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Abstract - Uncertainty quantification in damage growth is critical in equipment health prognosis 

and condition based maintenance. Integrated health prognostics has recently drawn growing 

attention due to its capability to produce more accurate predictions through integrating physical 

models and real-time condition monitoring data. In the existing literature, simulation is 

commonly used to account for the uncertainty in prognostics, which is inefficient. In this paper, 

instead of using simulation, a stochastic collocation approach is developed for efficient 

integrated gear health prognosis. Based on generalized polynomial chaos expansion, the 

approach is utilized to evaluate the uncertainty in gear remaining useful life prediction as well as 

the likelihood function in Bayesian inference. The collected condition monitoring data is 

incorporated into prognostics via Bayesian inference to update the distributions of uncertainties 

at certain inspection times. Accordingly, the distribution of the remaining useful life is updated. 

Comparing to conventional simulation methods, the stochastic collocation approach is much 

more efficient, and is capable of dealing with high dimensional probability space. An example is 

used to demonstrate the effectiveness and efficiency of the proposed approach. 
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1. Introduction 

 

To maintain the reliability and performance of mechanical components and systems, 

condition based maintenance (CBM), including on-line diagnostics, prognostics and maintenance 

optimization, play a critical role [1,2,3]. Unexpected failures will cause unexpected downtime, 

which can interrupt normal production, delay commitment and undermine brand reputation.  The 

objective of CBM is to optimize maintenance schedule for avoiding unexpected failures and 

reducing overall maintenance cost. Prediction of when the failure possibly arrives is an essential 

work in CBM and prognostics and health management (PHM). Health condition prediction is 

based on two components: one is the current condition carried by the sensor data, and the other is 

the prognostics model, being physical or data-driven. Gear is a basic component in transmission 

systems, such as those in automotive engines and helicopters. This paper focuses on the 

remaining useful life prediction of gears with crack at the tooth root due to cyclic loading.  

Lots of research work has been done in health prognosis methods for damage propagation 

[4,5]. In those papers, the parameters appearing in the physical models are treated as constants. 

However, the fatigue degradation process is accompanied with various sources of uncertainties, 

which can result in failure time differences among different units. For example, due to material 

variation, experimental errors, measurement inaccuracy as well as variations of operating 

condition, failure time should take the form of statistical distribution rather than a single value. 

So the prognosis of equipment future condition or component failure time should be studied in a 

probabilistic framework. The quantification, propagation and updating of uncertainty are the 

main tasks in probabilistic prognostics. In the paper by Zhao et al. [6], an integrated gear 

prognosis method was developed by utilizing both gear physical models and real-time condition 

monitoring data in an integrated way. The integrated prognosis identified the distributions of the 

material and model uncertainties for the current specific unit being monitored by fusing the 

condition monitoring data using Bayesian inference.  

Monte Carlo (MC) simulation and its variants are the commonly used tools to account for 

these uncertainty factors. Kacprzynski et al. [7] presented a gear prognosis tool using 3D gear 

finite element modeling and considered various uncertainty factors in damage propagation, while 

the condition monitoring information was used to estimate the current crack length with 

uncertainty. Coppe et al. [8] used MC simulation to calculate the proposed likelihood function to 
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update the distribution of material parameters. The two parameters were considered separately, 

which means only one uncertainty factor was considered when using MC simulation. In the 

paper by Sankararaman et al. [9], the global sensitivity analysis was applied in order to select 

only a few effective uncertain parameters, e.g., three parameters were selected in the numerical 

example, among all the possible parameters for calibration. The main reason is that the multi-

dimensional calibration procedure is computationally intensive using MC analysis. Typically a 

large number of executions of deterministic problem solving are needed as MC solution 

converges relative slowly. Furthermore, for a complex system where the solution of a single 

deterministic realization is very time-consuming, MC becomes impractical due to prohibitive 

computation time. 

Generalized polynomial chaos (gPC) is a method to analyze and quantify the effect of 

random input parameters in the process governed by the ordinary/partial differential equations. 

Built on a rigorous mathematics theory, gPC has several preferable merits in dealing with 

uncertainty quantification which makes this technique significantly attractive. With gPC, the 

numerical stochastic solution could be expressed as the expansion of orthogonal polynomials 

which are functions of the random input variables. gPC expansion is essentially a spectral 

representation in random space, and exhibits fast convergence when the expanded function 

depends smoothly on the random parameters [10]. By selecting the optimal type of orthogonal 

polynomial, the convergence rate could become exponential if the function is analytic, i.e., 

infinitely smooth [11].  

A large number of research papers have been published, presenting the computational 

efficiency and accuracy provided by gPC technique in many fields, most of which are nonlinear 

problems with high dimensional uncertainties, e.g. fluid dynamics [12-14, 21-22], chemistry 

reaction [15], solid mechanics [16-17], etc. For highly-nonlinear problem, a sufficiently high 

order polynomial space is required, as reported in Ref. [18-19].  

The quantities to be solved in gPC are those coefficients of the polynomial expansion. There 

are two basic methods to calculate them: stochastic Galerkin (SG) method and stochastic 

collocation (SC) method. SG method is well developed to solve the stochastic problems. Reagan 

et al. [20] and Najm et al. [15] investigated uncertainty quantification in chemical systems using 

SG method. In computational fluid dynamics, SG method has many applications as well [21,22]. 

However, SG method reformulates the stochastic problem into a larger coupled set of equations 
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of coefficients, and thus the computational work is still cumbersome. Furthermore, when the 

original problem takes highly complex and nonlinear form, the derivation of the gPC Galerkin 

model can be nontrivial, sometimes impossible. Due to these limitations of SG method, there has 

been a growing interest in another class of method known as SC method. SC method has the 

power to take advantage of both SG method and MC method to achieve high resolution from 

polynomial approximations in random spaces with the ease of implementation [23]. It is widely 

acknowledged that SC based gPC collaborated with sparse grid has appealing capability in 

handling high-dimensional random spaces. With the dimension increases, sparse grid algorithm 

is able to mitigate “curse of dimensionality” to a large degree, and meanwhile maintain the 

numerical integration accuracy inherited from 1D integration rule as much as possible. A 

numerical algorithm based on SC for establishing the dependency of observables on random 

parameters was proposed by Xiu [10]. gPC also serves as an efficient way to solve Bayesian 

inference problem where the likelihood function was defined as the Gaussian measurement error 

[24]. In the present paper, we aim to develop an efficient integrated approach for gear health 

prognosis based on gPC SC method. 

In this paper, based on the integrated prognostics framework proposed in [6], a stochastic 

collocation approach is developed for efficient integrated gear health prognosis. Instead of using 

simulation, stochastic collocation methods based on gPC are utilized to evaluate gear remaining 

useful life prediction uncertainty as well as the likelihood function in Bayesian inference. More 

specifically, in Bayesian inference, where the likelihood function is defined as function of not 

only Gaussian measurement error but also random model inputs, the stochastic collocation 

method is used to calculate the crack distribution with uncertainty induced by random model 

inputs. Furthermore, the stochastic collocation method is also used to calculate failure time 

distribution by dealing with uncertainty propagation through Paris’ law. The uncertain 

parameters in Paris’ law are modeled as random variables and the crack propagation process 

based on Paris’ law is treated as stochastic. The failure time of a cracked gear is expressed as the 

summation of a series of orthogonal polynomials with random variables. Fig. 1 sketches the core 

structure of the proposed approach.  
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Fig.1. Structure of the proposed prognosis approach based on gPC stochastic collocation 

 

The remainder of this paper is organized as follows. The fundamentals of generalized 

polynomial expansion and the stochastic collocation method are presented in Section 2. The 

framework of integrated gear prognosis method is briefly introduced in Section 3. The 

application of gPC stochastic collocation in the integrated gear prognosis framework is discussed 

in details in Section 4, which as well includes the elaborate explanation of Fig.1. Section 5 

presents an example to demonstrate the efficiency and effectiveness of the proposed approach for 

uncertainty quantification. Conclusions are given in Section 6. 
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FE: finite element 

HPSTC: highest point of single tooth contact 

 

 

2. Fundamentals of gPC stochastic collocation method 

In this section, the fundamentals of gPC expansion and stochastic collocation method on 

sparse grid are briefly presented. The gPC expansion can be considered as an efficient 

approximation to stochastic processes and random variables. To introduce this technique and 

further investigate the approximation properties, a probability space, (Ω, ℱ, 𝒫 ), needs to be 

properly defined, where Ω is the event space, ℱ  is the 𝜎 -field of Ω, and 𝒫  is a probability 

measure.  

2.1 gPC expansion 

Let 𝑌 = (𝑌1, ⋯ , 𝑌𝑑) be a d-variate random vector in the probability space (Ω, ℱ, 𝒫), with the 

cumulative distribution function 𝐹𝑌(𝑦)  and the support Γ𝑌 . Assume that the components 

𝑌1, ⋯ , 𝑌𝑑  are mutually independently identical random variables, which implies 𝐹𝑌(𝑦) =

∏ 𝐹𝑌𝑖(𝑦𝑖)
𝑑
𝑖=1 .  

Starting with one-dimensional case, let ℙ𝑁(𝑌𝑖) be univariate polynomial space with degree 

up to 𝑁 , and {𝜙𝑘(𝑌𝑖), 𝑘 = 0,⋯ ,𝑁} ⊂ ℙ𝑁(𝑌𝑖) . We call {𝜙𝑘(𝑌𝑖), 𝑘 = 0,⋯ ,𝑁}  univariate gPC 

basis functions in ℙ𝑁(𝑌𝑖) if they satisfy the following orthogonality condition 

𝔼[𝜙𝑚(𝑌𝑖)𝜙𝑛(𝑌𝑖)] = ∫𝜙𝑚(𝑦)𝜙𝑛(𝑦)𝑑𝐹𝑌𝑖(𝑦) = 𝛾𝑚𝛿𝑚𝑛 , 0 ≤ 𝑚, 𝑛 ≤ 𝑁,               (2.1) 

where 

𝛾𝑚 = 𝔼[𝜙𝑚
2(𝑌𝑖)] = ∫𝜙𝑚

2(𝑦)𝑑𝐹𝑌𝑖(𝑦)                                         (2.2)   

is a normalized factors and 𝛿𝑚𝑛 is Kronecker delta function. The type of orthogonal polynomial 

is determined by the type of random variable distribution such that the orthogonality will hold 

with respect to the associated weight function. Then, let 𝒊 = (𝑖1,⋯ , 𝑖𝑑) be a multi-index with 

|𝒊| = 𝑖1+⋯+ 𝑖𝑑. The 𝑑-variate 𝑁th-degree gPC basis functions are defined as 

Φ𝒊(𝑌) = 𝜙𝑖1(𝑌1)⋯𝜙𝑖𝑑(𝑌𝑑),     0 ≤ |𝒊| ≤ 𝑁 .                                   (2.3) 

which are the basis functions of multivariate polynomial space  
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ℙ𝑁
𝑑 ≡ {𝑝:Γ𝑌 → ℝ | 𝑝(𝑌) = ∑ 𝑐𝑖Φ𝒊(𝑌)|𝒊|≤𝑁 } .                                 (2.4) 

It follows directly from (2.1) and (2.3) that, 

𝔼[Φ𝒊(𝑌)Φ𝒋(𝑌)] = ∫Φ𝒊(𝑦)Φ𝒋(𝑦)𝑑𝐹𝑌(𝑦) = 𝛾𝒊𝛿𝒊𝒋    , 0 ≤ 𝑚, 𝑛 ≤ 𝑁                  (2.5) 

where 𝛾𝒊 is a multiplication of one-dimensional normalized factors and 𝛿𝒊𝒋 is d-variate Kronecker 

delta function. 

To address the approximation property, define the weighted 𝐿2 space:  

𝐿𝑑𝐹𝑌
2 (Γ𝑌) ≡ {𝑓:Γ𝑌 → ℝ | 𝔼[𝑓2(𝑌)] = ∫ 𝑓2(𝑦)𝑑𝐹𝑌(𝑦)Γ𝑌

< ∞},                        (2.6) 

the inner product 

< 𝑤, 𝑣 >𝐿𝑑𝐹𝑌
2 = ∫ 𝑤(𝑦)𝑣(𝑦)𝑑𝐹𝑌(𝑦)Γ𝑌

,                                           (2.7) 

and the norm 

‖𝑤‖𝐿𝑑𝐹𝑌
2 = (∫ 𝑤2(𝑦)𝑑𝐹𝑌(𝑦)Γ𝑌

)
1

2 .                                            (2.8) 

Based on the gPC basis functions in polynomial space ℙ𝑁
𝑑  and the weighted 𝐿2 space defined 

above, from classical approximation theory, the following conclusion holds: 

For any 𝑓 ∈  𝐿𝑑𝐹𝑌
2 (𝛤𝑌), define 𝑁th-degree gPC orthogonal projection as 

𝑃𝑁𝑓 = ∑ 𝑓𝒊|𝒊|≤𝑁 𝛷𝒊(𝑌)                                                       (2.9) 

𝑓𝒊 =
1

𝛾𝒊
 ∫ 𝑓(𝑦)𝛷𝒊(𝑦) 𝑑𝐹𝑌(𝑦),     𝛾𝒊 = 𝛾𝑖1⋯𝛾𝑖𝑑  .                                 (2.10) 

Then  

‖𝑓 − 𝑃𝑁𝑓‖𝐿𝑑𝐹𝑌
2 → 0,     𝑁 → ∞  .                                         (2.11) 

That is to say, the function of random variables can be approximated in the form of orthogonal 

polynomial expansion. The convergence rate depends on the regularity of 𝑓  and the type of 

orthogonal polynomials 𝛷𝒊(𝑌). This kind of convergence is referred to as spectral convergence 

and we refer this expansion error due to the truncated degree of polynomial space as gPC 

projection error. More details of this section could be found in [25]. 
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2.2 Collocation method on sparse grid 

The continuous and discrete random variables share the similar concepts and definitions in 

Section 2.1, while for the discrete case, the orthogonality is represented by summation instead of 

integral. From here on, consider the continuous random vector 𝑝 = (𝑝1, ⋯ , 𝑝𝑑) with density 

function 𝜌(𝑝) = ∏ 𝜌𝑖(𝑝𝑖)
𝑑
𝑖=1 . Note that the normalized factors in (2.2) can be reduced to 1 by 

normalizing the polynomials in the integration. Thus, the coefficients 𝑓 in (2.10) can be written 

as 

𝑓𝒊 = ∫𝑓(𝑝)Φ𝒊(𝑝) 𝜌(𝑝)𝑑𝑝 .                                                  (2.12) 

The numerical integration rules can provide the approximation to (2.12) using pre-selected points 

𝑝𝑗 = (𝑝1
𝑗
, ⋯ , 𝑝𝑑

𝑗
) and the associated weights 𝛼𝑗, 𝑗 = 1,⋯ , 𝑄, such that 

𝑓𝒊 = ∑ 𝑓(𝑝𝑗)𝛼𝑗𝑄
𝑗=1 → 𝑓𝒊, 𝑄 → ∞ .                                          (2.13) 

Define 

  𝐼𝑁𝑓 = ∑ 𝑓𝒊|𝒊|≤𝑁 𝛷𝒊(𝑌).                                                       (2.14) 

The difference between 𝑃𝑁𝑓 and 𝐼𝑁𝑓 is resulted from the numerical integration in coefficient 

calculation (2.13), and the consequent error ‖𝑃𝑁𝑓 − 𝐼𝑁𝑓‖𝐿𝑑𝐹𝑌
2  is called aliasing error.  

An important work in collocation method is the selection of nodal set. In one-dimensional 

case, this problem is readily solved using available numerical integration rules, such as Gaussian 

quadrature rule and Clenshaw-Curtis rule. The natural generalization to multi-dimensional case 

is to use tensor products. However, the number of points in tensor product will grow rapidly as 

the dimension increases, which is known as “curse of dimensionality”. When high dimensional 

uncertainties are considered simultaneously in stochastic processes, the computational burden 

will be very heavy using tensor products collocation.  

Sparse grid collocation provides a useful tool to solve the stochastic problem in high 

dimensional random space. Smolyak algorithm [26] can construct the nodal set for high 

dimensional integration which consists of an algebraic sum of low-order tensor products based 

on one-dimensional quadrature rule in such a way that an integration property for one dimension 
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is preserved for high dimensions as much as possible [25]. Such construction will result in a 

great reduction of nodes for integration compared to tensor products. 

Define the integration operator ℒ𝑖[𝑓] in the 𝑖-th dimension     

ℒ𝑖[𝑓] ≡ ∑ 𝑓(𝑝𝑖
𝑗
)𝑄

𝑗=1 𝛼𝑖
𝑗
,                                                       (2.15) 

then the Smolyak algorithm gives the following multi-dimensional operator 

ℒ[𝑓] = ∑ (−1)𝐾−𝑑−|𝒊| ∙ (
𝑑 − 1

𝑑 − 𝐾 + |𝒊|
)𝐾−𝑑≤|𝒊|≤𝐾−1 ∙ (ℒ𝑖1⨂⋯⨂ℒ𝑖𝑑).               (2.16) 

This operator can calculate the numerical integration (2.9) while preserving the one dimensional 

integration exactness as much as possible with much fewer nodes than tensor products.  

 

3. Integrated prognostics method for gears 

 

This section provides a brief review on the integrated prognostics method proposed in [6] for 

cracked gear life prediction. Fig. 2 shows the framework of the approach, which “integrates” 

model-based part in the left of the dash line and data-driven part in the right. Because the crack 

occurrence will have impact on the stiffness of the gear, further on the dynamic load on the gear, 

the dynamic model is necessary to determine the actual dynamic load on gear tooth at different 

crack lengths. The stiffness of a cracked tooth was calculated using a potential energy method. It 

is important to account for the load change due to crack since the loading condition determines 

the stress intensity factor to a large degree, which is the main stress factor appearing in the 

degradation model, described by Paris’ law. The gear finite element model takes the calculated 

maximum dynamic load in one loading cycle period as input, and the outputs are the mode I and 

mode II stress intensity factors (SIFs), denoted by KI and KII respectively, at the gear tooth root. 

The crack propagates in the direction determined by the ratio of KI and KII. With the current 

crack length, the failure time and the remaining useful life (RUL) distributions can be predicted 

by propagating the uncertainties through the degradation model. Refer to [6] for more details on 

the gear stress analysis using finite element model and the dynamic load determination. The 

main function of the data-driven part is to estimate the crack length (with uncertainty) based on 

the condition monitoring data measured by sensors. The current measured crack lengths at 
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certain inspection times will serve as the observations to update the distributions of uncertainties 

to achieve more accurate RUL prediction, based on the refined parameter and condition 

estimations for the specific unit. The Bayesian updating method is used in this work to achieve 

this purpose.  

 

 

Fig. 2. Framework of the integrated prognostic approach [6] 

 

In the integrated prognostics approach, uncertainties exist in both the model-based part and 

the data-driven part, which could be the uncertainties in material, loading conditions, 

measurements inaccuracy, etc. And these uncertainties are propagated to the predicted failure 

time. To account for the effect of the uncertainties in RUL, which is very meaningful regarding 

maintenance decision making, an approach is needed to quantify them in a statistical way. In 

addition, the ways that these uncertainties influence the RUL distribution may be different, and 

thus it will be helpful to develop an approach to distinguish their roles. 

 

4. The proposed gPC stochastic collocation method for uncertainty 

quantification in integrated gear prognosis  

 
This section will elaborate the proposed stochastic collocation method for uncertainty 

quantification and propagation in the above-mentioned integrated gear prognosis framework. 

First the uncertainty sources involved in this study as well as their roles in the prognosis 

approach are defined. Then the stochastic collocation method to predict the RUL at a given 

inspection instant is addressed accounting for these uncertainties based on discretized Paris’ law. 
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Whenever the new observation data is available, it will be taken into Bayesian inference to adjust 

the statistical properties of those uncertainties so that the distribution of RUL will be updated. 

Through Bayesian inference, the degree of uncertainty about these random parameters will be 

reduced, and their statistical properties are supposed to converge to the actual ones. The 

prediction of RUL is expected to be more accurate after adjusting the parameter distributions 

each time.   

 

4.1 Modeling of uncertainty sources 

 

In this study, it is assumed that all of the uncertainties considered are categorized into three 

main sources, which are model inputs uncertainty, measurement uncertainty and model 

uncertainty. 

Paris’ law and its evolution forms [27,28,29] are widely used physical models to describe the 

crack propagation process. When the associated inputs in the model are treated as random 

variables, the Paris’ law becomes a stochastic equation. Denote the set of all these random inputs 

as 𝚯, appearing in Paris’ model, and divide them into two subsets: updating-uncertainty 𝐔, and 

non-updating-uncertainty 𝑹. The distributions of uncertainties belonging to 𝐔 are unknown, and 

only the priors may be assumed. They will be updated through Bayesian framework using the 

measured condition data, in order to narrow down the prior distributions and make them 

converge or approximate to the real distributions. While those uncertainties belonging to 𝑹 will 

take well-known distributions, and they are treated as contributors to the likelihood function in 

the Bayesian method. So this type of uncertainties is named as likelihood-uncertainty in this 

paper. Both the likelihood-uncertainties and updating-uncertainties contribute to the RUL 

distribution. Besides likelihood-uncertainty, another contributor to likelihood function is the 

measurement error. 

Measurement error 𝑒 is defined as the error between the real crack length and the measured 

length, which is due to sensor precision limits as well as inaccuracy caused by crack estimation 

methods. It is assumed that the measurement 𝑒 = 𝑎𝑟𝑒𝑎𝑙 − 𝑎𝑚𝑒𝑎 follows normal distribution with 

standard deviation 𝜏, 

𝑒 ~ 𝑁(0, 𝜏2) 

Under the assumption that no other uncertainties are involved, it is equivalent to say that the 
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measured crack length 𝑎𝑚𝑒𝑎  takes normal distribution with the real crack length 𝑎𝑟𝑒𝑎𝑙  as the 

mean and the 𝜏 as the standard deviation: 

𝑎𝑚𝑒𝑎~N(𝑎
𝑟𝑒𝑎𝑙, 𝜏2) .                                                   (4.1) 

A number of existing different physical models to describe the crack propagation process 

imply that there is no perfect model for all circumstances. The models are selected so as to meet 

the required accuracy while considering the complexity. In this paper, the simple Paris’ law is 

adopted without considering other possible factors, such as crack closure retard, plasticity, 

fracture toughness, load ratio etc. The authors in [30] assigned the reason of randomness nature 

of the crack growth rate to the random unpredictable resistance in material’s microstructure. All 

the above uncertain factors motivate the stochastic modelling of crack propagation. Yang et al. 

[31] proposed a model by multiplying a stochastic term 𝜀  to the deterministic crack growth 

model (4.2) after investigating the crack propagation in the fastener holes of aircrafts under 

spectrum loading, and experiments were also conducted to validate this model. The random term 

𝜀 was assumed to be a lognormally distributed random variable and “accounts for the crack 

growth rate variability, such as the variabilities due to material cracking resistance, crack 

geometry, crack modeling, spectrum loading, etc.” [32]. This model has the simplest stochastic 

form and produced conservative reasonable results. So many related work adopted this 

multiplicative form of model error for crack propagation study in other applications 

[9,30,32,33,34]. The statistical property of 𝜀 could be acquired by least-square fitting of the Paris’ 

law in a log-log scale using the information of crack lengths and associated cycles obtained in 

the fatigue crack propagation experiments, as reported in [33,35,36]. The experiment data 

showed the residual 𝜁  in the regression model has Gaussian distribution, and thus, the 

distribution of 𝜀  could be obtained by noticing the relationship of 𝜀 = exp (𝜁) . After this 

modification, Paris’ law can have the following form  

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 𝜀.                                                        (4.2) 

In a word, the uncertainty considered in this paper can be categorized as follows:  

{
 
 

 
 measurement error 𝑒

model error 𝜀

Random model inputs {
updating uncertainty 𝑼

non − updating uncertainty 𝑹 

. 

As for the problem that among all the random inputs involved in the physical model, which 
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belong to which subset is a matter to be decided according to the specific application.  

 

4.2 Remaining useful life prediction 

 

The remaining useful life prediction is performed at every inspection point when the current 

crack length is estimated. At one of such points t, suppose the observed current crack length is 𝑎𝑡. 

The crack will propagate according to the Paris’ law until it reaches the critical length 𝑎𝐶, when 

the gear is considered failed.   

By exchanging the position of differentiation, the modified Paris’ law considering model 

error is written in Equation (4.3), where ∆𝐾 represents the range of the stress intensity factor, 

which is an essential factor of the stress field near crack tip and generally obtained by finite 

element analysis. It could be affected by various factors. However, in this paper, it is considered 

as a function of crack length and load only which was written as ∆𝐾(𝑎). When the FE is used to 

calculate this relationship, the dynamic load is a function of crack length too. 

𝑑𝑁

𝑑𝑎
=

1

𝐶(∆𝐾(𝑎))𝑚𝜀
                                                          (4.3) 

Let the current inspection cycle be 𝑁𝑡 and the crack increment be ∆𝑎. The modified Paris’ law is 

discretized by finite difference method: 

∆𝑁𝑖+1 = 𝑁𝑖+1 − 𝑁𝑖 = ∆𝑎 [𝐶(∆𝐾(𝑎𝑖))
𝑚
𝜀]
−1

, 𝑖 = 𝑡, 𝑡 + 1,⋯.                        (4.4) 

The summation ∑ ∆𝑁𝑖, 𝑖 = 𝑡, 𝑡 + 1, ⋯ from the current crack length at inspection cycle 𝑁𝑡 until the 

critical length 𝑎𝐶 is the total remaining useful cycles, which is the RUL we are interested in. The 

entire failure time could be obtained by 𝑁𝑡 + ∑ ∆𝑁𝑖, 𝑖 = 𝑡, 𝑡 + 1, ⋯. 

The crack propagation itself is affected by various uncertainties, such as material, lubrication, 

speed, loading and damage initial conditions. All of the potential factors have the representations 

in Paris’ law or other physical models, which are considered as stochastic differential equations 

governing the crack propagation process. The RUL distribution is determined by this stochastic 

process due to various sources of uncertainty. When more uncertainty factors are effectively 

considered, typically the prediction will be more accurate. gPC stochastic collocation method 

with Smolyak algorithm is capable of dealing with high dimensional random space with fast 

convergence rate. So instead of using Monte Carlo simulation to quantify the uncertainty in the 

predicted RUL, a gPC stochastic collocation method is to be presented here. 
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We parameterize the probability space by finding the finite set of uncertainty factors in the 

gear health degradation. The random parameters in this set are denoted by 𝝃 = (𝜉1,⋯ 𝜉𝑑) , 

assumed to be independently and identically distributed (iid). The density function can be written 

as 𝜌(𝝃) = ∏ 𝜌𝑖(𝜉𝑖)
𝑑
𝑖=1 . Corresponding to the type of distribution, {Φ𝒊(𝝃) ∈ ℙ𝑁

𝑑 , 0 ≤ |𝒊| ≤ 𝑁} 

are the basis orthorgonal polynomials. Denote the failure time by 𝑇, which is the quantity of 

interest. 𝑇 is a function of these random parameters 𝝃 through the Paris’ law, 

𝑇 = 𝑆(𝑎(𝝃)) = 𝑇(𝝃).                                                      (4.5) 

𝑇 is the loading cycles when the crack length reaches the critical length.  

Firstly, nodal set is selected using Smolyak algorithm, which is  {𝜉𝑗 ,   𝑗 = 1,⋯ , 𝑄}. Based on 

the proper integration rule, the associated weights 𝛼𝑗 , 𝑗 = 1,⋯ , 𝑄, are also available. Secondly, 

the failure times at these nodes are obtained by propagating the crack through Paris’ law in a 

deterministic way. Denote them as 𝑇̃𝑗 = 𝑇(𝜉𝑗), 𝑗 = 1,⋯ , 𝑄. After that, we use the truncated 𝑁-

th degree of gPC expansion, 𝑇𝑁 = 𝑃𝑁𝑇, to approximate 𝑇, 

𝑇𝑁 = ∑ 𝜔̂𝑙
𝑀
𝑙=1 Φ𝑙(𝝃),                                                         (4.6) 

𝑇𝑁 → 𝑇      as      𝑀 → ∞.                                                     (4.7) 

From (2.7), we have 

𝜔̂𝑙 = ∫ 𝑇(𝝃)
Γ

Φ𝑙(𝝃)𝜌(𝝃) d𝝃.                                                (4.8) 

Based on (2.10), numerical integration could be used to calculate 𝜔̃𝑙
𝑁 to approximate 𝜔̂𝑙,  

𝜔̃𝑙
𝑁 = ∑ 𝑇̃𝑗 ∙𝑄

𝑙=1 Φ𝑙(𝜉
𝑗) ∙ 𝛼𝑗 ,                                                 (4.9) 

𝜔̃𝑙
𝑁 → 𝜔̂𝑙       as      𝑄 → ∞.                                              (4.10) 

Finally, we replace 𝜔̂𝑙 in (3.3) by 𝜔̃𝑙
𝑁, obtaining 

𝐼𝑁𝑇 = 𝑇̅𝑁 = ∑ 𝜔̃𝑙
𝑁𝑀

𝑙=1 Φ𝑙(𝝃),                                              (4.11) 

𝑇̅𝑁 → 𝑇𝑁      as      𝑄 → ∞.                                                (4.12) 

Through the triangular inequality involving projection error and the aliasing error, 𝑇̅𝑁  will 

converge to 𝑇, which is guaranteed by (4.7) and (4.12). 𝑇̅𝑁  can be close enough to 𝑇 to the 

required degree as the order of polynomial and the number of nodes for integration increases. If 
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the error of numerically solving 𝑇 is also considered, the approximation is still valid as long as 

such numerical method gives convergent solution to the deterministic problem. The idea of the 

proof can be found in [10]. The result obtained by the proposed approach is an approximate 

solution in the form of polynomial expansion with respect to the standard random variables. 

Comparing to Monte Carlo sampling, two merits of the new approach are distinct. One is the 

reduction of computing time because the executions of the deterministic problem, say, Paris’ law 

equation here, are needed only at the selected nodes in the sparse grid. The other merit is that the 

post-processing work is easy to do. As we can see, the failure time is represented as polynomial 

expansion with standard random variables. Evaluation of polynomials is a trivial work, and thus 

the density function of the interested random quantity and the associated moments can be 

obtained in a very efficient fashion.    

4.3  Prediction updating using Bayesian method 

The appealing feature of integrated prognostics is the ability to incorporate condition 

monitoring data into prediction. These data carries specific valuable health condition information 

for a specific gear under specific testing environment. The intelligence brought in by the data 

creates an opportunity to adjust the physical model parameters for the current gear being 

monitored, and to make the RUL prediction more accurate and more distinguished from other 

gears. As we know, for a specific gear, the distributions of some uncertainty factors should be 

narrow or even a deterministic value, such as the material uncertainty. For the gear population, 

though, the underlying uncertainty results from manufacturing processes, monitoring process and 

operating environment. So the distributions of uncertain parameters associated with the gear 

population should be wider than those for specific gear. With the real condition data specific to 

the gear under monitoring, we should be able to reduce the uncertainty in these parameters. 

Bayesian inference is a commonly used tool to assimilate the data to enhance the possibility of 

existence of truth, and will be used in this work to update the distributions of the uncertainties.  

To describe the general application of gPC stochastic collocation method in integrating new 

observations of current health condition into health prognosis through the Bayesian inference, as 

mentioned in Section 4.1, we divide the set of all potential random model inputs, 𝚯, appearing in 

Paris’ model into two subsets: updating-uncertainty 𝑼, and non-updating-uncertainty (likelihood-

uncertainty) 𝑹. The health condition data in the gear crack propagation is the crack length at 

inspection time. Denote the random variable of crack length as 𝑎, the updating-uncertainty vector 
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as 𝒖, and likelihood-uncertainty vector as r. The formula of Bayesian rule is: 

𝑓𝑝𝑜𝑠𝑡(𝒖|𝑎) =
𝐿(𝑎|𝒖)𝑓𝑝𝑟𝑖𝑜𝑟(𝒖)

∫𝐿(𝑎|𝒖)𝑓𝑝𝑟𝑖𝑜𝑟(𝒖)𝑑𝒖
 ,                                              (4.13) 

where 𝐿(𝑎|𝒖) is the likelihood function contributed by the measurement error and likelihood-

uncertainties. The purpose of Bayesian inference here is to update the distributions of 

uncertainties in 𝑼 based on the crack measurements. 

Given a fixed value of 𝒖, the likelihood to observe a crack length at a given inspection cycles 

depends on two factors: model error 𝜀, measurement error 𝑒 and likelihood-uncertainty r.    

Assume that the increment number of cycles is ∆𝑁 and the inspection time interval is 𝜆∆𝑁. 

In such a period, the crack propagates following the discretized Paris’ law in (4.14),   

{
𝑎𝑖+1 = 𝑎((𝑖 + 1)∆𝑁) = 𝑎(𝑖∆𝑁) + (∆𝑁)𝐶[∆𝐾(𝑎(𝑖∆𝑁))]

𝑚
𝜀,   𝑖 = 0,1,⋯ , 𝜆 − 1

𝑎(0) = 𝑎𝑐𝑢𝑟𝑟_𝑐𝑦𝑐𝑙𝑒
      (4.14) 

At the end of the period, 𝑎𝑗𝜆, 𝑗 = 1,2,⋯, obtained by (4.14) is a random variable due to the 

influence of randomness in likelihood-uncertainties r as well as the model error 𝜀. For example, 

beginning with the “current cycle”, the crack length at next inspection time 𝑡 = 𝜆∆𝑁, i.e., when 

𝑗=1, is predicted by (4.14) to be 𝑎𝑛𝑒𝑥𝑡_𝑐𝑦𝑐𝑙𝑒 = 𝑎𝜆 = 𝑎(𝜆∆𝑁). Here, since the randomness of 

model error 𝜀 is embodied in every small discrete step in (4.14), the total accumulated effect of 𝜀 

on the crack length estimation at certain inspection time, relatively long compared to cycles 

increment, mainly relies on its mean because of central limit theory. Hence, without much loss of 

accuracy, we assume that the distribution of 𝑎𝑗𝜆 is only affected by likelihood-uncertainties even 

though the realization of 𝜀  in each propagation step in (4.14) is sampled from its known 

distribution. Let the density function of 𝑎𝑗𝜆 be ℎ𝑗(𝑎), which also can be regarded as the crack 

distribution at inspection time 𝑗𝜆∆𝑁 due to non-updating-uncertainties 𝑹 in the model inputs. To 

avoid confusion, we use a new random variable 𝑎𝑗
𝑅 instead of 𝑎𝑗𝜆 to represent the crack length at 

inspection time 𝑗𝜆∆𝑁 due to non-updating-uncertainties ℛ.  

Furthermore, considering the measurement error, the observed crack length at such 

inspection cycle 𝑗𝜆∆𝑁 should have the following normal distribution: 

𝑎𝑗
𝑜𝑏𝑠~N (𝑎𝑗

𝑅 , 𝜏2),   𝑗 = 1,2,⋯ .                                       (4.15) 

Let the density function of the observed crack length due to measurement error, i.e., N (𝑎𝑗
𝑅 , 𝜏2), 

be 𝑔𝑗(𝑎). Then the likelihood to observe the crack length 𝑎𝑗
𝑜𝑏𝑠 = 𝑎𝑗_0

𝑜𝑏𝑠 at inspection time 𝑗 can be 



17 

 

formulated as 

𝐿(𝑎𝑗
𝑜𝑏𝑠 = 𝑎𝑗_0

𝑜𝑏𝑠 |𝒖) =  ∫𝑔𝑗(𝑎|𝑎𝑗
𝑅 = 𝑎𝑗_0

𝑜𝑏𝑠) ℎ𝑗(𝑎) d𝑎.                      (4.16) 

This formulation of the likelihood function accounts for the effects of both non-updating-

uncertainties and the measurement error on the observations. In the likelihood function, 

𝑔𝑗(𝑎|𝑎𝑗
𝑅 = 𝑎𝑗_0

𝑜𝑏𝑠)  is known. However ℎ𝑗(𝑎)  is unknown, and can only be obtained through 

uncertainty propagation. If we have high dimensional uncertainties in the set of 𝑹, getting ℎ𝑗(𝑎)  

is a time-consuming task using Monte Carlo simulation. Thus, to improve the computation 

efficiency, we employ gPC stochastic collocation method to replace Monte Carlo simulation to 

perform this task. Suppose the likelihood uncertainties in 𝑹  to be iid random variables 𝒓 =

(𝑟1,⋯ , 𝑟𝐷). The crack length 𝑎𝑗
𝑅  at inspection time 𝑗 is a random variable due to 𝒓. It can be 

approximated by orthogonal polynomial expansion in ℙ𝑁
𝑑  , 

𝑎𝑗
𝑅 = ∑ μ ̃𝐢jΦ𝒊

(𝒓)𝒊≤𝑁 ,            𝑗 = 1,2,⋯                                 (4.17) 

μ ̃𝐢j = ∑ 𝑎𝑗
𝑅(𝒓𝑙)Φ𝒊(𝒓)𝛼

𝑙𝑄
𝑙=1 ,           𝑙 = 1,2,⋯ , 𝑄                         (4.18) 

where 𝒓𝑙 is the pre-selected nodes and 𝛼𝑙 are the associated weights for integration. 

As discussed above, the likelihood function can be computed. Using Bayesian inference as 

shown in (4.13), the distributions of uncertainty factors in the set of 𝑼 will be updated. With the 

updated distributions of parameters, the RUL from that inspection time can be calculated using 

gPC stochastic collocation method described in Section 4.2. 

The last problem needs to be addressed is how to determine the prior distributions of the 

updating uncertainties. First assuming that several historical paths of degradation data are 

available, which imply the population statistic characteristics, these real paths will be fitted to 

find the optimal values of the updating parameters in 𝑼 in a sense of least-square. The existing 

historical set containing 𝑁 degradation histories is denoted by 𝒫. Each path 𝒫𝑖 composes of 𝑀 

inspection time instances 𝑡𝑖
𝑗
, 𝑗 = 1,⋯ ,  𝑀  and the associated crack length 𝑎𝑖

𝑗_𝑜𝑏𝑠
 estimated at 

such inspections.  

𝒫 = {𝒫𝑖|, 𝑖 = 1,⋯ ,𝑁}                                                     (4.19) 

𝒫𝑖 = (𝑡𝑖
𝑗
, 𝑎𝑖

𝑗_𝑜𝑏𝑠
),   𝑗 = 1,⋯ ,  𝑀                                             (4.20) 

Next, applying Paris’ law to generate degradation paths 𝒫𝑖
′  with updating parameters 𝒖 , 

obtaining the approximate crack length 𝑎𝑖
𝑗_𝑎𝑝𝑝

(𝒖) at the inspection time 𝑡𝑖
𝑗
, 𝑗 = 1,⋯ ,  𝑀. 
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𝒫𝑖
′ = (𝑡𝑖

𝑗
, 𝑎𝑖

𝑗_𝑎𝑝𝑝
(𝒖)),   𝑗 = 1,⋯ ,  𝑀                                     (4.21) 

Define 𝑒𝑖
𝑗(𝒖) = 𝑎𝑖

𝑗_𝑜𝑏𝑠
− 𝑎𝑖

𝑗_𝑎𝑝𝑝(𝒖), then the optimal 𝒖𝑜𝑝
𝑖  is found to be such that 

∑(𝑒𝑖
𝑗
(𝒖𝑜𝑝

𝑖 ))2 ≤  ∑(𝑒𝑖
𝑗
(𝒖))2

𝑀

𝑗=1

𝑀

𝑗=1

,   ∀𝒖                                       (4.22) 

Lastly, prior distribution of 𝒖 will be determined by fitting these 𝒖𝑜𝑝
𝑖 ,  𝑖 = 1,⋯ ,𝑁. 

  

5. Example 

 

In this section, we present a numerical example on integrated gear prognosis using the 

proposed gPC stochastic collocation approach. The uncertainties considered include model error 

𝜀, measurement error 𝑒, and the two material random parameters in Paris’ law, 𝐶 and 𝑚. Other 

parameters appearing in the Paris’ law are treated as deterministic. Divide the random inputs 

appearing in Paris’ law into two subsets: 𝑹 = {𝐶}, 𝑼 = {𝑚}. The simulated crack propagation 

data, i.e., the degradation paths, serves as the observations during the operation of real gear 

system. In RUL prediction, 𝝃 = (𝐶,𝑚)  is taken to be the cause of life variation. All the 

uncertainties, including model error, measurement error as well as the two material random 

parameters, are considered in the degradation path generation. These degradation paths are 

partitioned into training set and test set. The training process is for obtaining prior for the 

updating uncertainty, while the testing process is for validating the proposed method.   

 

5.1 Introduction  

The FE model for gear with a crack at the root is built using software FRANC2D. Because of 

the geometrical symmetry of spur gear and the uniform loading distribution on the tooth width, 

two-dimensional FE model, consuming less computational work compared to 3D model, is able 

to meet the accuracy requirements. The gearbox parameters are the same as those we used in [6], 

so that we can compare the method proposed in this paper. And for easier access to those 

information in this paper, we present them again: Table 1 lists the material and geometry 

properties of this specific spur gear and the FE model with curved crack propagation path is 

shown in Fig. 3.   
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Table 1. Material properties and main geometry parameters [6]. 

Young’s 

modulus 

(Pa) 

Poisson’s  

ratio 

Module 

(mm) 

Diametral 

pitch 

(in-1) 

Base 

circle 

radius 

(mm) 

Outer 

circle 

(mm) 

Pressure 

angle 

(deg) 

Teeth 

No. 

2.068e11 0.3 3.2 8 28.34 33.3 20 19 

 

 

      Fig. 3.  2D FE model for spur gear tooth [6] 

 

The dynamic load on the contact points when the pair of teeth meshing with each other is 

calculated by a 6-DOF dynamic model. During a meshing period, it is the maximum dynamic 

load on the cracked tooth that is selected to apply on the associated contact point, which in this 

example, appears at the rotation angle of 13.89 degree. Through the FE analysis with the 

dynamic load calculated at different crack length, the history of stress intensity factor as a 

function of crack length is shown in Fig.4. Additionally, Fig. 4 includes the history of maximum 

dynamic load at each crack length. Polynomial curve fitting gives a continuous form to the SIF, 

which facilitates in solving the Paris’ equation numerically.   
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Fig. 4. Stress intensity factor at different crack lengths [6] 

 

When generating the degradation paths, material parameters 𝐶 and 𝑚 are sampled from the 

prescribed normal distributions, respectively. However, the model error 𝜀 is sampled from its 

assumed distribution in each propagation step. At every inspection time, crack length is 

simulated by Equation (4.14) and estimated by adding a random deviation sample of the 

measurement error 𝑒 to the simulated length. All these paths and the values of parameter 𝑚 in 

these paths are recorded. These values of 𝑚 are considered as the real values to generate specific 

degradation paths.  

To generate the simulated degradation paths, the following values and distributions for the 

parameters involved are assumed: 𝑚~N (1.4354, 0.22)  , 𝐶~N (9.12𝑒 − 11, (1𝑒 − 12)2) ,𝜏 =

0.15, 𝜀~Ln (0.8924, 0.2128)2. 

It is worth noting that here the uncertainty regarding 𝑚  is the distribution for the gear 

population, not for the specific gear being monitored. In this example, 10 degradation paths are 

generated according to Equation (4.14) until the critical crack length 𝑎𝑐, as shown in Fig. 5. 

Seven of them in blue consist of the training set, and the three remaining in bold magenta are for 

testing .  The selection of the two groups is random in theory while there is a underlying 

preference in this paper. That is, the paths bearing “m” which are far from the mean of prior have 
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priority to be selected in order to better show the capability of tuning parameters. In Fig. 5, the 

paths with the longest (path #1) and shortest (path #4) failure times are selected in test set. 

Besides, path #7 which has similar value of “m” as that in prior is also targeted to illustrate the 

stability of proposed method in an opposite perspective. 

Apart from validating the effectiveness of the proposed gPC collocation based prognostics 

method, which aims to produce correct RUL prediction using gPC technique, the computational 

efficiency of this proposed method is also demonstrated by comparing with Monte Carlo 

simulation. The results are shown in the next two subsections. 

  

 

Fig. 5. Ten degradation paths generated using prescribed parameters 

 

5.2 Results  

The 10 generated degradation paths with parameters assumed in Section 5.1 are summarized 

in Table 2. The failure times, real values of “m” generating the associated paths as well as the 

trained ones are shown in this table. The testing set consist of paths #1, #4 and #7. Normal 
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distribution is used to fit the other 7 paths to obtain the prior distribution of 𝑚: 

𝑚~N (1.4029, 0.18782) 

 

Table 2. The real values and the trained values of 𝑚 

Path # Failure cycles Real value Trained value 

1 22.75e6 1.1009 - 

2 9.55e6 1.2403 1.2365 

3 4.25e6 1.3724 1.3671 

4 0.3e6 1.7968 - 

5 0.8e6 1.6454 1.646 

6 1.0e6 1.6098 1.6064 

7 3.8e6 1.3884 - 

8 18.15e6 1.1388 1.1377 

9 2.05e6 1.4863 1.4893 

10 5.3e6 1.3364 1.3375 

 

At each updating time, the posterior distribution of 𝑚 will become the prior distribution for 

the next updating time.  

The only likelihood-uncertainty in this example is the material parameter 𝐶  following 

normal distribution. Corresponding to the type of distribution, the up to third-order Hermite 

orthogonal polynomials are used. To calculate the ℎ𝑗(𝑎) at inspection time 𝑗 in the likelihood 

function in Bayesian inference defined in Section 4.3, a sparse nodal set containing 7 points is 

selected.  

The updating-uncertainty here is the material parameter 𝑚 , which also follows normal 

distribution. At each inspection time, this distribution is updated by Bayesian inference. From 

that inspection time, the RUL is calculated based on the distributions of both 𝐶  and 𝑚 . To 

achieve this, a two-dimensional sparse grid with 13 nodes is selected, following the procedure 

described in Section 4.2. The third-order polynomial space is selected to achieve the RUL 

distribution calculation.  

Table 3, 4 and 5 show the updating results for both 𝑚 and the failure time. From these results, 

the convergence trend to their actual values is obvious. The RUL adjustment depends on the 
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adjustment of 𝑚. Starting with its prior value 1.4037, 𝑚 approaches its real values gradually, as 

the condition monitoring data on the crack length are fused into prediction by Bayesian inference. 

Meanwhile, the uncertainty reduction in both 𝑚 and failure time is apparent. The failure time 

distributions for path #1, #4 and #7 are shown in Fig. 6, 7 and 8, respectively, from which we can 

observe that with the updating of the 𝑚 distribution at certain inspection cycles, the predicted 

failure time distribution becomes narrower and its mean is approaching the real failure time. The 

prediction results agree very well with those reported in [6], which used simulation in 

uncertainty quantification. This example only utilizes low degree of polynomial as well as few 

collocation nodes to achieve acceptable accuracy. In the following section, comparative study is 

conducted to illustrate the effect of truncated polynomial degree and number of collocation 

nodes on the accuracy of gPC. With the increase both of the two factors, the gPC accuracy can 

be improved.  

 

Table 3. Testing results for path #1 (real m=1.1009, real failure time=2.275e7 cycles) 

Inspection cycle 
Crack length 

(mm) 
Mean of 𝑚 Std of 𝑚 

Mean of 

Failure time 

Std of 

Failure time 

0 0.1 1.4029 0.1878 6.9703e6 9.2389e6 

0.7e7    1.6849 1.1257 0.0153 1.947e7 1.2064e6 

1.4e7     2.9092 1.1024 0.0099 2.2493e7 5.5313e5 

2.1e7    4.6018 1.0991 0.0073 2.2789e7 9.3263e4 

 

Table 4. Testing results for path #4 (real m=1.7968, real failure time =0.3e6 cycles) 

Inspection cycle 
Crack length 

(mm) 
Mean of 𝑚 Std of 𝑚 

Mean of 

Failure time 

Std of 

Failure time 

0 0.1 1.4029 0.1878 6.7118e6 8.8709e6 

0.1e6 1.4971 1.7924 0.0184 3.0302e5 2.3163e4 

0.2e6 3.1079 1.8008 0.0114 2.8527e5 7.4258e3 
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Fig. 7. Failure time distribution prediction with updates for path #4 

 

Table 5. Testing results for path #7 (real m=1.3884, real failure time=3.8e6 cycles) 

Cycles when 

updating 𝑚 

Crack length 

(mm) 
Mean of 𝑚 Std of 𝑚 

Mean of 

Failure time 

Std of 

Failure time 

0 0.1 1.4029 0.1878 6.7092e6 8.8759e6 

1.2e6 1.4387 1.3839 0.0185 3.8888e6 3.1581e5 

2.4e6 3.022 1.3947 0.0119 3.6268e6 9.7808e4 

3.6e6 4.7519 1.3799 0.007 3.8027e6 1.0637e4 
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Fig. 8. Failure time distribution prediction with updates for path #7 

 

5.3 Comparative study 

The accuracy of gPC is controlled by the error of projection in (4.6) and the error of numerical 

integration in (4.9). To be more specific, the two controllable factors, truncated polynomial 

degree and number of collocation nodes in the selected numerical integration rule, determine the 

accuracy of gPC collocation method. A comparative study is conducted in this section to 

illustrate the effects of the two factors. In this investigation, we select the remaining useful life 

(RUL) prediction as the representative case, since it involves two uncertainty factors, both 𝐶 and 

𝑚. And we focus on the entire failure time covering from the initial crack length to the critical 

length, given the known distribution of parameters as random inputs.  

In this investigation, due to the lack of explicit form of exact solution, we consider the result 

obtained using Monte-Carlo simulation as the real distribution of the failure time, so as to 

compare with the results obtained via PCE with different degrees and nodes. Comparative 
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studies are conducted to demonstrate 1) the effects caused by truncated polynomial degree by 

fixing the number of integration nodes, and 2) the effects caused by number of integration rules 

by fixing the truncated polynomial degree. The mean and standard deviation of RUL predicted 

by gPC are compared with those obtained by Monte Carlo simulation, which are considered as 

the real distribution. The results are tabulated in Table 6 and Table 7, respectively. As the 

number of integration nodes increase, with a fixed sufficient truncated degree, the mean and 

standard deviation produced by gPC approach the real ones, as shown in Table 6. On the other 

hand, the accuracy improvement by increasing the truncated polynomial degree with fixed 

number of integration nodes can also be seen, as shown in Table 7. It is worth noting that the 

latter type of improvement is limited by the integration nodes. It is possible that the higher order 

polynomial may not perform better than the lower order one, unless we increase the integration 

accuracy at the same time, i.e., the number of integration nodes. It is concluded that gPC 

accuracy can be improved by increasing both the truncated polynomial degree and number of 

integration nodes. But it should be noted that the increase in polynomial degree and integration 

nodes will lead to the increase in computation burden.  

Table 6. Effect of increasing number of integration nodes with 6
th 

order polynomial space 

RUL 5 ndoes 13 nodes 29 nodes 53 nodes 89 nodes 137 nodes 5000 MC 

Mean 5.3733e6 5.9348e6 6.038e6 6.1427e6 6.1837e6 6.1943e6 6.1974e6 

Std 9.5945e9 1.1115e7 1.214e7 1.28e7 1.3591e7 1.3867e7 1.3912e7 

 

Table 7. Effect of increasing truncated polynomial degree with 137 integration nodes 

RUL 2
st
 order 3

nd
 order 4

rd
 order 6

th
 order 7

th
 order 8

th
 order 5000 MC 

Mean 6.0472e6 6.087e6 6.161e6 6.1943e6 6.1914e6 6.2072e6 6.1974e6 

Std 1.0315e7 1.1954e7 1.3042e7 1.3867e7 1.3922e7 1.413e7 1.3912e7 

 

5.4  Efficiency investigation for the proposed approach 

The implementation of the proposed gPC collocation based prognostics method is conducted 

in MATLAB. The code includes two phases: Bayesian update and RUL prediction. In this 

subsection, the comparison of computational time consumed by gPC collocation and Monte 

Carlo simulation will be investigated. Path #1 is selected as an example.  

Monte Carlo simulation is a random sampling method. Actually, the nature of gPC collocation 
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is also simply a process of sampling. However, it samples following “rules” which decide the 

selection of integration points. Because of the representation as a form of polynomial expansion, 

the time needed for the evaluation of a polynomial is negligible compared to the execution of the 

model deterministically. Hence, the computational cost saved by gPC collocation method mainly 

comes from the reduction of times to run the model. 

To explain it more specifically, take the RUL calculation as instance. To calculate RUL from 

certain inspection time, let’s assume it will take around 2 seconds to compute the failure time 

using discrete Paris’ law. If Monte Carlo simulation is used as in [6], at least 1000 iterations is 

required to get a good picture of failure time statistics, which will take around 90 minutes. In 

contrast, gPC stochastic collocation only needs 13 nodes to give agreed results, which means the 

Paris’ equation only needs to be solved deterministically at these 13 predetermined points. So the 

time consumed by gPC is only around 26 seconds. That is, the proposed integrated prognosis 

approach is thousands of times faster comparing to that using the simulation method.  

To compare the results obtained by Monte Carlo simulation and gPC collocation method, the 

error between the predicted failure time and the real failure time defined in (5.1) is used to 

measure the prediction performance of these two approaches. Denote 𝜌(𝑡) as the PDF of failure 

time predicted at the last inspection cycle. The real failure time known for validation is 𝑡𝑟. The 

prediction error is defined as a weighted 𝐿2-norm, 

(∫(𝑡 − 𝑡𝑟)
2𝜌(𝑡)dt)

1
2
.                                                    (5.1) 

Table 6 shows the comparison of the prediction errors as well as the computational time of 

Monte Carlo simulation and gPC collocation method. From this table, it is seen that gPC not only 

produces satisfactory results but also saves much computation efforts. Furthermore, the 

significant computation efficiency improvement provided by the gPC technique enables us to 

consider the randomness of material parameter 𝐶 which contributes to the likelihood function in 

Bayesian inference, while in the previous work [6], 𝐶 is only treated as a constant value due to 

heavy computation burden. 

 

6. Conclusions  

 

In this paper, based on an integrated prognostics framework for gear remaining life 
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prediction, a stochastic collocation approach is developed for efficient integrated gear health 

prognosis. Instead of using simulation, stochastic collocation methods based on generalized 

polynomial chaos expansion are utilized to evaluate gear remaining useful life prediction 

uncertainty as well as the likelihood function in Bayesian inference. Two categories of random 

parameters appearing in Paris’ law are also defined.   

The results in the numerical example demonstrate that the proposed gPC stochastic 

collocation approach for integrated gear prognosis can effectively and efficiently adjust the 

model parameters based on the observed degradation data, and thus lead to more accurate 

remaining useful life prediction. The significant computation efficiency improvement provided 

by this approach enable us to consider more uncertain factors in a practical way. The proposed 

approach can be potentially applied to other application involving crack and other damage 

propagations. The proposed integrated prognostics approach can greatly improve the efficiency 

by utilizing the gPC method. This approach has the potential to be applied to other rotating 

components, such as bearings, shafts, and more complex gearbox systems. It also has the 

potential to be applied to structures such as aircraft structures, bridges, pipelines, pressure vessels, 

etc. These potential applications require investigations in building the physical models for these 

components and structures, integration of the gPC methods, updating methodologies, etc. The 

proposed method can only be used after crack initiation. Diagnostics methods are needed to 

detect the crack initiation, and after that, the prognostics methods, such as the one we propose in 

this paper, can be used to predict the failure times. 
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Table 6. Comparison of Monte Carlo simulation and gPC collocation method 

Approach 

Time in two phases Total time RUL 

prediction 

error 

(cycle) 

Bayesian update RUL prediction Integrated method 

Monte Carlo 

simulation 
1000 loops 1000 loops - 

9.9325e4 1
st
 update 

146830 sec 
5066.5 sec ≈42 hours and 12 min 

2
nd

 update 
151540 sec 

3439.5 sec ≈43 hours and 30 min 

3
rd

 update 147470 sec 725.5 sec ≈41 hours and 10 min 

gPC collocation 

method 
7 points 13 points - 

9.8624e4 1
st
 update 959.7 sec 65.1 sec ≈17.1 min 

2
nd

 update 1016.7 sec 44.2 sec ≈17.7 min 

3
rd

 update 963.5 sec 9.6  sec ≈16.2 min 
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