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Abstract – Artificial neural network (ANN) based methods have been extensively investigated 

for equipment health condition prediction. However, effective condition based maintenance 

(CBM) optimization methods utilizing ANN prediction information are currently not available 

due to two key challenges: (1) ANN prediction models typically only give a single remaining life 

prediction value, and it is hard to quantify the uncertainty associated with the predicted value; (2) 

simulation methods are generally used for evaluating the cost of the CBM policies, while more 

accurate and efficient numerical methods are not available, which is critical for performing CBM 

optimization. In this paper, we propose a CBM optimization approach based on ANN remaining 

life prediction information, in which the above-mentioned key challenges are addressed. The 

CBM policy is defined by a failure probability threshold value. The remaining life prediction 

uncertainty is estimated based on ANN lifetime prediction errors on the test set during the ANN 

training and testing processes. A numerical method is developed to evaluate the cost of the 

proposed CBM policy more accurately and efficiently. Optimization can be performed to find the 

optimal failure probability threshold value corresponding to the lowest maintenance cost. The 

effectiveness of the proposed CBM approach is demonstrated using two simulated degradation 

data sets and a real-world condition monitoring data set collected from pump bearings. The 

proposed approach is also compared with benchmark maintenance policies, and is found to 

outperform the benchmark policies. The proposed CBM approach can also be adapted to utilize 

information obtained using other prognostics methods.  
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1. Introduction 

 

The development of maintenance optimization contributes greatly to equipment reliability 

improvement, unexpected failure reduction and maintenance cost minimization [1]-[4]. 

Maintenance can be generally classified into corrective maintenance, preventive maintenance 

and condition based maintenance (CBM) [5]-[6]. CBM is a maintenance strategy under which 

maintenance decisions are made based on the age data as well as condition monitoring data. 

CBM may use condition monitoring data collected from oil analysis, vibration analysis, acoustic 

emission analysis, and so on [7]-[10]. CBM attempts to avoid unnecessary maintenance tasks by 

taking maintenance actions only when there is indication that the failure is approaching [11]-[12]. 

Generally a component or a piece of equipment experiences various degraded states before it 

eventually fails. During the degradation process, health condition can be monitored and predicted, 

and maintenance actions can be scheduled to prevent component or equipment breakdown and 

minimize the total maintenance costs.  

 

A key to the effective implementation of CBM is the accurate prediction of the equipment health 

condition and thus the remaining useful life. The health condition prediction methods can 

generate the predicted remaining useful life value, and some methods can also give the 

associated prediction uncertainties. The reported health condition prediction methods can be 

roughly classified into model-based methods and data-driven methods. The model-based 

methods predict health condition using physical models of the components and damage 

propagation models [13, 14], such as the bearing prognostics method proposed by Marble et al 
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[15], and the gearbox prognostics methods developed by Kacprzynski et al [16] and Li and Lee 

[17]. However, for some components and systems, authentic physics-based models are very 

difficult to build because equipment dynamic response and damage propagation processes are 

very complex. Data-driven methods do not require physical models, and utilize the collected 

condition monitoring data for health condition prediction. Among data-driven methods, artificial 

neural network (ANN) based methods have been considered to be very promising for component 

or equipment health condition and remaining life prediction. Lee et al. [18] presented an Elman 

neural network method for health condition prediction. A neural network model for condition 

monitoring of milling cutting tools was developed by Saglam and Unuvar in [19]. The model 

was used to describe the relationship between cutting parameters in a milling operation and the 

resulting flank wear and surface roughness. Shao and Nezu [20] developed neural network 

models to predict the health of a roller bearing by modeling the vibration root mean square value 

as a time series. Using feedforward neural networks, Gebraeel et al. proposed ball bearing 

remaining life prediction methods in [21-22], where the output of the ANN models was a 

condition monitoring measurement, such as the overall vibration magnitude. Wu et al. [6] 

proposed another ANN-based prediction model with the life percentage as the ANN model 

output. Tian proposed a more generalized ANN prediction model in [23], which can deal with 

multiple measurements inputs and data that are not equally spaced. In [24], Tian et al. developed 

an ANN prediction method to utilize both failure and suspension data to improve prediction 

accuracy. Tian and Zuo also developed a recurrent ANN-based time series prediction method to 

deal with situations where sufficient failure and suspension data are not available [25].  

 

However, effective CBM optimization methods that can take advantage of the more accurate 

ANN health prediction information are currently not available due to two key challenges. One 

challenge is that ANN prediction methods typically only give a single remaining life prediction 

value, and it is hard to quantify the uncertainty associated with the predicted value. The 

remaining life prediction uncertainty is required for optimizing CBM activities. The other key 

challenge is that simulation methods are generally used for the cost evaluation of CBM policies 

which are based on ANN-based health condition prediction methods and model-based prediction 

methods [15-17]. They are also used in some CBM methods based on some other data-driven 
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prediction methods [1]. More accurate and efficient numerical methods are not available, which 

is critical for performing CBM optimization. In this paper, we propose a CBM optimization 

approach based on ANN remaining life prediction information, in which the above-mentioned 

key challenges are addressed. The CBM policy is defined by a failure probability threshold value. 

The remaining life prediction uncertainty is estimated based on ANN lifetime prediction errors 

on the test set during the ANN training and testing processes. A numerical method is developed 

to more accurately and efficiently evaluate the cost of the CBM policy. Monte Carlo simulation 

methods are also utilized to verify the cost calculation algorithm. Optimization can be performed 

to find the optimal threshold value corresponding to the lowest maintenance cost.  

 

The remainder of the paper is organized as follows. The ANN prediction model used in this work 

is described in Section 2. Section 3 presents the proposed CBM approach utilizing ANN 

prediction information. In Section 4, the effectiveness of the proposed CBM approach is 

demonstrated using two simulated degradation data sets and a real-world condition monitoring 

data set collected from pump bearings. Concluding remarks are given in Section 5.  

 

2. The Artificial Neural Network Prediction Model 

 

The ANN model proposed by Tian et al. [24] is used in this work. It is a feedforward neural 

network model and it consists of one input layer, two hidden layers and one output layer. The 

structure of the ANN model is shown in Fig. 1. The inputs of the ANN include the age values 

and the condition monitoring measurements at the current inspection point and those at the 

previous inspection point. Assume that there are totally I significant condition monitoring 

measurements to be considered in the ANN model, and the total number of input nodes will be 

 I22 . Based on experiments by comparing the option of using two time points and that using 

three time points, Tian et al. found that ANN using two time points is able to produce slightly 

more accurate prediction results. In addition, it is more computationally efficient to use data at 

two time points. Fig. 1 gives an example of ANN structure with two condition monitoring 

covariates. it  is the age of the component at the current inspection point i , and 1it  is the age at 
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the previous inspection point 1i . 1

iz and 1

1iz are the measurements of covariate 1 at the current 

and previous inspection points, respectively. 2

iz and 2

1iz  are the measurements of covariate 2 at 

the current and previous inspection points, respectively. The ANN model outputs the life 

percentage at current inspection time, which is denoted by iP . As an example, suppose the failure 

time of a component is 850 days and, at an inspection point i , the age of the component is 500 

days, then the life percentage at inspection point i would be %82.58%100850/500 iP .  

 

The ANN model utilizes suspension histories as well as failure histories. A failure history of a 

unit refers to the period from the beginning of its life to the end of its life, a failure, and the 

inspection data collected during this period. In a suspension history, though, the unit is 

preventively replaced before the failure occurs. Usually we have a small number of failure 

histories and much more suspension histories. Proper utilization of the suspension histories 

provides more information to model the relationship between the input data and the output life 

percentage value, and as a result more accurate remaining life prediction can be achieved. For 

suspension histories, with the actual failure time unknown, we cannot determine the life 

percentage values to train the ANN model. Tian et al. addressed this problem by first 

determining the optimal failure time for each suspension history. The ANN can be trained based 

on the suspension histories with optimal failure times and the failure histories. The detailed 

procedure of the ANN-based prediction approach can be found in [24]. After being trained, the 

ANN prediction model can be used to predict the remaining useful life based on the age value of 

the component and the collected condition monitoring measurements. As mentioned above, the 

output of the ANN model is life percentage. Suppose, at a certain inspection point, the age of the 

component is 400 days and the life percentage predicted using ANN is 80%, then the predicted 

failure time will be 500 days.  

 

Fig. 1. Structure of the ANN model for remaining useful life prediction [24] 
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3. The Proposed CBM Approach  

 

The procedure of the proposed CBM approach is described in Fig. 2, and is divided into three 

phases. A method for estimating the ANN remaining life prediction uncertainty is proposed to 

address the above-mentioned key challenge in using the existing ANN prediction methods, and 

the method is implemented in Phase 1 of the proposed CBM approach. The optimal CBM policy 

corresponding to the lowest long-run maintenance cost per unit of time is obtained in Phase 2. 

And in Phase 3, the optimal CBM policy is applied to components currently being monitored. In 

this section, the proposed CBM policy is described in Section 3.2. A numerical method for the 

cost evaluation of the CBM policy and the CBM optimization model are presented in Section 3.3.  

 

Fig. 2. Procedure of the proposed CBM approach 

  

3.1 Estimation of the ANN remaining life prediction uncertainty  

 

The ANN prediction method in [24] can only give the predicted failure time or remaining useful 

life. However, the uncertainty associated with the predicted failure time, in another word, the 

predicted failure time distribution, is required to implement a CBM policy and perform the CBM 

optimization. In this section, we propose a method for estimating the predicted failure time 

distribution based on the ANN lifetime prediction errors obtained during the ANN training and 

testing processes.  

 

In the ANN training process, the ANN model is trained based on the available failure histories 

and suspension histories. The ANN model inputs include the age data and the condition 

monitoring measurements at the current and previous inspection points. The output of the ANN 

model is the life percentage of the inspected component at the current inspection point, denoted 

by Pi. In the training process, the weights and the bias values of the ANN model are adjusted to 

minimize the error between the ANN output and the actual life percentage, as presented in Ref. 

[24]. After ANN training is completed, the prediction performance of the trained ANN model is 
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tested using testing histories which are not used in the training process. Here, the ANN 

prediction error is defined as the difference between the ANN predicted failure time obtained at 

an inspection point and the actual failure time in the test histories. That is, the ANN prediction 

error at inspection point k in a test history is equal to ( kPk - fT ), where kP  denotes the predicted 

life percentage using ANN. Since a test history contains many inspection points, with several test 

histories, we can obtain a set of ANN lifetime prediction error values. In this paper, it is assumed 

that the prediction accuracy does not improve over time. 

 

In this study, it is assumed that the ANN lifetime prediction error is normally distributed, since 

the prediction uncertainty is mainly due to the capability of the ANN prediction model. With the 

obtained set of ANN prediction error values, we can estimate the mean  and standard 

deviation  of the ANN lifetime prediction error. Suppose at a certain inspection point t , the 

ANN life percentage output is tP , the predicted failure time considering the prediction error will 

be tPt , and the standard deviation of the predicted failure time will be  . That is, the 

predicted failure time pT  follows the following normal distribution:  

 2 ,~ tp PtNT .                                                      (1) 

 

3.2 The proposed CBM policy 

 

The component under consideration is being monitored and condition monitoring measurements 

can be collected at different inspection points. It is assumed that the component is inspected at 

constant interval T , for example, every 20 days. At a certain inspection point, the predicted 

failure time distribution can be obtained as described in Section 3.1. The failure probability, 

denoted by conPr , during the next inspection interval can be calculated. By performing CBM 

optimization, an optimal threshold failure probability value can be obtained, which is denoted by 

Pr*. Thus, at each inspection point, a decision needs to be made on whether a replacement 

should be performed or the operation should continue without replacements.  
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It is assumed in this paper that a preventive replacement can be carried out immediately upon 

requirement, i.e., no lead time is necessary for carrying out a preventive replacement. At a 

certain inspection point, the proposed maintenance policy using ANN is summarized as follows:  

(1) Perform failure replacement if a failure occurs during the previous inspection interval. 

(2) Perform preventive replacement if the predicted failure probability conPr during the next 

inspection interval exceeds the failure probability threshold Pr*. Otherwise, the operation 

can be continued.  

Thus, the CBM policy is defined by the failure probability threshold value, denoted by Pr. In this 

paper, the inspection cost is not considered in the maintenance optimization, and it may be 

considered in a joint inspection/maintenance optimization problem in future investigation.  

 

3.3 Determination of the optimal CBM policy 

 

This section corresponds to Phase 2 in the proposed CBM approach shown in Fig. 2. A 

numerical method is developed for accurate and efficient cost evaluation of the CBM policy 

given a specified failure probability threshold Pr. This phase can also be divided into three steps. 

 

In Step 1, the lifetime distribution of the components as a population is estimated based on the 

available failure data and suspension data. Age data including failure times and suspension times 

are used to model the lifetime distribution for the components. By performing distribution plot 

we can find out the type of lifetime distribution the components follow. Generally, Weibull 

distribution is adequate for modelling the component lifetime distribution, and it is assumed this 

way in this paper [26]. The maximum likelihood method can be used to estimate the lifetime 

distribution parameters  , , which are the Weibull scale parameter and shape parameter, 

respectively. The likelihood function is expressed as follows [26]:  

);();(
11









RE

n

j

j

n

i

i tRtfL                                                        (2) 

where it  denotes the failure time of unit i and 

jt  is the right censoring/suspension time of unit j. 

En  denotes the number of exact failure data, and Rn  denotes the number of right 



9 

 

censoring/suspension data. The first part of the likelihood function is the probability density 

function of the distribution and it is used to describe the failure data. The second part is the 

reliability function of the distribution and it is used for the suspension data. To simplify the 

calculation process, we can take logarithm of the likelihood function. After that optimization can 

be performed to find the optimal parameters set which can maximize the objective function LnL .  

 

In Step 2, the expected replacement cost per unit of time, denoted by ectedCexp , is calculated given 

a specific failure probability threshold Pr. This is the key step in CBM optimization. In the 

reported studies, simulation methods were typically used for cost evaluation, because the 

collected condition monitoring data is used as input to predict the failure time and it is 

impossible to exhaust all the input combinations [27-28]. In this paper, we develop an innovative 

numerical method for the cost evaluation of CBM policy given a specific failure probability 

threshold Pr. The condition monitoring data is used by ANN to compute the life percentage 

output and thus the predicted failure time. And the effect of the condition monitoring data, from 

the perspective of CBM decision making, is on the relationship between the actual failure time 

and the ANN predicted failure time. This relationship, though, can be modeled using the ANN 

lifetime prediction error distribution obtained in the ANN testing process, as discussed in Section 

3.1. The proposed algorithm is based on the observation above. 

 

The way to calculate the failure probability at a certain inspection point is given as follows. As 

shown in Fig. 3, suppose the actual failure time of a component is 800mt  days. Suppose the 

mean and the standard deviation of the ANN lifetime prediction error are   and  , respectively. 

Then the predicted failure time using ANN follows the normal distribution  2 ,~ mpA tNT , that 

is,  2 ,800~ NTpA . For a certain possible predicted failure time using ANN, nt , which is equal 

to 600 days in Fig. 3, the predicted failure time considering prediction uncertainty follows the 

normal distribution  2 ,~ np tNT , that is,  2 ,600~ NTp . Note that nt  is calculated based on 

 , the current inspection time t,  and the ANN life percentage output tP , i.e., tPt , as stated 

in Section 3.1. The failure probability during the next inspection interval is defined as the 

conditional failure probability as follows:  
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   
)(1

Pr
tF

tFTtF

n

nn

con



                                                           (3) 

 

where t is the age of the component at the current inspection point, T is the length of the 

inspection interval, and nF  is the cumulative normal distribution function of predicted failure 

time using ANN, with mean nt  and standard deviation  .  In Fig. 3, 500t  days, the failure 

probability during the next inspection interval is equal to the area of the shaded region, which is 

on the numerator, divided by the area of the region on the right side of 500t  days, which is on 

the denominator of Equation (3). It represents the conditional failure probability during the next 

inspection interval.  

 

Fig. 3. Predicted failure time distribution and the failure probability during the next inspection 

interval 

 

Thus, for a certain predicted failure time using ANN, nt , we can obtain a preventive replacement 

time )( nPR tt , which is the inspection time when the failure probability conPr  exceeds the pre-

specified failure probability threshold, denoted by Pr, for the first time. We first look at the 

expected total replacement cost for a random actual failure time mt . The expected total 

replacement cost, )( mT tC , can be calculated as follows:  

)()()( mTFmTPmT tCtCtC                                                                (4) 

 



0

)()()( nmnPRpnmmTP dttttICtftC                                              (5) 

 



0

)()()( nmnPRfnmmTF dttttICtftC                                            (6) 

where 

2

2

1

2

1
)(








 


 



mn tt

nm etf . )( mTP tC  is the expected preventive replacement cost and 

)( mTF tC  is the expected failure replacement cost with respect to actual failure time mt . pC  is the 
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total cost of a preventive replacement, and fC is the total cost of a failure replacement.   is the 

standard deviation of the predicted failure times using ANN.   1)(  mnPR tttI  if mnPR ttt )( , 

and   0)(  mnPR tttI  otherwise. Similarly,   1)(  mnPR tttI  if mnPR ttt )( , and 

  0)(  mnPR tttI  otherwise. Equation (5) gives the expected preventive replacement cost while 

Equation (6) gives the expected failure replacement cost. The expected total replacement time, 

)( mT tT , can be calculated as follows:  

)()()( mTFmTPmT tTtTtT                                                                  (7) 

 



0

)()()()( nmnPRnPRnmmTP dttttItttftT                                       (8) 

 



0

)()()( nmnPRmnmmTF dttttIttftT                                           (9) 

where )( mTP tT  is the expected preventive replacement time and )( mTF tT  is the expected failure 

replacement time with respect to actual failure time mt .  

 

Suppose the component population follows Weibull distribution with parameter   and  . 

Considering all the possible component actual failure times, the expected total replacement cost 

with respect to failure probability threshold value Pr, denoted by TAC , takes the form 


 
































0

1

)(exp mmT

mm

TA dttC
tt

C






,                                     (10) 

and the expected total replacement time with respect to failure probability threshold value Pr, 

denoted by TAT , takes the form 


 
































0

1

)(exp mmT

mm

TA dttT
tt

T






.                                   (11) 

Finally, the expected total replacement cost per unit of time of the CBM policy with respect to 

failure probability threshold value Pr can be calculated as:  

TA

TA
ected

T

C
C (Pr)exp                                                             (12) 
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In Step 3, optimization is performed to determine the optimal threshold failure probability Pr* 

with respect to the lowest cost. The optimization model can be briefly formulated as follows:  

 

0       Pr

s.t.

Pr  min exp



ectedC

                                                            (13) 

Pr is the only design variable in this optimization problem. The optimization functions built in 

Matlab can be used to solve this optimization problem, and find the optimal threshold failure 

probability Pr*.  

 

3.4 Implementation of the optimal CBM policy 

 

This section corresponds to Phase 3 in the proposed CBM approach shown in Fig. 2. Once the 

optimal threshold failure probability Pr* is determined, the optimal CBM policy is determined. 

The procedure for implementing the optimal CBM policy is given as follows.  

   

Step 1: Inspect a component and obtain the condition monitoring data at constant interval T , say 

20 days. Step 2: Predict the lifetime percentage at the current inspection time t, represented by tP , 

using the trained ANN prediction model based on the age data and condition monitoring data at 

current and previous inspection points. Step 3: Build the predicted failure time distribution 

   ,~ tp PtNT , where   and   are the mean and standard deviation of the ANN lifetime 

prediction error, respectively. Step 4: Calculate the failure probability during next inspection 

interval, conPr , using Equation (3). Step 5: Make replacement decisions. If a failure occurs during 

the previous inspection interval, perform failure replacement. If the failure probability conPr  

during the next inspection interval exceeds the optimal threshold failure probability Pr*, perform 

preventive replacement. Otherwise, the operation can be continued. Repeat Step 1 to Step 5 at 

the next inspection point.  
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4. Examples 

 

In this section, we first demonstrate the proposed CBM approach using two sets of simulated 

degradation signals. Then the proposed approach is demonstrated in details using a real-world 

condition monitoring data set collected from bearings in a group of Gould pumps [29]. 

 

4.1 Numerical examples 

 

In this numerical example, simulated degradation signals are generated using the degradation 

model presented in [30, 31]. The degradation model can be expressed as follows [31]: 

  )
2

)(exp(
2t

tttS


                                                    (14) 

where  tS denotes a continuous degradation signal with respect to time t ,   is a constant,  is a 

lognormal random variable (that is, ln has mean 0  and variance 2

0 ), and  denotes a normal 

random variable with mean 1 and variance 2

1 . )()( tWt   is a centered Brownian motion 

such that the mean of  )(t is zero and the variance of )(t  is t2 . It is assumed that ,  and 

)(t  are mutually independent. It is more convenient to deal with the logarithm of the 

degradation signal,  tL :  

  )(
2

ln
2

tttL 


 







                                                 (15) 

Let   ln'  be a normal random variable with mean 0  and variance 2

0 , and 
2

'
2

   also 

be a normal random variable with mean '

1  and variance 2

1' . So, Equation (15) can be simplified 

as 

 

  )('' tttL   .                                                         (16) 
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4.1.1 Simulated degradation set 1 

 

We set the parameters in Equation (16) as: ,50   ,10   ,5'

1   ,5.1'

1   5.0 . And the 

failure threshold D  is set as 500. It is assumed that failure occurs when the degradation signal 

reaches D . Using the degradation model and the parameters, we generate 50 degradation paths as 

shown in Fig. 4. 

 

Fig. 4. Plot of 50 generated degradation paths in the simulated degradation set 1 

 

From the 50 paths, we randomly choose 20 failure histories to train the ANN and another 10 

failure histories as test histories. The inspection interval is set to be 5 days, that is 5T . Since 

the components are not likely to fail in the very early age, we start the inspection from the 6
th

 

inspection point for each test history. After training the ANN with 20 failure histories, we apply 

the 10 test histories to the trained ANN and obtain 153 ANN lifetime prediction error data points. 

The lifetime percentage prediction error follows normal distribution, according to the probability 

plot result. The mean and standard deviation of the ANN lifetime prediction errors are found to 

be: 1859.0 days, 5911.3  days. To calculate the expected total replacement cost per unit 

of time, we need to model the lifetime distribution for all the components first. By performing 

distribution plot and using Maximum Likelihood Method [26], the lifetime of the components 

was identified to follow Weibull distribution with parameters 9624.4,0666.106   .  

 

The total cost of a preventive replacement pC is assumed to be $3000 and the total cost of a 

failure replacement fC is $16000. Using the algorithm developed in Section 3.3, the optimal 

threshold probability Pr* is found to be 0.009 and the corresponding expected total replacement 

cost per unit of time is $35.0928/day. Once the optimal threshold failure probability Pr* has been 

found, the optimal maintenance policy is also determined: inspect a new component at constant 

interval 5T days. If the conditional failure probability conPr  during next interval exceeds the 
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optimal threshold failure probability 0.009, perform preventive replacement. Otherwise, the 

operation can be continued. Perform failure replacement whenever a failure occurs.  

 

We apply the obtained optimal CBM policy, with optimal threshold probability 0.009, to the 

available failure histories, so that the actual replacement times and the actual average 

replacement cost can be obtained. It is found that the actual average replacement cost when 

applying the optimal CBM policy is 35.2170$/day, which is very close to the optimal 

replacement cost value 35.0928 $/day. This further verifies the correctness of the proposed 

numerical algorithm for the CBM replacement cost evaluation.  

 

Next we compare the performance of our proposed CBM approach with two benchmark 

maintenance policies: constant interval replacement policy and age-based replacement policy 

[33]. In the constant interval replacement policy, preventive replacements are performed at fixed 

constant intervals, and failure replacement is performed when a failure occurs. The objective of 

this policy is to determine the optimal interval length pt  between the preventive replacements to 

minimize the total expected replacement cost per unit of time. In the age-based replacement 

policy, a preventive replacement is performed when the component reaches a specified age pt , 

and a failure replacement is performed when a failure occurs. After any replacement, the age of 

the component is reset to 0. The objective of age-based replacement optimization is to find the 

optimal replacement age to minimize the long-run replacement cost.  

  

For the two benchmark maintenance policies, the lifetime distribution of the components has 

been identified to follow Weibull distribution with 9624.4,0666.106   . Performing 

replacement optimization using the methods presented in [26], for the constant interval 

replacement policy, the optimal replacement interval is found to be 58 days and the expected 

total replacement cost is 65.1848 $/day. For the age-based replacement policy, the optimal 

replacement age is determined to be 59.8655 days and the average total maintenance cost is 

63.0654 $/day. The results are listed in Table I, together with the optimal results using the 

proposed CBM approach. We can see that the proposed CBM approach results in the lowest cost, 

which is 35.0928 $/day. It costs 46.16% less than constant interval replacement policy and 
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44.35% less than aged-based replacement policy, as shown in Table I. Note that we did not 

consider the inspection cost in the proposed CBM method. However, in many applications, 

condition monitoring systems are already in place and condition monitoring data are being 

collected by the enterprise asset management systems, the inspection costs will be relatively low 

and will not affect the advantage of the proposed CBM method.  

 

4.1.2 Simulated degradation set 2 

 

Now we investigate a set of simulated degradation signals with increased fluctuations in each 

degradation path. We did it by increasing the variance of the centered Brownian motion )(t  

from 0.5 to 2 and decrease the failure threshold D  from 500 to 400. 50 degradation paths are 

generated, as shown in Fig. 5. The lifetime percentage prediction error follows normal 

distribution, according to the probability plot result. The mean and standard deviation of the 

ANN lifetime prediction errors are found to be: 1505.1 days, 7469.6 days. And the 

lifetime of the components are determined to follow Weibull distribution 

with 7895.4,9373.106   . The optimal threshold probability Pr* is found to be 0.009 and 

the corresponding expected total replacement cost per day is 38.1653 $/day.  

 

Fig. 5. Plot of 50 generated degradation paths in the simulated degradation set 2 

 

By applying the two benchmark policies to the degradation signal data, we can obtain the 

comparison results as shown in Table II. We can see the expected total replacement cost for the 

proposed CBM approach is still the lowest, which is 38.1653 $/day. It saves 43.03% comparing 

to the constant interval replacement policy, and 40.24% comparing to the aged-based 

replacement policy.   
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4.2 Case Study 

 

4.2.1. Case study introduction 

 

In this section we demonstrate the proposed CBM approach using the real-world condition 

monitoring data collected from bearings on a group of Gould pumps at a Canadian kraft pulp 

mill company [29]. Totally there are 10 bearing failure histories and 14 suspension histories 

available.  For each pump, seven types of measurements were recorded at 8 sensor locations: 5 

different vibration frequency bands (8*5), and the overall vibration reading (8*1) plus the 

bearing’s acceleration data (8*1). So the original inspection data includes 56 (=8*5+8*1+8*1) 

vibration measurements. Significance analysis was performed for the 56 vibration measurements 

by the software EXAKT [29]. Two measurements were identified to have significant influence 

on the health of bearings: P1H_Par5 (band 5 vibration frequency in Pump location P1H), and 

P1V_Par5 (band 5 vibration frequency in Pump location P1V).  

 

Based on the ANN approach developed in [24], we trained the ANN model using 5 failure 

histories and 10 suspension histories. Then we test the prediction performance of the trained 

ANN model using the other 5 test histories, and altogether there 156 inspection points at which 

the prediction performance is tested. The lifetime percentage prediction error follows normal 

distribution, according to the probability plot result. With this ANN lifetime prediction error 

dataset, it is found that the mean of prediction error is -246.8450 days and the standard deviation 

is 204.4521 days.  

 

4.2.2. Maintenance cost calculation using the proposed algorithm 

 

First of all, it is necessary to model the lifetime distribution of the components as a population 

based on the available failure data and suspension data. The fitness test is done using Weibull 

distribution to model the reliability data. The estimated parameters of Weibull distribution are: 

8.1,3.1386   . The total cost of a preventive replacement pC is estimated to be $3000 and 

the total cost of a failure replacement fC is $16000, based on input from industry. Using the 
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algorithm presented in Section 3.3, the total expected replacement cost per unit of time ($/day) 

can be calculated given a certain threshold failure probability. By performing optimization, the 

optimal threshold failure probability Pr* is found to be 0.005, and the corresponding total 

expected replacement cost is 3.8833 $/day, as shown in Fig. 6.  

 

Fig.6. The expected replacement cost corresponding to different threshold failure probability 

values 

 

4.2.3. Maintenance cost calculation verification using the simulation method  

 

Simulation is an important way to verify the performance of maintenance policies [32]. In this 

section, Monte Carlo simulation is utilized to verify the proposed algorithms for cost calculation. 

In the simulation, we first randomly generate 10,000 actual failure time data points which follow 

Weibull distribution with the parameters 8.1,3.1386   . For each generated actual failure 

time mt , the predicted failure time nt follows normal distribution with the parameters mt and 

4521.204  So, we also randomly generate 10,000 predicted failure time which follow normal 

distribution with the parameters 4521.204,   mt for each actual failure time mt . For each 

history, we will inspect the component at a constant interval of 20 days. At each inspection point, 

the conditional failure probability conPr  during next inspection interval is calculated and a 

maintenance decision will be made: if conPr  exceeds the failure probability threshold Pr, a 

preventive replacement is performed; otherwise the operation can be continued. If a preventive 

replacement occurs at the inspection time t , the preventive replacement time for that specific 

history is t  and it is suspension history. If there is no preventive replacement until actual failure 

time mt , that specific history is a failure history and the failure time is mt . After simulating the 

inspection processes for all the 10,000 histories, the expected total replacement cost per day can 

be achieved. In Section 4.2.2, the optimal failure probability threshold Pr* is determined to be 

0.005, and the expected replacement cost is 3.8833 $/day. Using the simulation method, the 

average replacement cost is 3.8806 $/day given that the failure probability threshold Pr equals 
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0.005, which is very close to the result achieved using the proposed numerical algorithm, and 

this demonstrates the correctness of the proposed numerical algorithm.   

 

4.2.4. Maintenance decision making 

 

Once the optimal threshold failure probability Pr* is determined, the optimal CBM policy is also 

determined: inspect a new component at constant interval, for example 20 days. If the 

conditional failure probability conPr  during next interval exceeds the optimal threshold failure 

probability 0.005, perform preventive replacement. Otherwise, the operation can be continued. 

Perform failure replacement whenever there a failure occurs. In this section we will use 10 

failure histories to illustrate the implementation of the optimal maintenance policy. Although 

these data were collected at unequally spaced inspection points, the ANN model in the policy can 

handle this situation.  

 

Consider one failure history as an example of the implementation of the optimal CBM policy. 

The first inspection point of the history to test is the 147
th

 day. The inspection interval is 

assumed to be 20 days. Based on the trained ANN model, using the age data and condition 

monitoring measurements at 119
th

 day and 147
th

 day, which are the previous and the current 

inspection points, the predicted lifetime using ANN is obtained as 418.8034 days. Based on 

Equation (1), the predicted lifetime is adjusted to be 665.6484 days. The standard deviation of 

the lifetime prediction error has been found to be 204.4521 days. Thus, the parameters of 

predicted failure time distribution for this inspected component are 6484.665nt days, and 

4521.204 days. Using Equation (3), the failure probability during the next inspection interval 

is 0.0018, which is less than the threshold failure probability (Pr*) 0.005, as shown in Fig. 7. So, 

the operation of the component can be continued at the age of 147 days and no replacements 

should be performed.  

 

Fig. 7. Failure probability value at age 147 days 
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Similarly we can obtain the failure probability at each inspection point for all the 10 test histories. 

And the replacement decisions can be made for each history, as displayed in Table III, where the 

replacement times according to the proposed CBM approach and the actual failure time are given 

each history. It can be seen that no failure replacement is performed for the components.  

 

4.2.5. Comparison between the proposed approach and benchmark replacement policies 

 

In this section, using the data in this case study, we first compare the performance of the 

proposed CBM approach with two benchmark maintenance policies: constant interval 

replacement policy and age-based replacement policy. Again the Weibull distribution parameters 

are 8.1,3.1386   , and the cost data is kept as the same: 3000$pC , 16000$fC . For 

the constant interval replacement policy, the optimal replacement interval is found to be 

776.9999 days, and the corresponding expected cost is 10.4570 $/day. For the age-based 

replacement policy, the optimal replacement age is found to be 715.3979 days, and the 

corresponding expected replacement cost is 9.9432 $/day. As discussed in Section 4.2.2, the 

optimal expected cost using the proposed CBM approach is 3.8833 $/day. Thus, comparing to 

the two benchmark maintenance policies, the proposed CBM approach can achieve a cost saving 

of 62.86% comparing to the constant interval replacement policy, and 60.95% comparing to the 

aged-based replacement policy. The comparison results are shown in Table IV.   

 

The comparison performed above is based on the maintenance optimization results. Next we 

apply the three optimal maintenance policies to the 10 failure histories respectively, and 

investigate how they perform when applying to real condition monitoring and replacement 

histories. The results are shown in Table V, where for each history, the calculated replacement 

times, replacement types and replacement costs are listed for all the three maintenance policies. 

The average replacement cost using the proposed CBM approach is again the lowest, which is 

5.28 $/day. It is around 58.39% lower than constant interval replacement policy and 65.89% 

lower than aged-based replacement policy. The results further demonstrate the advantage of the 

proposed CBM approach over the two benchmark maintenance policies.  
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We also compare the proposed CBM approach with the widely used PHM method using the data 

in this case study. The same cost data are used, and the same 5 failure histories and 10 

suspension histories are used to optimize the PHM policy. For this set of data, the PHM 

parameters estimated using EXAKT are found to be the following: the scale and shape 

parameters are 7,934 and 1, and the covariate coefficients are 36.73 and 0, respectively. The 

obtained optimal risk threshold is 12.76 $/day, and the corresponding optimal cost is 6.45 $/day. 

Then, similarly, we apply the optimal policy to the 10 failure histories, and the actual average 

replacement cost is found to be 8.35 $/day. It can be observed that the proposed CBM approach 

also outperforms the PHM method in this case study.  

 

5. Concluding Remarks 

 

ANN-based methods have demonstrated to be very effective in equipment remaining useful life 

prediction. In this paper, we develop a CBM optimization approach based on ANN remaining 

life prediction information, and two key challenges are addressed. Firstly, the remaining life 

prediction uncertainty is estimated based on ANN lifetime prediction errors on the test set during 

the ANN training and testing processes. This method requires that multiple degradation histories 

are available for obtaining the prediction error dataset. Secondly, a numerical method is 

developed to evaluate the cost of the CBM policy more accurately and efficiently, which 

provides clear advantage over the simulation methods which are currently generally used. The 

effectiveness of the proposed CBM approach is demonstrated using two simulated degradation 

data sets, and a real-world condition monitoring data set collected from pump bearings. The 

proposed CBM approach can also be adapted to utilize information obtained using other 

prognostics methods such as model-based methods and integrated prediction methods, as long as 

the predicted component failure time and the associated uncertainty can be determined.    
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TABLE I 

COMPARISON BETWEEN THE PROPOSED CBM APPROACH AND TWO BENCHMARK 

POLICIES USING THE SIMULATED DEGRADATION SET 1 

Maintenance policy 
Expected total replacement 

cost per unit of time ($/day) 

Optimal Replacement 

Time (days) 

Constant interval replacement 

policy 
65.1848 58.0000 

Age-based replacement policy 63.0654 59.8655 

The proposed CBM approach 35.0928 
 

 

 

TABLE II 

COMPARISON BETWEEN THE PROPOSED CBM APPROACH AND TWO BENCHMARK 

POLICIES USING THE SIMULATED DEGRADATION SET 2 

Maintenance policy 
Expected total replacement 

cost per unit of time ($/day) 

Optimal Replacement 

Time (days) 

Constant interval replacement 

policy 
66.9951 63.0000 

Age-based replacement policy 63.8654 59.6813 

The proposed CBM approach 38.1653 
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TABLE III 

TEST RESULTS USING THE PROPOSED CBM APPROACH 

History Replacement age (days) Prcon Actual failure time (days) 

1 286 0.0061 473 

2 233 0.0051 283 

3 477 0.0085 601 

4 370 0.0060 511 

5 521 0.0074 692 

6 944 0.0118 986 

7 516 0.0059 1402 

8 785 0.0052 1246 

9 803 0.0058 1468 

10 778 0.0086 964 

 

 

TABLE IV 

COMPARISON BETWEEN THE PROPOSED APPROACH AND TWO BENCHMARK 

POLICIES USING THE BEARING CONDITION MONITORING DATA 

Maintenance policy 
Expected total replacement 

cost per unit of time ($/day) 

Optimal Replacement 

Time (days) 

Constant interval replacement 

policy 
10.4570 776.9999 

Age-based replacement policy 9.9432 715.3979 

The proposed CBM approach 3.8833 
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TABLE V 

(a) COMPARISON BETWEEN THE PROPOSED CBM APPROACH AND TWO 

BENCHMARK POLICIES WHEN APPLYING TO THE 10 FAILURE HISTORIES 

History 

Actual 

Failure 

Time 

(days) 

Constant interval 

replacement policy 

Age-based  

replacement policy 

The proposed CBM 

approach 

Time 

(days) 

 

Type 

 

Cost 

($) 

Time 

(days) 

 

Type 

 

Cost 

($) 

Time 

(days) 

 

Type 

 

Cost 

($) 

1 473 473 F 16000 473 F 16000 286 P 3000 

2 283 283 F 16000 283 F 16000 233 P 3000 

3 601 21 P 3000 601 F 16000 477 P 3000 

4 511 511 F 16000 511 F 16000 341 P 3000 

5 692 266 P 3000 692 F 16000 521 P 3000 

6 986 777 P 3000 715 P 3000 944 P 3000 

7 1402 777 P 3000 715 P 3000 516 P 3000 

8 1246 777 P 3000 715 P 3000 785 P 3000 

9 1468 777 P 3000 715 P 3000 803 P 3000 

10 964 777 P 3000 715 P 3000 778 P 3000 

Total 5439   69000 6135   95000 5684   30000 

Average Replacement 

Time (days) 543.9  613.5 568.4 

Average Cost ($/day) 12.69 15.48 5.28 

F: Failure replacement; P: Preventive replacement. 
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(b) COMPARISON WITH PHM 

History 

Actual 

Failure 

Time 

(days) 

PHM approach 

The proposed CBM 

approach 

Time 

(days) 

 

Type 

 

Cost 

($) 

Time 

(days) 

 

Type 

 

Cost 

($) 

1 473 358 P 3000 286 P 3000 

2 283 248 P 3000 233 P 3000 

3 601 506 P 3000 477 P 3000 

4 511 425 P 3000 341 P 3000 

5 692 692 F 16000 521 P 3000 

6 986 982 P 3000 944 P 3000 

7 1402 1378 P 3000 516 P 3000 

8 1246 1246 F 16000 785 P 3000 

9 1468 1468 F 16000 803 P 3000 

10 964 958 P 3000 778 P 3000 

Total 8261 

 

69000 5684   30000 

Average Replacement 

Time (days) 826.1 568.4 

Average Cost ($/day) 8.35 5.28 
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