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Introduction

I Brief introduction to Matrix and Tensor Completion

I Can we use Tensor Completion techniques to denoise and
reconstruct multidimensional (5D) seismic data?

I Examples
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Recent progress in ”Data Processing”

Compressive Sensing

Matrix/Tensor Completion
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Compressive Sensing (Sub-Nyquist sampling)

Given a small number of observation of y , the goal is to
recover x by solving the following underdetermined problem:

Sx = y

If x can be represented as a linear combination of coefficients
c (synthetis operator)

SAc = y

x can be recovered from y for certain class of operators SA if
c is sparse.
Solution:

minimize |c |1 subject to |SAx − y | < ε

Candes, Romberg, Tao (2006). ”Stable signal recovery from
incomplete and inaccurate measurements”. Communications
on Pure and Applied Mathematics 59 (8).
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Matrix Completion and the Netflix Prize

Taxi 
Driver 

Sense and 
Sensibility 

Battleship 
Potemkin 

Raging 
Bull Titanic Alexander 

Nevsky 

John 5 1 5 4 1 3 

Mary 1 4 ? 1 4 ? 

Pepe 4 2 2 3 4 ? 

Adrian 3 1 ? 3 3 ? 

Tony ? ? ? ? 4 ? 

Kevin 3 3 ? 3 2 ? 

Jianjung 2 1 ? 2 4 ? 

Natasha ? ? 3 ? 5 3 

Movie 
U

se
r 

Figure: Netflix provided a training data set of 100,480,507 ratings
that 480,189 users gave to 17,770 movies (only 1.17% of the
elements of the data table/matrix are known)
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Matrix Completion and the Netflix Prize

Mobs
i ,j : Observed entries of the table

Mi ,j : Desired table

Mobs
i ,j = Ti ,jMi ,j

Ti ,j = 1 if user i rated movie j
Ti ,j = 0 if user i did not rate movie j

Estimating Mi ,j from Mobs
i ,j is called a Matrix Completion

Problem
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Matrix Completion and the Netflix Prize

I From http://www.netflixprize.com/: ” The Netflix
Prize sought to substantially improve the accuracy of
predictions about how much someone is going to enjoy a
movie based on their movie preferences ”

I On September 21, 2009 Netflix awarded the $1M Grand
Prize to team BellKors Pragmatic Chaos

I See Matrix Completion Problem

I See also Collaborative Filtering Techniques
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Netflix Prize

The Napoleon Dynamite problem: The movie has been rated
more than two million times in the Netflix database with

ratings that are disproportionately one or five stars.

9 / 53



Seismic data in source-receiver coordinates

xy

z

d(sx , sy , rx , ry , t)→ D(sx , sy , rx , ry , ω)
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Seismic data in midpoint-offset coordinates

mx

my

sx rx

sy

ry

az h

North

hy

hx

d(sx , sy , rx , ry , t)→ D(sx , sy , rx , ry , ω)→ D(mx ,my , hx , hy , ω)

D(mx ,my , hx , hy , ω)→ Binning→ Di ,j ,k,l(ω)

We will simplify notation by calling the seismic data D, a 4-th order multilinear array
or tensor. Reconstruction and denoising is carried out for all frequencies
ω ∈ [ωmin, ωmax ].

5D reconstruction = 4D spatial reconstruction for all frequencies
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Source-receiver acquisition WCSB
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Source-receiver acquisition WCSB
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Source-receiver acquisition WCSB: Fold Map

Visualization of 4th seismic order tensor

Dobs
i ,j ,k,l = Ti ,j ,kl Di ,j ,k,l

Fi ,j =
∑

k,l

Ti ,j ,k,l
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Figure: Fold Fi,j
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Tensor Completion Problem: Recover D from Dobs . Like Netflix but with Seismic

Traces.
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Seismic data reconstruction

I The majority of industrial codes for data reconstruction
are based on Fourier Synthesis: They all invoke sparsity in
the wavenumber domain and utilize solvers like IRLS
(MWNI) and Matching Pursuit (ALFT).

I As per today, there exits 1010 industrial methods for
Fourier reconstruction (could use other basis functions),
all are extremely similar.

I Completion methods based on rank-reduction
I Hankel Methods
I Tensor Methods
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Seismic data reconstruction

I Hankel Methods
I Trickett, S., L. Burroughs, A. Milton, L. Walton, and R.

Dack, 2010, Rank-reduction-based trace interpolation:
SEG, Expanded Abstracts, 29, no. 1, 3829-3833.

I Oropeza, V., and M. Sacchi, 2011, Simultaneous seismic
data denoising and reconstruction via multichannel
singular spectrum analysis: Geophysics, 76, no. 3,
V25-V32.

I Gao, J., M. Sacchi, and X. Chen, 2013, A fast
reduced-rank interpolation method for prestack seismic
volumes that depend on four spatial dimensions:
Geophysics, 78, no. 1, V21-V30.

I Tensor Methods
I Kreimer, N., and M. D. Sacchi, 2012, A tensor

higher-order singular value decomposition for prestack
seismic data noise reduction and interpolation:
Geophysics, 77, no. 3, V113-V122.

I Kreimer, N., Stanton, A. and Sacchi, M. D., 2013,
Nuclear norm minimization and tensor completion in
exploration seismology’. IEEE’s 38th International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP)
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High Order SVD (Kreimer and Sacchi GEO-2012)
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Figure: *

HOSVD
17 / 53



High Order SVD (Kreimer and Sacchi GEO-2012)

Iterative rank reduction via a simple algorithm (no cost
function associated to the problem)

Dk = Dobs + (1− S)RDk−1

S : Sampling Operator
R: Rank-Reduction Operator (HO-SVD)

Tons of paper in Chemometrics, see for instance, G. Tomasi
and R. Bro. PARAFAC and missing values.
Chemom.Intell.Lab.Syst. 75:163-180, 2005.
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Unfolding

I2

I1

I3

I1

I2 I2 I2

I2 × I3

. . .D D(:, :,1) D(:, :,2) D(:, :, I3)
⇒

Figure: *

A 3rd order tensor can be unfolded in 3 matrices. This figure
shows unfolding in mode 1
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Tensor completion via nuclear norm minimization

minimize
4∑

i=1

rank(D(i)) subject to TD = d obs , (1)

or, the more realistic formulation

minimize
4∑

i=1

rank(D(i)) subject to ||TD − dobs ||22 < ε

(2)
D(i) is the unfolding of the tensor D in the mode i
This is an NP-hard problem.
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Tensor completion via nuclear norm minimization

Change rank constraint by nuclear norm (sum of the singular
values)

minimize J =
4∑

i=1

‖D(i)‖∗ +
λ

2
‖TD − d obs‖2

F ,

CS analogy: Turn non-convex NP-hard problem into a
tractable convex optimization problem

l0 → l1
rank → Nuclear norm = ‖D(i)‖∗ =

∑
k σ

i
k

Fazel, M., H. Hindi, and S. Boyd, 2001, A rank minimization heuristic with application

to minimum order system approximation: Proceedings of the 2001 American Control

Conference, 6, 4734 4739.
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Alternating direction method of multipliers

(ADMM)

min
x∈Cq , y∈Cp

f (x) + g(y) such that x ∈ Cx , y ∈ Cy , Gx = y,

(3)

where f , g are convex functions, G is a matrix and Cx ,Cy are
nonempty polyhedral sets, defined as convex sets formed by a
finite collection of linear inequalities. The objective function
using the traditional method of multipliers is

Jm(x, y,w) = f (x) + g(y)−wT(Gx− y), (4)

where w is a vector of Lagrange multipliers.
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Alternating direction method of multipliers

(ADMM)

The augmented objective function (called “augmented
Lagrangian”)

J(x, y,w) = f (x) + g(y)−wT(Gx− y) +
β

2
‖Gx− y‖2

2, (5)

23 / 53



Alternating direction method of multipliers

(ADMM)

The minimization of J is carried out via the following alternate
minimization algorithm

xj+1 = arg min
x ∈ Cx

J(x, yj ,wj) (6)

yj+1 = arg min
y ∈ Cy

J(xj+1, y,wj) (7)

wj+1 = wj − β (Gxj+1 − yj+1) (8)

Hestenes, M. R., 1969, Multiplier and gradient methods: Journal of Optimization

Theory and Applications, 4, no. 5, 303-320.
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ADMM

f (D) =
λ

2
‖TD − d obs‖2

F (9)

g(Y i) =
4∑

i=1

‖Y(i)
i ‖∗. (10)

Y1 = D, Y2 = D, Y3 = D, Y4 = D. (11)
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ADMM

We use ADMM to minimize

J(D,Y i ,W i ) =
λ

2
‖TD − d obs‖2

F +
4∑

i=1

(
‖Y(i)

i ‖∗− <W i ,D −Y i > +
β

2
‖D −Y i‖2

F

)
.

(12)
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ADMM: Minimization with respect to Y i

The minimum of J with respect to Y i can be computed by
using the following theorem. Given a matrix A and a scalar
τ ≥ 0, let B be an approximation to A such that B has
minimum nuclear norm. In other words,

B = argmin
B

{
‖B‖∗ +

1

2τ
‖B− A‖2

F

}
. (13)

The solution to this problem is given by

B = shrink(A, τ) = UΣ̃VH , (14)

where

Σ̃ = diag[max(σ1 − τ, 0) . . .max(σr − τ, 0)]. (15)

with A = UΣVH.
Cai, J.-F., E. J. Candes, and Z. Shen, 2010, A singular value thresholding algorithm

for matrix completion: SIAM Journal on Optimization, 20, no. 4, 1956-1982.
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ADMM: Minimization with respect to Y i

The minimum of the objective function given by Equation 12 with respect to Y i is

denoted Ỹ i and it is given by

Ỹ i = arg min
Y

(i)
i

{
‖Y(i)

i ‖∗− <W
(i)
i ,D

(i) − Y
(i)
i > +

β

2
‖D(i) − Y

(i)
i ‖

2
F

}
. (16)

By completing the square, the last expression can be rewritten as follows

Ỹ i = arg min
Y

(i)
i

{
‖Y(i)

i ‖∗ −
1

2
‖W(i)

i ‖
2
F +

1

2
‖W(i)

i ‖
2
F− <W

(i)
i ,D

(i) − Y
(i)
i >

+
β

2
‖D(i) − Y

(i)
i ‖

2
F

}
= arg min

Y
(i)
i

{
1

β
‖Y(i)

i ‖∗ +
1

2

∥∥∥Y(i)
i −

(
D(i) −

1

β
W

(i)
i

)∥∥∥2

F
−

1

β
‖W(i)

i ‖
2
F

}
. (17)

The last term in Equation 17 is a constant and is unaffected by the derivative with

respect to Y
(i)
i . Using the property in expression 14, the minimum for Y i is

Ỹ i = fold

(
shrink

(
D(i) −

1

β
W

(i)
i ,

1

β

))
, (18)
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ADMM: Minimization with respect to D
To find D, we consider the other two variables Y i ,W i fixed.
The gradient of Equation 12 is

∂J(D)

∂D = λ T ′ (TD − d obs)−
4∑

i=1

W i + 4βD −
4∑

i=1

βY i

(19)

where T ′ denotes an operator that maps from
Cm → CI1×I2×I3×I4 . This operator obeys T ′d obs = Dobs and
satisfies the following property

T ′T (D)
∣∣
ijkl

=

{
Dijkl if ijkl contains an observation

0 if ijkl is empty

(20)

Setting Equation 19 equal to zero, we obtain

D̃ = (λT ′ T + 4β I)−1

[
4∑

i=1

W i +
4∑

i=1

βY i + λ T ′d obs

]
.

(21)
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ADMM: Minimization with respect to D
If A represents the argument in brackets in Equation 21, the
inverse of (λT ′ T + 4β I) depends on which element of tensor
A it is applied to

[(λT ′ T + 4β I)−1(A)]ijkl =

{
(λ + 4β)−1Aijkl if ijkl is non-empty

(4β)−1Aijkl if ijkl is empty

(22)

Therefore, the minimum of D is

D̃
∣∣
ijkl

=





(λ + 4β)−1

[
4∑

i=1

W i +
4∑

i=1

βY i + λDobs

]

ijkl

if ijkl is non-empty

(4β)−1

[
4∑

i=1

W i +
4∑

i=1

βY i

]

ijkl

if ijkl is empty

(23)

where we replaced T ′d obs = Dobs and we accounted for
Dobs

∣∣
ijkl

= 0 when the bin ijkl is empty.
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ADMM: Tensor Completion algorithm

Finally, the algorithm that solves Equation 12 reduces to

initialize D0, Y0
i ,W0

i , i = 1, 2, 3, 4 with
the null tensor
for k = 1, kmax

Dk+1 as in Equation 23

for i = 1,2, 3, 4

Yk+1
i = fold

(
shrink

(
D(i) k+1 − 1

β
W(i) k

i ,
1

β

))

Wk+1
i = Wk

i − β
(Dk+1 −Yk+1

i

)

end
end
output is Dkmax

Gandy, S., B. Recht, and I. Yamada, 2011, Tensor completion and low-n-rank tensor

recovery via convex optimization: Inverse Problems, 27, no. 2, 025-010.
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Example

In order to explore the performance of the proposed algorithm,
we consider a simple 3D model that contains two dipping
planes with normals given by

n1 = (0.02, 0.05, 0.99) and n2 = (0.03, 0.02, 0.99).

The velocities used for this test are 1500 m/s and 2300 m/s for
the top and bottom planes, respectively. The intersection of
these planes with the vertical axis occurs at 250 m and
1000 m. The travel-times are calculated via ray tracing in the
midpoint-offset domain. The volume corresponds to a spatial
tensor of size 12× 16× 12× 16 (midpoints x , y -offset x , y),
512 time samples and a time sampling rate of 2 ms.
Additionally, we randomly remove 50% of the traces and add
random noise to produce a volume with SNR = 1
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Example

Figure: *

Model of two dipping planes used in test the algorithm. The normal to the planes are

n1 = (0.02, 0.05, 0.99) and n2 = (0.03, 0.02, 0.99) for the first and second reflector,

respectively. We compute synthetic data from this model using ray tracing.
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Example
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Figure: *

Portion of the data generated from the model in the previous Figure for fixed mx and

hy . The fast varying coordinate is hx , while the slow varying coordinate is my . a)

Fully sampled volume with SNR = 100. b) Decimated volume with SNR = 1.
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Example
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Figure: *

Quality of the reconstruction Q versus λ for β = 1, 15 and 30. A higher value of Q

indicates a higher reconstruction quality. For a fixed value of β, the quality decreases

as λ increases.

Q = 10 log ‖Dtrue‖2

‖Dest−Dtrue‖2
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Example

n1 = (0.26, 0.17, 0.95) and n2 = (0.12, 0.16, 0.98). (24)

The intersection of the planes with the vertical axis occurs at
350 m and 1000 m and the velocities coincide with those in the
previous model. We remove 40% of the traces randomly and
add randomly distributed Gaussian noise with a SNR = 1. The
quality of the reconstruction for this case is Q = 20 dB and
the running time is 4 h 28 min (MATLAB).
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Example

Common midpoint gath-

ers with 40% randomly

decimated traces and

SNR = 1. (a) Portion of

the 5D desired volume.

(b) Decimated and noisy

data. This is the input

to the algorithm. (c)

Reconstructed data.
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Example
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Figure: *

Common offset gathers with 40% randomly decimated traces and SNR = 1. (a)

Portion of the 5D desired volume. (b) Decimated and noisy data. This is the input to

the algorithm. (c) Reconstructed data.
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Example
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HOSVD

Figure: *

Quality of the reconstruction versus sampling ratio for a synthetic volume. The quality

of the reconstruction increases as the sampling ratio increases for both the proposed

method and HOSVD

Kreimer N and M D Sacchi, 2012, A tensor higher-order singular value decomposition (HOSVD) for prestack

seismic data noise reduction and interpolation: Geophysics, 77, no. 3, V113-V122.
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Field example. Data set from the WCSB

Our real data example is from an orthogonal survey acquired
over a heavy oil field in Alberta, Canada. It is common practice
in the reconstruction of seismic data to use overlapping
windows in both space and time. We reconstruct a crossline
swath from this survey by dividing it into 21 overlapping
blocks of inline/crossline (13 inlines overlap length).

For each block, the dimensions of the grid are:

I Inline (CMPx): n1 = 26, increment=5 m (inline overlap of
13 CMPs)

I Crossline (CMPy): n2 = 26, increment=5 m
I Offset: n3 = 5, increment=100 m, [min,max]=[50, 450] m
I Azimuth: n4 = 8, increment=45◦,

[min,max]=[22.5◦, 337.5◦]

Size of tensor: 26× 26× 5× 8 40 / 53



WCSB survey

Figure: *

Survey geometry for the real data example in true aspect ratio. Stars indicate sources

and triangles indicate receivers. The grey area shows the midpoints that were

reconstructed with the proposed algorithm. We use 21 blocks of size 26× 26

midpoints with an overlap of 13 inline cmp positions. Each block is represented by two

adjacent rectangles.
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WCSB survey
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Figure: *

Offset azimuth distribution for one block of data used in the reconstruction.
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WCSB survey
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Figure: *

Source receiver geometry for the bin with its center at (564, 311)m. The black dot

marks the position of the midpoint, triangles indicate receivers and stars indicate

sources. a) Position of the available source-receiver pairs before reconstruction. b)

Source-receiver pairs after reconstruction.
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WCSB survey
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CMP gather for a fixed inline and crossline. (a) Before reconstruction. (b) After

reconstruction.
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WCSB survey: Near offsets

Near offset gathers (50 m)

for a constant crossline.

Panels (a) and (b) have

a constant azimuth of

22.5◦ while (c) and (d)

have a constant azimuth

of 112.5◦. (a)-(c) Be-

fore reconstruction. (b)-

(d) After reconstruction.
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WCSB survey: Mid range offsets

Mid-offset gathers

(250 m) for a constant

crossline. Panels (a)

and (b) have a constant

azimuth of 22.5◦ while

(c) and (d) have a

constant azimuth of

112.5◦. (a)-(c) Before

reconstruction. (b)-(d)

After reconstruction.
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WCSB survey: Far offsets

Far offset gathers (450 m)

for a constant crossline.

Panels (a) and (b) have

a constant azimuth of

22.5◦ while (c) and (d)

have a constant azimuth

of 112.5◦. (a)-(c) Be-

fore reconstruction. (b)-

(d) After reconstruction.
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WCSB survey: Inline and crossline section stacks

Stack of all 21 blocks

for a constant crossline:

(a) Without reconstruc-

tion. (b) With reconstruc-

tion.
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WCSB survey

Observed volume for a constant offset (3rd offset bin) and azimuth (4th azimuth bin)

before interpolation
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WCSB survey

Reconstructed volume for a constant offset (3rd offset bin) and azimuth (4th azimuth

bin)
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Conclusions

I Rank-reduction (Hankel / Tensor) reconstruction
techniques are an alternative to Fourier-based
reconstruction methods

I Unlike Fourier-based reconstruction, the field does not
have many players and uses interesting math that has
received little attention in geophysics (Multilinear
Algebra, Tensor Completion, Nuclear norm minimization,
ADMM, etc..)

I Advantages: Excellent denoising capability, simultaneous
data denoising and reconstruction, can cope with
curvature

I Disadvantages: Computational cost

I Current direction: Solvers that do not use the SVD

I Current direction: Robust Tensor completion
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