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Abstract 

 

Fatigue cracking is a key type of defect for liquid pipelines, and managing fatigue cracks has been a top 

priority and a big challenge for liquid pipeline operators. Existing inline inspection (ILI) tools for pipeline 

defect evaluation have large fatigue crack measurement uncertainties. Furthermore, current physics-based 

methods are mainly used for fatigue crack growth prediction, where the same or a small range of fixed 

model parameters are used for all pipes. They result in uncertainty that is managed through the use of 

conservative safety factors such as adding depth uncertainty to the measured depth in deciding integrity 

management and risk mitigation strategies. In this study, an integrated approach is proposed for pipeline 

fatigue crack growth prediction utilizing inline inspection data including consideration of crack depth 

measurement uncertainty. This approach is done by integrating the physical models, including the stress 

analysis models, the crack growth model governed by the Paris’ law, and the ILI data. With the proposed 
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integrated approach, the finite element (FE) model of a cracked pipe is built and stress analysis is 

performed. ILI data is utilized to update the uncertain physical parameters for the individual pipe being 

considered so that a more accurate fatigue crack growth prediction can be achieved. Time-varying loading 

conditions are considered in the proposed integrated method by using rainflow counting method. The 

proposed integrated prognostics approach is compared with the existing physics based method using 

examples based on simulated data. Field data provided by a Canadian pipeline operator is also employed 

for the validation of the proposed method. The examples and case studies in this paper demonstrate the 

limitations of the existing physics-based method, and the promise of the proposed method for achieving 

accurate fatigue crack growth prediction as continuous improvement of ILI technologies further reduce ILI 

measurement uncertainty. 

 

1 Introduction  

Pipelines are known as being the safest and most economical way to transport large 

quantities of oil and gas products. According to the Canadian Energy Pipeline 

Association (CEPA), 94% of the refined petroleum products, and most of the Canadian oil 

and gas exports were transported by pipelines [1]. Pipelines are subject to different 

types of defects, such as fatigue cracking, corrosion, etc. [2], [3], [4]. Without proper 

remediation actions, these defects can eventually result in pipeline failures including 

leaks or ruptures, which lead to public safety issues, i.e. a release of pipeline contents to 

the environment, and expensive downtime. ILI runs are performed periodically using 
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smart pigging tools to detect defects and evaluate pipeline health conditions. Fatigue 

cracking refers to crack growth due to fatigue caused by pressure cycling during pipeline 

operations.  

 Fatigue cracking is a key type of defect for liquid pipelines, and managing such 

fatigue cracks continues to be a top priority amongst pipeline integrity management. 

However, existing ILI tools have relatively large fatigue crack measurement uncertainties, 

and typically have a specification of about plus/minus 1 millimeter, 80% of the time [2], 

[5]. Furthermore, currently physics-based methods are mainly used for fatigue crack 

growth prediction, based on crack growth models governed by the Paris’ law [5], [6]. The 

uncertainty in crack sizing and the Paris’ law model grows to the predicted time of 

failure due to fatigue cracks, resulting in uncertainty which requires a conservative 

management integrity management approach and risk mitigation strategies, such as 

repairs, pipe replacement, pressure reductions and hydro-testing. There is an urgent 

need to develop accurate fatigue crack growth prediction tools, and reduce the 

uncertainty and hence the conservatism in pipeline integrity management.  

 Existing pipeline defect prognosis methods are mainly classified into physics-based 

methods and data-driven methods[7]. The physics based methods for pipelines mainly 

include stress-life method (S-N), local strain method (Ɛ-N), and Paris’ law based methods 

[8]. Among them, the physics-based method governed by the Paris’ law is currently the 

dominant method used for pipeline fatigue crack growth prediction [2,5,6]. The Paris’ 
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law is generally used for describing fatigue crack growth [5], [6], [9], [10]: 

da

dN
=C(∆K)m                                                               

(1) 

where da/dN is the crack growth rate, a is crack size, N is the number of loading 

cycles, ∆K is the range of the Safety Intensity Factor (SIF), and C and m are material 

related uncertainty model parameters. C and m can be estimated via experiments, 

and are set as fixed constants in the physics-based method. Many studies have been 

published on using physical models, such as FE models, and crack growth models based 

on S-N curves or some forms of Paris’ law. Hong et al. [11] estimated the fatigue life by 

using the S-N curves of the ASTM standard specimens, curved plate specimens and 

wall-thinned curved plate specimens. Pinheiro and Pasqualino [12] proposed a pipeline 

fatigue analysis based on a finite element model and S-N curve with the validation of 

small-scale fatigue tests. Oikonomidis et al. [13,14] predicted the crack growth through 

experiments and simulation based on a strain rate dependent damage model (SRDD). 

Crack arrest length and velocity can be predicted through the proposed model. A key 

disadvantage of the existing physics-based method is that typically the same fixed model 

parameters are used for all pipes (i.e. m=3). However, these material dependent model 

parameters should be different for different pipes, and slight differences in such model 

parameters can lead to large differences in fatigue crack growth predictions. As an 

example, a 10% change in parameter m may lead to a change of 100% in the predicted 
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failure time.  

 Data-driven methods use the experimental data or monitoring data rather than 

physical models for prognosis. Varela et al. [15] discussed major methodologies used to 

produce condition monitoring data. Among these pipeline inspection techniques, inline 

inspection tools are the most reliable for pipeline integrity management. A review of ILI 

tools for detecting and sizing cracks was conducted in reference [16]. Slaughter et al. [17] 

analyzed the ILI data for cracking and gave an introduction to how to improve the crack 

sizing accuracy. Systematic error of the ILI tool, measurement noise and random error 

from the tool, and the surface roughness are three main sources of ILI tool uncertainties 

[18]. Due to the measurement errors and cost of an ILI tool, data driven methods do not 

work well if the number of ILI tool runs and the amount of data are not sufficient. 

 In this paper, an integrated approach for pipeline fatigue crack growth prediction 

with the presence of large crack sizing uncertainty is proposed, which integrates the 

physical models and the ILI data. With the proposed integrated approach, the FE model 

of cracked pipe is built and stress analysis is performed. ILI data is employed to update 

the uncertain material parameters for the individual pipe being considered so that a 

more accurate fatigue crack growth prediction can be achieved. The proposed integrated 

approach is compared with the existing physics based method using examples based on 

simulated data. Field data provided by a Canadian pipeline operator is also used to 

validate the proposed integrated approach.  
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 Time-varying operating conditions are considered in the proposed integrated 

method. When oil and gas content is transported with pipelines, the internal pressure of 

the operating pipelines varies with time, which presents a challenge for applying 

integrated prognostics methodology. Zhao et al. [19] proposed an integrated prognostics 

method for a gear under time-varying conditions. The load changes history considered in 

[19] is the combination of several constant loading conditions, while in pipeline 

operations, the internal pressure changes continuously. In this study, we employ the 

rainflow counting method to deal with time-varying operating conditions. A key 

advantage of using the rainflow counting method within the proposed integrated 

method is to directly link the environmental and human factors which affected the 

loading conditions to the degradation model. Also, it is proven by Roshanfar and Salimi 

[20] that rainflow counting method is more accurate compared with other cycles 

counting methods, such as range counting, level crossing counting, and peak counting 

methods. 

 Section II presents a pipe element model considering a single fatigue crack. The 

proposed integrated method for fatigue crack growth prediction of pipeline is discussed 

in Section III. Section IV gives examples based on simulated data and Section V presents 

a case study to demonstrate the proposed method. Section VI gives the conclusions. 
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2 Pipe finite element modeling considering fatigue cracks  

 In this section, the pipe finite element model considering a single fatigue crack is 

built, based on information and methods presented in [21–23]. The ANSYS software is 

used for pipe FE modeling, and a single semi-elliptical type of crack is considered. Stress 

analysis is performed, and SIF can be calculated.  

2.1 Pipe FE modeling 

 Test data 157-1 presented in Reference [24] on line pipes was used. The material is 

X70 grade pipe steel. Table 1 shows the line pipe’s physical properties. 

 

Table 1 Physical properties of the line pipe 

API 5L Grade X70 

Yield Strength Min. (MPa) 483 

Tensile Strength Min. 

(MPa) 

565 

Yield to Tensile Ratio Max. 0.93 

Elongation Min. 17 

Outside Diameter (mm) 914.4 

Wall Thickness (mm) 15.875 

Length (mm) 5000 

Internal Pressure (MPa) 10 

 

Software ANSYS Workbench is used to build the FE model. The crack shape is set to 

Semi-Elliptical, which is the most common type of fatigue cracks found in pipelines. The 
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crack size and shape are defined by the major radius (crack length a=2r) and the minor 

radius (crack depth b), which are shown in Fig. 1. ANSYS Workbench was used to build a 

pipeline model with a semi-elliptical crack, with the input of major radius and minor 

radius. 

 

Fig. 1 Crack Shape 

 

The pipe parameters are entered using the fracture tool. The pipe is divided into 

two parts: one is the fracture affected zone which uses the tetrahedrons method, and 

the other is the rest of the pipe which uses the hex-dominant method. Fig. 2 shows the 

built FE model, where the base mesh without cracks and the region involving the crack 

are modeled using the two different modeling methods.  

Stress intensity factor (SIF) is the key output of pipe finite element analysis. The 

crack length a increases from 4mm to 30mm with a step size of 2mm, and the crack 

depth b is varied from 2mm to 12mm with 1mm increments, and obtain the 

corresponding SIF values through stress analysis. To model the relationship between SIF 

values at the surface point (Ka), at the deepest point (Kb), along with the crack length and 

depth, a curve fitting tool with polynomial function in Matlab was used. The results are 
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presented in Fig. 3. The curve fitting results show that the two adjusted R-squares are 

both very close to 1, indicating good goodness of fit.  

 

 

Fig. 2 Crack built in ANSYS workbench 
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Fig. 3 The fitted SIF functions 

 

The internal pressure is varied from 0.69MPa to 2.76MPa in 0.69Mpa increments to 

find the SIF values at the surface point and those at the deepest point, which are 

displayed in Table 2. It can be concluded that the SIF is proportional to pressure. It can 

also be verified through the technique by Raju and Newman [25], which is widely 

applied to evaluate pipe stress considering fatigue cracks: 

∆K=∆σf√π
a

Q
=∆P

D

2t
f√π

a

Q
                     (2) 

where ∆σis the range of the hoop stress, ∆𝑃 is the size of the pressure cycle, a is the 

instantaneous crack depth, and f and Q are constants that depend on pipe geometry and 

defect length, respectively. Given that SIF is proportional to pressure, the SIF can be 

calculated at a certain pressure to obtain the SIF value at a different pressure by scaling 

the SIF value proportional to the pressure level [19]. 
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Table 2 Pressure influence on SIF 

P(MPa) a(mm) b(mm) Ka Kb 

0.69 15.2 2.54 653.36 1187.6 

1.38 15.2 2.54 1306.7 2375.2 

2.07 15.2 2.54 1960.1 3562.7 

2.76 15.2 2.54 2613.4 4750.3 

0.69 15.2 5.08 1193.6 2340.9 

1.38 15.2 5.08 2387.1 4681.9 

2.07 15.2 5.08 3580.7 7022.8 

2.76 15.2 5.08 4774.3 9363.8 

0.69 50.8 5.08 792.33 2219.7 

1.38 50.8 5.08 1584.7 4439.4 

2.07 50.8 5.08 2377 6659 

2.76 50.8 5.08 3169.3 8878.7 
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2.2 Pipe FE model verification 

 The pipe FE model is partially verified by comparing with the Raju and Newman 

method [25], outlined in “OPS TTO5 – Low Frequency ERW and Lap Welded Longitudinal 

Seam Evaluation” [26]. The Raju and Newman method for calculating SIF for a 

semi-elliptical surface flaw is implemented in this project based on the following 

equations (3-8). 

∆K=∆σf√π
a

Q
=∆P

D

2t
f√π

a

Q
                     (3) 

where: 

Q=1+4.595(
a

L
)                         (4) 

f=M1+M2(
a

t
)
2
+M3(

a

t
)
4
                     (5) 

M1=1.13-0.18(
a

L
)                        (6) 

M2=
0.445

0.1+
a

L

-0.54                          (7) 

M3=0.5-
0.5

0.325+
a

L

+14 (0.5-2(
a

L
))

24

                 (8) 

∆P is the size of the pressure cycle, a is the depth of crack from the pipe surface, L is the 

length of the crack, D is outside diameter, and t is the pipe wall thickness.  

 The results by the Raju & Newman’s method are compared with those obtained 

using the FE model, when the flaw length is 150mm (5.9in.). 150mm (5.9in.) is used 
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because it corresponds to the case study in Section 5.The two curves are shown in Fig. 4. 

As can be observed, the values calculated using these two methods are pretty close for a 

large portion of the crack depth range. The FE method is also compared with two other 

methods for cracked pipe SIF calculations: API 579 and BS 7910, which are outlined in 

Section 4. 

 

 

Fig. 4 Comparison of SIF results between the Raju & Newman method and the FE 

method 

 

3 The proposed integrated method for fatigue crack growth prediction 

 In the proposed integrated method for fatigue crack growth prediction, the pipe FE 

model calculates the SIF values for given crack sizes, which are utilized in the crack 

growth model governed by the Paris’ Law for propagating the fatigue. The distributions 
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of the uncertain model parameters are updated through Bayesian approach using the 

current fatigue crack size [27]. The estimate is based on ILI or nondestructive evaluation 

(NDE) data to get the uncertain model parameters to approach the real values for the 

specific unit being monitored. With the updated uncertain model parameters, the crack 

growth model can be applied to predict future crack growth and subsequently the 

failure time distribution. As part of the proposed approach, the pipe FE models are 

described in Section 2, and can be used for SIF computation.  

 

3.1 Crack growth model 

 The fatigue propagation of a semi-elliptical surface crack considering two crack 

growth directions was analyzed. Newman and Raju [25] indicate that the aspect ratio 

change of surface cracks should be calculated by assuming that a semi-elliptical profile is 

always maintained, and that it is adequate to use two coupled Paris fatigue laws known 

as “two-point plus semi-ellipse” method: 

da

dN
=CA(∆KA)mA                            (9) 

db

dN
=CB(∆KB)mB                           (10) 

where ∆KA and ∆KB are the ranges of the stress intensity factor at the surface points 

and the deepest point of the surface crack, and CA, CB,  mA and mB are material 

constants. 
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 The simulated crack growth paths using the evolution equations considering 

CA=CB,  mA= mB is more in accordance to the actual fatigue tests results reported in 

[28]. A semi-elliptical crack can propagate to a new semi-elliptical one based on the 

“two-point plus semi-ellipse” method [29,30].  

 

3.2 Bayesian inference for uncertain model parameter updating  

 In this section, the degradation model adopts two basic coupled Paris’ law formulas 

as the crack growth model. On the right-hand side of the formula, a model uncertainty 

term ε is added to make the propagation model more accurate. The modified Paris’ law 

can be represented by the following equations after considering the model uncertainty:  

da

dN
=C(∆KA)mε                          (11) 

db

dN
=C(∆KB)mε                          (12) 

 In addition, we assume that the measurement error e=areal-ameas=breal-bmeas has 

the following distribution  

e~N(0,σ2)                             (13) 

 The measured crack length and crack depth ameas, bmeas  follow normal 

distributions centered at areal,  breal as follows:  

ameas~N(areal,σ
2)                          (14) 
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bmeas~N(breal,σ
2)                          (15) 

 In physics-based methods, researchers use physical models for prognostics without 

considering the uncertainty of ILI data. In some papers, they only used the ILI data as a 

new starting point instead of updating model parameters of physics-based models. In 

this paper, ILI data is used to update the uncertain material parameters using the 

Bayesian inference method. Because parameter m affects the degradation path and the 

predicted results more than parameter C based on the Paris’s law, only the distribution 

of 𝑚 is updated, while maintaining other model parameters unchanged. Thus, the 

posterior distribution fpost
(m|a,b) can be obtained through the Bayesian inference 

method: 

fpost
(m|a,b)=

l(a,b|m)fprior(m) 

∫ l(a,b|m)fprior(m)dm
                      (16) 

where fprior(m)  represents the prior distribution of m; l(a,b|m)  represents the 

probability of detecting measured crack sizes, including length a and depth b. 

 Paris’ law is employed to propagate the crack from the current ILI measured crack 

size to the ones at next inspection point with given value of m. Due to uncertainties in ILI 

tool and Paris’ law, there exists the possibility to detect a certain crack length and crack 

depth at the next inspection point. The possibility can be denoted by a likelihood 

function l(a,b|m).  
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3.3 The integrated method considering crack depth only 

 In most cases, the pipe fatigue crack does not propagate much along the crack 

length direction. If only growth along the crack depth direction is considered, the Paris’ 

law model can be simplified to [31]:  

da

dN
=C(∆K)mε                           (17) 

 And the equation for Bayesian updating is:  

fpost
(m|a)=

l(a|m)fprior(m) 

∫ l(a|m)fprior(m)dm
                    (18) 

 

4 Examples based on simulated data 

4.1 Simulation example with the same starting point 

 In the example in this section, the proposed prognostics approach is verified based 

on simulated data. It is assumed that the standard deviation of ILI tool error equals to 

0.15, C=5e-12, 𝑚~(2.5,0.22), and 𝜀~N(0,0.22). We also set the initial crack length as 4mm 

and initial crack depth as 2mm.  

 Ten degradation paths are generated, as shown in Fig. 5. The ten degradation paths 

are obtained based on the two Paris’ law formulas, one for crack length and the other 

for crack depth, based on the above-mentioned model parameters. The initial crack 

length and depth are the same for all the ten degradation paths. The generated paths 
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are separated into two sets: a training set, which is to derive a prior distribution of 

uncertain material parameter m, and a test set. The prediction performance of the 

proposed approach can be evaluated based on the test set. 

 

 

Fig. 5 Ten simulated degradation paths 

 

We select path 1 to 5 as the training set and 6 to 10 as the test set. Table 3 shows the 

ten real m values, since these real values are known during the simulated degradation 

path generation process. For the five degradation paths in the training set, a procedure 

based on least-square optimization, which was reported in Ref. [9], are used to estimate 

the m value for each training degradation path. These trained m values are subsequently 

used to fit the prior distribution parameters. We select normal distribution to fit them 

and the prior distribution of m is:  
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f(m)=N(2.5439,0.15572)                     (19) 

 Paths #6, #7, #8 are selected for testing the prediction accuracy of the proposed 

prognostics approach. During the updating process, the posterior distribution of m will 

serve as the prior distribution to update parameter m at the next inspection point. In 

path #6, a total of 2.4×104 cycles are taken to meet the failure criteria. All useful 

information in the updating process for path #6 is shown in Table 4. In path #7, the 

failure time is 3.1×104 cycles, and it is 2.8×104 cycles for path #8. The updating histories 

for mean and standard deviation values of parameter m in path #7 and path #8 are 

shown in Tables 5 and 6, respectively. The results show that for all these paths, their 

material parameter m is gradually updated from prior distribution to approach its own 

unique real value. Fig. 6 shows the plots for updated distribution of parameter m for 

path #6. The plots for updated distribution of predicted failure time for path #6, #7, #8 

are shown in Figs. 7, 8, and 9, respectively.  

 As can be seen from the results, the updated m values can approach the real m 

values through updating using the observed data. The failure time predictions also 

approach the real failure times. The uncertainty is reduced during the updating 

processes. 
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Table 3 The real values and trained values of m 

Path# Real m Trained m 

1 2.3888 2.3890 

2 2.5968 2.5968 

3 2.7886 2.7838 

4 2.4787 2.4792 

5 2.4667 2.4662 

6 2.8027 - 

7 2.7588 - 

8 2.7805 - 

9 2.5850 - 

10 2.5447 - 
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Table 4 Validation results with path #6 (real m=2.8027) 

Loading cycles 

Crack 

length(mm) 

Crack 

depth(mm) 

Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.6× 104 5.4811 2.9010 2.7854 0.0358 

1.2× 104 7.6330 4.4793 2.7925 0.0148 

1.8× 104 11.9190 7.3864 2.8001 0.0069 

2.4× 104 22.6406 13.4753 2.8040 0.0036 

 

Table 5 Validation results with path #7 (real m=2.7588) 

Loading cycles 

Crack 

length(mm) 

Crack 

depth(mm) 

Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.7× 104 5.1763 2.8022 2.7239 0.0477 

1.4× 104 6.8845 4.0574 2.7428 0.0201 

2.1× 104 10.3283 6.0624 2.7617 0.0094 
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2.8× 104 15.8216 9.5424 2.7546 0.0049 

 

 

 

Table 6 Validation results with path #8 (real m=2.7805) 

Loading cycles 

Crack 

length(mm) 

Crack 

depth(mm) 

Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.7× 104 5.3408 2.9543 2.7527 0.0382 

1.4× 104 7.5956 4.4904 2.7703 0.0152 

2.1× 104 11.8729 7.1897 2.7760 0.0072 

2.8× 104 21.7281 12.7277 2.7777 0.0035 

 

 

Fig. 6 Distributions of parameter m for path #6 
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Fig. 7 Distributions of predicted failure time for path #6 

 

 

Fig. 8 Distributions of predicted failure time for path #7 
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Fig. 9 Distributions of predicted failure time for path #8 

 

4.2 Sensitivity analysis 

 In this section, we study the sensitivity of the results to the variation of the initial 

crack sizes and the ILI tool measurement error. We use the same m values, as those 

listed in Table 3 in section 4.1, to generate the ten degradation paths, and use path #6 as 

the test set. We change the initial crack length a0 and/or initial crack depth b0 while 

maintaining all the other parameters unchanged. In the comparison, three scenarios are 

considered, where initial crack length is much bigger than crack depth, much smaller 

than depth, or close to depth, respectively. Table 7 is then obtained with three different 

input sizes combinations. It should be noted that in each of the three initial crack size 

scenarios in Table 7, the initial crack sizes are the same for all the 10 paths in this 

sensitivity analysis. From the comparison results in Table 7, we can find that if we use 

the same inspection interval, the inspection times decrease from four times to two 
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times or one time, as crack lengths and/or depths increase. However, even with shorter 

inspection times, the mean values of m are all approaching the real value (2.8027), and 

this shows that the proposed approach works well under all these different initial 

conditions. 

Beside initial condition analysis, we also investigate the impact of measurement 

errors of the ILI tools on the results. We increase 𝜎ILI from 0.15mm to 0.3mm and 

0.5mm, respectively. The results are shown in Table 8. The inspection times don’t 

change as 𝜎ILI increases. For both cases with larger measurement errors, the mean 

values of m are all approaching the real value (2.8027), which shows the effectiveness of 

the approach. As expected, the performance of the proposed approach becomes worse 

as the measurement error of ILI tool increases. This also implies that with the 

development of more accurate ILI tools, the lower measurement error will result in 

better performance for the proposed approach. 
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Table 7 Sensitivity analysis for initial crack depths and lengths (real m=2.8027) 

(1) a0=8mm, b0=2mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 8 2 2.5439 0.1557 

0.6× 104 9.8382 4.3728 2.7611 0.0383 

1.2× 104 15.1176 8.2462 2.7980 0.0110 

(2) a0=4mm, b0=6mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 4 6 2.5439 0.1557 

0.6× 104 7.1640 6.9937 2.7707 0.0342 

1.2× 104 13.9725 10.0862 2.8054 0.0096 

(3) a0=8mm, b0=6mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 8 6 2.5439 0.1557 

0.6× 104 13.9012 8.9284 2.7960 0.0121 
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Table 8 Sensitivity analysis for measurement errors of ILI tools (real m=2.8027) 

(1) 𝝈𝐈𝐋𝐈=0.3mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.6× 104 5.0333 3.4444 2.7343 0.0756 

1.2× 104 8.1987 4.0964 2.7958 0.0218 

1.8× 104 11.8189 7.7472 2.7988 0.0098 

2.4× 104 22.3269 12.9847 2.7985 0.0045 

(2) 𝝈𝐈𝐋𝐈=0.5mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.6× 104 5.1455 3.5268 2.5728 0.0847 

1.2× 104 7.4150 4.2182 2.5919 0.0450 

1.8× 104 12.9044 8.0734 2.6383 0.0258 

2.4× 104 21.7774 12.4770 2.6829 0.0133 

 

4.3 Simulation example with different starting points 

In the example in this section, we assume that the standard deviation of ILI tool 

error equals to 0.15, C=5e-12, 𝑚~(2.5,0.22), and 𝜀~N(0,0.22), which are the same as 
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those in Section 4.1. The initial crack lengths and depths are uniformly random 

generated in the range of 4mm to 10mm, and 2mm to 6mm, respectively. In this way, we 

have different starting points, i.e. initial crack length and depth values, for the ten 

simulated degradation paths. The ten new degradation paths are generated, and shown 

in Fig. 10. 

 

 

Fig. 10 Ten simulated degradation paths with different starting points 

 

Following the same procedure as section 4.1, the real values and trained values of m 

are obtained in Table 9, and then we can obtain the prior distribution of m as: 

f(m)=N(2.3814,0.13522)                       (20) 

Paths #6, #7, #8 are then selected for testing the prediction accuracy of the proposed 

prognostics approach. In path #6, a total of 6×103 cycles are taken to meet the failure 

criteria. All useful information in the updating process for path #6 is shown in Table 10. 
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The updating histories for mean and standard deviation values of parameter m in path 

#7 and path #8 are shown in Tables 11 and 12, respectively. From the results in these 

tables, m is gradually updated from the prior distribution to approach its own unique 

real value. The plots for updated distribution of parameter m and predicted failure time 

for path #6 are shown in Figs. 11 and 12.  

 As can be seen from the results, the updated m values can approach the real m 

values through updating using the observed data. The failure time predictions also 

approach the real failure times. The uncertainty is reduced during the updating 

processes. In this example, it shows that the proposed approach works well for the case 

with different starting points.  
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Table 9 The real values and trained values of m 

Path# Real m Trained m 

1 2.5095 2.5096 

2 2.2656 2.2653 

3 2.2867 2.2864 

4 2.5470 2.5468 

5 2.2982 2.2979 

6 2.9076 - 

7 2.1310 - 

8 2.3654 - 

9 2.1309 - 

10 2.5185 - 

 

Table 10  Validation results with path #6 (real m=2.9076) 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 5.6680 5.2929 2.3814 0.1352 

2× 103 8.1578 6.5013 2.7713 0.0161 

4× 103 11.5583 8.3144 2.8079 0.0083 

6× 103 18.3856 11.5141 2.8810 0.0011 
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Table 11  Validation results with path #8 (real m=2.3654) 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 7.5834 5.9807 2.3814 0.1352 

5× 104 9.6401 7.2315 2.3464 0.0262 

1.0× 105 12.4980 8.3614 2.3579 0.0084 

1.5× 105 15.8673 10.3980 2.3593 0.0028 

 

Table 12  Validation results with path #10 (real m=2.5185) 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 7.0101 5.5680 2.3814 0.1352 

2× 104 9.4881 6.5740 2.5352 0.0332 

4× 104 12.0497 8.2202 2.5151 0.0137 

6× 104 15.9555 10.0877 2.5162 0.0071 
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Fig. 11 Distributions of parameter m for path #6 

 

 

Fig. 12 Distributions of predicted failure time for path #6 
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5 Comparative study and validation using ILI/NDE field data 

 In this section, a comparative study is performed between the proposed integrated 

method and the existing physics-based method using the ILI/NDE field data supplied by a 

Canadian pipeline operator. In addition, the performance of the proposed method under 

different ILI tool accuracy is also studied. A summary of the pipe properties and the flaw 

measured properties are given in the following Tables 13 and 14: 

Table 13  Pipe properties 

Property Value 

Diameter 863.6mm (34in.)  

Nominal Wall Thickness 7.1mm (0.281in.)  

Grade X52 

MOP  4.5MPa (649psi) 

 

Table 14  Flaw measured properties 

Date of Size Growth Length  Peak Depth  

February 2002 150mm (5.9in.) 2.95mm (0.116in.) 

April 2007 150mm (5.9in.) 6.40mm (0.252in.) 
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5.1 Pressure data processing using rainflow counting  

 Pressure cycling drives pipe fatigue crack growth, and pressure data is used to 

calculate the SIF values. Fig. 13 is a plot of the pressure data from February 6, 2003 to 

March 31, 2007. It can be seen that the pipeline operations change in November 2005, 

and the pressure cycling also changes at that time. The rainflow-counting method is 

used to count the number of discrete pressure cycling ranges, which will subsequently 

be used in pipe stress analysis. Two output matrices, namely matrix 1 and matrix 2, are 

generated. Matrix 1 contains information for each individual cycle including cycle 

number, time information, and range of pressure. Matrix 2 organizes the individual 

cycles into different range limits, with the range increment set to 5 psi (0.034MPa). The 

rainflow-counting result is shown in Fig. 14. As can be seen, there are a large number of 

small cycles with small pressure ranges, and a small number of large cycles.  

 

 

Fig. 13 Total pressure data from February 6, 2003 to March 31, 2007 
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Fig. 14 Rainflow-counting result 

 

5.2 Fatigue crack propagation based on the rainflow-counting results 

 As mentioned in the previous subsection, we can obtain two different output 

matrices from the rainflow-counting method, namely matrix 1 and matrix 2. The two 

matrices are based on the pressure data from February 6, 2002 to March 10, 2007. It is 

assumed that prior to February 6, 2003, the pressure data is the same from 2003-2004 

since the operation had been the same during the period. It is obvious that matrix 1 

should give more accurate results than matrix 2, but can be more computationally 

intensive to use to calculate fatigue crack propagation. Fig. 15 shows degradation paths 

generated using matrix 1 and the FE method. By using matrix 2, the pressure ranges can 
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be ranked in an increasing or decreasing order. Depending on the order, the upper 

bound or the lower bound can be used to represent each range limit. The investigations 

show that using matrix 2 by ordering the pressure ranges increasingly or decreasingly 

give very close degradation path results. It can also be found that matrix 1 and matrix 2 

give relatively close crack depth values on both February 6, 2003 and Mar. 10, 2007. 

 

 

Fig. 15 Degradation paths generated using matrix 1 

 

5.3 Critical crack depth determination 

 Once the critical crack size is reached, the pipe is considered failed, and thus the 

failure time and the remaining useful life can be determined. The critical flaw size 

depends on the nominal stress, the material strength, and the fracture toughness. The 

relationship between these parameters for a longitudinally oriented defect in a 
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pressurized cylinder is expressed by the NG-18 “ln-secant” equation [26]:  

CVπE

4ACLeσf
2 =ln [sec (

πMSσH

2σf
)]                     (21) 

where  

MS=
1-

a

tMt
a

t

                             (22) 

Mt=[1+0.6275z-0.003375z2]
1

2,  z=
Le

2

Dt
≤50               (23) 

or  Mt=0.032z+3.3,  z>50                      (24) 

 

The values used in the equations are further explained as follows.  

a is flaw depth; 

t is the pipe wall thickness, and t=7.1mm(0.281in.); 

E is the elastic modulus, and E=206GPa; 

Le is an effective flaw length, equal to the total flaw length multiplied by π/4 

for a semi-elliptical flaw shape common in fatigue. In our study, 

Le=150×
π

4
=117.8mm; 

σf is the flow stress typically taken as the yield strength plus 68MPa, or as the 

average of yield and ultimate tensile strengths. 

σf=σy+10=403+68=471MPa(68.42ksi ); 

σH is the nominal hoop stress due to internal pressure. σH=p×
D

2t
; 
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CV is the upper shelf CVN impact toughness. CV=4.9m∙kg (35.8ft∙lbs); 

Ac  is the cross-sectional area of the Charpy impact specimen. 

Ac=80mm2(0.124 in.2). 

 The field data is applied to these equations, and the resulting relationship is shown 

in Fig. 16. Given the crack length of 150mm (5.9in.), if the internal pressure is equal to 

the Maximum Operating Pressure (MOP) of 4.5MPa (649psi), the critical 

depth-to-thickness ratio will be 0.6688. Thus, the critical crack depth is 

0.6688×7.1=4.8mm (0.188 in.). The discrepancies from the NDE depth in April, 2007 

(6.4mm) is because this way to determine the critical depth is relatively conservative. 

 

5.4 ILI-NDE depth distribution 

NDE fatigue crack depth is considered as accurate for the purposes of this case study. 

ILI-NDE depth data give the differences between the collected ILI depth values and the 

corresponding NDE depth values, and thus can represent the accuracy of the ILI tool in 

measuring fatigue crack depth. With all the 16 sample field depths provided by the 

industry partner, a normal distribution is used to fit the ILI-NDE depth data, with the 

estimated mean 0.6669 mm (0.026 in.), and standard deviation 0.4795 mm (0.0189 in.).  
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Fig. 16 Relationship between failure stress and flaw size 

 

5.5 Limitations of the existing physics-based method 

 The fatigue crack growth results by the existing physics-based method are briefly 

discussed in Section 5.2 and presented in Fig. 15. With the physics-based method based 

on the Paris’ law, fixed model parameters are used: 𝑚=3 and 

C=3.0×10-20MPa√mm (8.6×10-19psi√in) . The finite element method and Raju and 

Newman method are employed in stress intensity factor calculations. As can be seen in 

Fig. 15, the crack depth in April 2007 is 3.37mm (0.1325 in.), which is far from the actual 

crack depth of 6.40mm (0.252 in.) which is measured using the NDE tool. The crack 

growth results show that the existing physics-based method does not perform well in 

this case study. However, physics-based methods are were much better aligned to 
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observed growth using more common conservative industry approaches to calculate SIF 

such as BS 7910 and API 579. 

 

5.6 The integrated method and its performance under different ILI tool accuracy 

 With this dataset, 2 NDE measurements are available, and are used to find the real 

m value by trying different m values. It is found that an m value of 3.11 will give the 

crack depth of 0.252 inch in April 2007, meaning that 3.11 is the real m value for the 

pipe. The crack growth curves for m=3.11 and m=3 are shown in the following figure, Fig. 

17. With the real m value, the real crack depth value can be obtained at any given point 

in time.  

 

 

Fig. 17 Real crack growth curve 

 

The prediction performance of the proposed integrated method is investigated 
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under different ILI tool accuracy, measured by the ILI tool measurement uncertainty. In 

this section, we investigate the integrated method’s performance when the ILI tool 

measurement uncertainty standard deviation is equal to 0.25mm (0.01in.), 0.38mm 

(0.015in.), and 0.50mm (0.02in.), respectively.   

 Feb. 2002 is set as the starting point for crack growth, where the crack depth is 

2.95mm (0.116in.). Jun. 2006 is used as the first inspection point because ILI data is 

available from that time. Nov. 2006 is used as the second inspection point. The crack 

depth will be predicted for Apr. 2007, and compared with the NDE depth measurement 

of 6.40mm. As can be seen from the real crack growth curve shown in Fig. 17, the real 

crack depth is 3.96mm in Jun. 2006 and 5.13mm in Nov. 2006. The first case that was 

investigated was when the ILI measurement uncertainty standard deviation is 0.25mm. 

To try to fully assess the prediction performance of the integrated method for the Jun. 

2006 inspection point, five ILI data points were sampled from a normal distribution with 

a mean of 3.96mm (real crack depth) and standard deviation of 0.25mm. For each of the 

sampled ILI data points, parameter m is updated using Bayesian inference, and the mean 

of the five updated m values is 3.129 for Jun. 2006, as shown in Table 15. The same 

approach is done for the Nov. 2006 inspection point, and the mean of the updated m 

value is 3.101. The mean predicted crack depth values for Apr. 2007 are also obtained 

and recorded in Table 15(1). As can be seen, the updated m value gets closer to the real 

m value of 3.11, and the predicted crack depth for Apr. 2007 gets closer to the real crack 
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depth 6.40mm.   

Next we investigate the cases where the ILI tool measurement uncertainty standard 

deviation is equal to 0.38mm and 0.50mm. The same procedure as mentioned above is 

followed, and the results are recorded in Table 15(2) and 15(3). From the results in Table 

15, it can be seen that the best prediction performance is achieved when the 

measurement uncertainty is the smallest (0.25mm), and the prediction performance 

becomes worse when the measurement uncertainty is larger, as expected. It can also be 

observed that for all three ILI measurement uncertainty cases, the integrated method 

outperforms the existing physics-based method. Note that for the “ILI-NDE Depth 

sample” data, the ILI tool measurement uncertainty standard deviation is 0.48mm, 

which is between the case (Std.=0.38) and the case (Std.=0.50). It is expected that the ILI 

tool accuracy will keep improving in the future, which will result in more accurate 

predictions of crack depth using the integrated method.  
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Table 15  Update results 

(1) 𝝈𝐈𝐋𝐈=0.25mm 

Inspection year Feb. 2002 Jun. 2006 Nov. 2006 

Crack depth(mm) 2.95 3.96 5.13 

Mean of m 3 3.129 3.101 

Std of m 0.15 0.019 0.008 

Predicted crack depth for 

Apr. 2007 

3.37 Reaching 6.40mm 

in Dec. 2006 

5.64 

(2) 𝝈𝐈𝐋𝐈=0.38mm 

Inspection year Feb. 2002 Jun. 2006 Nov. 2006 

Crack depth(mm) 2.95 3.96 5.13 

Mean of m 3 3.097 3.098 

Std of m 0.15 0.054 0.018 

Predicted crack depth for Apr. 2007 3.37 5.23 5.31 

(3) 𝝈𝐈𝐋𝐈=0.50mm 

Inspection year Feb. 2002 Jun. 2006 Nov. 2006 

Crack depth(mm) 2.95 3.96 5.13 

Mean of m 3 3.029 3.074 

Std of m 0.15 0.106 0.042 

Predicted crack depth for Apr. 2007 3.37 3.58 4.27 
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6 Conclusions 

 Managing fatigue cracks has been a top priority for liquid pipeline operators. 

Existing inline inspection tools for pipeline defect evaluation have fatigue crack 

measurement uncertainties. Furthermore, current physics-based methods are mainly 

used for fatigue crack growth prediction, where the same or similar fixed model 

parameters are used for all pipes. They result in uncertainty that requires a conservative 

approach for integrity management approach and management and risk mitigation 

strategies. In this paper, an integrated approach is designed to predict pipeline fatigue 

crack growth with the presence of crack sizing uncertainty. The proposed approach is 

carried out by integrating the physical models, including the stress analysis models, the 

damage propagation model governed by the Paris’ law, and the ILI data. With the 

proposed integrated approach, the FE model of a pipe with fatigue crack is constructed. 

ILI data is applied to update the uncertain material parameters for the individual pipe 

being considered, so that a more accurate fatigue crack growth prediction can be 

achieved. The rainflow counting method is used to count the loading cycles for the 

proposed integrated method under time-varying operating conditions. Furthermore, we 

compare the proposed integrated approach with the existing physics based method 

using examples based on simulated data. Field data provided by a Canadian pipeline 

operator is also used to validate the proposed integrated approach. At the end, the 
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examples and case studies in this paper demonstrate the limitations of the existing 

physics-based method, and the promise of the proposed integrated approach for 

achieving accurate fatigue crack growth prediction as ILI tool measurement uncertainty 

further improves. Enbridge recently announced a multi-year collaboration agreement 

with NDT Global, to build a new generation of improved crack ILI to further improve 

measurement uncertainty [32]. The developed methods can contribute to a more 

efficient pipeline integrity management approach for managing crack threats by 

reducing unnecessary maintenance work and downtime.  

 

Disclaimer: Any information or data pertaining to Enbridge Employee Services Canada 

Inc., or its affiliates, contained in this paper was provided to the authors with the express 

permission of Enbridge Employee Services Canada Inc., or its affiliates.  However, this 

paper is the work and opinion of the authors and is not to be interpreted as Enbridge 

Employee Services Canada Inc., or its affiliates’, position or procedure regarding matters 

referred to in this paper.    Enbridge Employee Services Canada Inc. and its affiliates and 

their respective employees, officers, director and agents shall not be liable for any claims 

for loss, damage or costs, of any kind whatsoever, arising from the errors, inaccuracies or 

incompleteness of the information and data contained in this paper or for any loss, 

damage or costs that may arise from the use or interpretation of this paper.  
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