0.0 (37.988 £+ 0.000)° N

DS = 16.7 per cent

(87.770 & 0.000)° W
Depth (20.50 % 0.00) km

concern in the application of CS is detectability. The success rate
for low NNA is around 4.6 per cent. This small value contrasts with
the 86.4 per cent observed in the first synthetic experiment using
the same amount of compression. The difference in success rate
suggests an important impact in detectability due to the use of inac-
curate Green’s functions and the presence of noise in the real data.
Reducing the amount of compression offsets the negative effect in
detectability. For instance, a reasonable success rate of 96.8 per cent
is observed for NNA = 120, which corresponds to a compression
of 16.7 per cent relative to the uncompressed dictionary size of 100
per cent. More remarkably, at this compression level, the CS ap-
proach reproduced the source parameters for all the realizations of
sensing matrix where the earthquake was detected. In other words,
no effect of the compression process was visible from the results.
As the NNA increases, the CS results tend to converge towards the
source parameters obtained without CS (Fig. 9a). The faster the CS
results converge the more advantageous the CS approach becomes
since smaller dictionaries are needed to perform the inversion. For
the source parameters, the convergence also implies that the results
are unaffected by the choice of sensing matrix used for compres-
sion. In the case of the modified BOMP performance, the increase
in the NNA also reduces the size of the search for optimal solutions
(Fig. 9b), which compensates the increase in processing time due to
a lower compression rate. The gains in processing time with CS in
this example are rather moderate (Fig. 9¢), because the absolute size
of the compressed dictionaries does not represent a substantial dif-
ference for the computer capabilities (the uncompressed dictionary
size is ~350 MB). The CS approach is feasible in the hypothetical
Caborn monitoring system and enables a large number of monitor-
ing stations to be inverted in real time. The benefits for real-time
monitoring provided by CS would be more apparent as the number
of recording stations in the monitoring system increases.

4 DISCUSSION

The implementation of grid search approaches in different areas of
science and engineering has became possible with the development
of more powerful and less expensive computing systems. In the
case of seismic source monitoring, the grid search approach still
requires a considerable amount of computing resources to handle
large quantities of seismic records in a dense monitoring grid. As
a reference, Tajima et al. (2002) evaluate the feasibility of the grid
search approach using real data from the Berkeley Digital Seis-
mic Network. Considering the computational resources available
for their analysis, the authors estimated a total of 12 min for the
processing of the records from three broadband seismic stations in
a grid with 160 virtual sources using a processing window of 20 s.
They also acknowledged that the task of reading Green’s functions
from hard disk occupies a significant amount of the processing time,
suggesting parallel processing in a cluster of workstations as an al-
ternative to achieve the real-time response of the system. Tsuruoka
et al. (2009) present the results of implementation of the grid search
monitoring approach in Japan. In this case, real-time response was
achieved in a monitoring grid consisting of 6875 virtual sources
using three seismic stations. The authors further suggest that im-
provements in computer performance would allow the monitoring
of more than 7000 virtual sources using also a larger number of
seismic stations. The sparse representation inversion presented in
Vera Rodriguez et al. (2012) performs with an ample margin the
real-time inversion of the Caborn, Indiana, earthquake using 2205
virtual sources with the records from eight broadband seismic sta-
tions. Although less virtual sources are employed in this latter study,
the use of more seismic stations puts this result in a comparable
setting to those of the previous grid search experiments. In contrast
to these results, the compressed domain inversion presented in this
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Figure 9. Results for 500 realizations of sensing matrix in five different
scenarios of compression to detect and estimate source parameters for
the 2002 June 18 Caborn earthquake. NNA stands for number of non-
adaptive measurements per non-zero coefficient in the solution. Vertical bars
are standard deviations. (a) Average source decompositions, y-axis is per-
centage for DC and CLVD components (Knopoff & Randall 1970), and
degrees for the angle between the slip vector and the fault plane (Vavrycuk
2001). (b) Average position of the value in the correlation function between
compressed Green’s functions and residuals in BOMP where the solution
was found. (¢) Average processing time.

study can perform in real time using the same computational re-
sources for a considerably larger amount of seismic records. Also,
the reduction in variable size permits the use of denser monitoring
grids as illustrated in the first synthetic example of this study, where
a grid of 22 275 virtual sources is inverted for the case of 441 re-
ceivers. Simultaneous source parameter estimation approaches are
an attempt to improve the response time of monitoring systems
based on the two-step estimation procedure. For example, Tajima
et al. (2002) presents the grid search approach as an alternative
to the two-step system deployed in the Berkeley Seismological
Laboratory, which relied from information about origin time and
source location produced by the United States Geological Survey.
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Transmission of information about origin time and location from
one place to another directly impacts the response time to provide
estimations that include the moment tensor of the seismic event.
Table 2 presents a comparison between the general steps involved
in the source parameter determination followed by the two step
and the simultaneous approaches. In the best case scenario, the re-
sponse time when the two-step approach is performed automatically
by the same computer can be similar or better to the simultaneous
approaches. However, even in this case, the source parameters ob-
tained by the simultaneous algorithms are the best overall, while
the two-step solutions present unrelated estimation errors. A larger
amount of recordings can potentially be used in real time if the mo-
ment tensor inversion method employed in the two-step procedure
does not require full waveform information. Nevertheless, the max-
imum number of recordings will always be limited at some point by
the computational resources. The compressed domain inversion is,
on the other hand, not directly limited by computational resources,
as the maximum amount of compression does not depend on the
number of input records but on the number of expected seismic
sources in the solution. A major advantage in the two-step proce-
dure is its flexibility, for instance, more accurate solutions can be
obtained by manually manipulating and validating the results at each
step. In the case of the simultaneous approaches, the use of fixed
grids impacts the accuracy of the source locations by design, while
there is no room for manual tuning of the intermediate inversion
stages. Flexibility and accuracy are somehow sacrificed in favour
of faster estimations in the simultaneous approaches. If the purpose
of the system is real-time response, the trade-off between accuracy
and speed is unavoidable, nevertheless simultaneous approaches are
specifically developed to handle efficiently this juncture.

5 CONCLUSIONS

Real-time simultaneous estimation of the source parameters has
applications in different areas of geophysics. This study presents
a new method for the automatic recovery of source parameters
based on ideas of compressive sensing. The main advantage of our
method is that a large number of recordings can be inverted without
compromising real-time response. Furthermore, if the compression
rate is correctly selected, the results obtained by the compressed
domain methodology would be identical to those without using
compression, with the added benefit of a shorter processing time.
The application of compressive sensing does require a dictionary of
Green’s functions that embodies the properties of a low-coherency
frame. Moreover, the lack of practical dictionaries that meet this
assumption necessitates the use of numerical modelling as a vital
tool to determine the feasibility of applying the compressive sens-
ing approach in a given scenario. A complete implementation of
compressive sensing to the source monitoring problem requires the
setting of new acquisition protocols that allow the recording of the
compressed measurements. Even in the absence of such protocols,
a proper use of compressive sensing can be an effective tool for
real-time monitoring of seismic events.
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Table 2. Comparison of the general steps involved in the estimation of the source parameters between the two-step versus the simultaneous approach.
Advantages and disadvantages are considered in terms of the speed to generate results and their reliability.

Two-step approach Simultaneous approach

STEP Advantages Disadvantages Advantages Disadvantages
Feeding of data Assuming continuous feeding of records from the seismic stations to the computing centre in both cases
Origin time Faster when only first Full waveform
and location breaks are required information needs to
estimation be available to start
computations
Transmission Depends on the location of the system that No further

performs the source mechanism inversion.
Best case: the source mechanism inversion is

transmission of data

required
performed by the same computer.
Worst case: origin time and location are received
from a system in a different geographical location.
Start moment Only after information Continuous
tensor about location and monitoring for the
estimation origin time is received. three source
parameters in all
available data
Data Depends if the procedure is automatic, No further data
preparation semiautomatic or manual, and the type of moment preparation required

tensor inversion.

Best case: automatic system with moment tensor
inversion that does not require full waveform
information.

Worst case: manual system with a moment tensor
inversion that requires full waveform information.

Moment tensor More information per

inversion with record to constraint the

full waveform inversion
method

More sensitive to
inaccurate velocity
model.
Limited number of
records that can be
inverted in real-time.

More information per
record to constraint
the inversion.
Compressed domain
inversion extends the
real-time limits.

More sensitive to
inaccurate velocity
model.
Detectability
considerations in the
compressed domain
inversion.

Moment tensor
inversion with
method that
does not
require full
waveform
information.

Faster results

Less information per
record to constraint
inversion (less robust
than full waveform)

Refinement of
source
parameters

Refinements are
possible but require
to re-initialize the
two-step procedure.

The first output is the
best approximation
achievable by the
system. No
refinement is required.

Accuracy of More accurate if there is
results manual validation and
refinement but more time-
consuming.

Source parameters
are only optimal for
the individual
algorithms that
obtained them, but
not as a group.
Other potential issues
depend on the
specific inversion
methodologies.

Subjected to spatial and temporal sampling
and accuracy of Green’s functions.
Detectability considerations in compressed

inversion.

Advantage: the three source parameters are
optimal as a group.
Disadvantage: noisy records cannot be

discarded.
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