Chemistry Misconceptions, Concept Inventories, and Measuring Student Learning

Stacey Lowery Bretz
Miami University
Department of Chemistry & Biochemistry
Oxford, OH 45056
bretzsl@muohio.edu

http://www.users.muohio.edu/bretzsl

Miami University

- Oxford, OH
- 14,500 undergrads & 1500 grad students
- 11 Ph.D. programs of selective excellence
- Ph.D. in chemistry education
- Top 25 Initiative

What's in a name?

Nomothetic terms

- Errors
- Naïve conceptions
- Erroneous conceptions
- Misunderstandings
- Persistent pitfalls
- Classroom mismatches
- Student difficulties
- Incorrect generalizations
- Prescientific conceptions
- Conflicting schemas
- Mistakes
- Misconceptions

Ideographic terms

- Personal model of reality
- Pupil's ideas
- Alternative conceptions
- Alternative frameworks
- Developing conceptions
- Children's science
- Children's views
- Commonsense theories
- Children's understanding
- Children's knowledge
- Personal constructs
- Intuitive beliefs

[•] Wandersee, J.H.; Mintzes, J.J.; Novak, J.D. (1994). "Research on Alternative Conceptions in Science" Edited by Dorothy Gabel. *Handbook of Research on Science Teaching and Learning*. Macmillan Publishing Co: New York.

Two Methodologies

Nomothetic

- Knowledge is compared to accepted scientific knowledge
- Literal meaning:
 - "founded upon or derived from custom or law"
- More likely experimental

Ideographic

- Explanations constructed by a learner to make sense of an experience
- Literal meaning:
 - "Self written"

 More likely fewer students in greater depth and using student self-report data

[•] Wandersee, J.H.; Mintzes, J.J.; Novak, J.D. (1994). "Research on Alternative Conceptions in Science" Edited by Dorothy Gabel. *Handbook of Research on Science Teaching and Learning*. Macmillan Publishing Co: New York.

Chemistry Research

- Elucidating mechanisms
- Characterize products
- Identify intermediates
- Synthesize new materials

Chemistry Education Research

- Elucidating mechanisms for teaching & learning
- Characterize products of learning
- Identify intermediates along the pathway to learning
- Synthesize new materials to increase learning

Chemistry Education Research

- Chemistry has 118 elements
- CER has 5 elements
 - students
 - teachers
 - curriculum
 - context
 - assessment

CER & Limitations

- Data collection
 - Limitations to manipulating human beings
 - Not serendipitous reconstruct conditions
 - Identification of variables
 - Dynamics of classrooms
 - Rates of learning
 - Mechanisms for change
- Theory development
 - Verify existing, apply to new systems
 - Computational, mathematical description
 - BUT, students are not O₂ molecules!

Ausubel & Novak's Theory of Learning

[•]Bretz, S.L. "Human Constructivism and Meaningful Learning," J. Chem. Educ. 2001, 78(8), 1107.

Inquiry Pedagogy Research

- Lecture Setting
 - At-risk general chemistry students
 - POGIL Symmetry operations
 - Spiral organic chemistry curriculum
- Laboratory experiments
 - Microwave liquid crystal synthesis/characterization
 - Monolithic HPLC column synthesis/characterization
 - Ligand binding, optical and paramagnetic spectroscopy of met-myoglobin

Concept Inventories & Assessment

Acid-base reactions

Atomic emission, flame tests & energy level diagrams

Covalent & ionic bonding

Enzyme-substrate interactions

[•] Holme, Bretz, Cooper, Lewis, Pienta, Stacy, Stevens, Towns. "Enhancing the Role of Assessment in Curriculum Reform in Chemistry," Chem. Educ. Res. Pract., 2010, 11, 92-97

Grove and Bretz, "CHEMX: Assessing Students' Cognitive Expectations in Learning Chemistry," J. Chem. Educ., 2007, 84(9), 1524-1529

McClary and Bretz, "Development and assessment of a diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength," Intl. J. Sci. Educ., iFirst, DOI: 10.1080/09500693.2012.684433

[•] Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," Biochemistry and Molecular Biology Education, EarlyView, DOI: 10.1002/ bmb.20622

Johnstone's Chemistry Domains

Multiple Representations & Coherence Formation

[•]Ainsworth, S. Comput. Educ., 1999 33, p. 132.

[•]Seufert, Learning and Instruction, 2003, 13(2), 227-237.

Multiple Representations in Chemistry

John K. Gilbert David Treagust

- Johnstone, A.H. "Why is Science so Hard to Learn?" J. Computer Assisted Learning, 1991, 7(2), 75-83
- Linenberger, K.J. & Bretz, S.L. "Generating Cognitive Dissonance in Student Interviews through Multiple Representations," *Chem. Educ. Res. Pract.,* 2012; Advance Article, DOI: 10.1039/C1RP90000064A

Representations of Enzyme-Substrate Interactions

Research Questions

- Analytical Questions
 - What do multiple representations reveal about students' understandings of important chemistry concepts?
 - What misconceptions exist and how prevalent are they?
- Methodological Questions
 - How can multiple representations be used to surface cognitive dissonance?
 - How can Johnstone's domains be used to identify misconceptions?
 - How are reliability and validity best established when student knowledge is often incomplete, incorrect, and fragmented?

Research Design

- Sequential, mixed-methods protocol
- Multi-Phase Interview to Elicit Misconceptions
 - Prior knowledge
 - Domain 1 (or Representation 1)
 - Domain 2 (or Representation 2), etc.
 - Reflection & reconciliation of cognitive dissonance
- Videotaped & Livescribe capture

Research Design

- Concept Inventory Development
 - Single, two-tier, and four-tier items
 - Student misconceptions as distracters
 - Faculty experts review
- Data Analysis
 - Classical Test Theory & Item Response Curves
 - Significant & Common Alternative Conceptions
 - Confidence-Levels of Respondents

Enzyme-Substrate Interactions Concept Inventory

I feel like there should be an **allosteric site over here** though [*draws in an allosteric site on the enzyme*] that would like **change it**. Possibly. That would change like um, like this right here [*the original reactant enzyme in Image 2*] **looks like an inactive enzyme**. Like it doesn't look like it's [*the substrate*] gonna fit. But then if a **particle comes in here** [*the allosteric site*] and **changes the um, the conformation of the enzyme** it [*the substrate*] should end up fitting.

[•]Linenberger, K.J.; Bretz, S.L.; "Generating Cognitive Dissonance in Student Interviews through Multiple Representations," Chem. Educ. Res. Pract., 2012, Advance Article, DOI: 10.1039/C1RP90000064A

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

Enzyme-Substrate Interactions Concept Inventory

[draws brackets around enzyme] I guess these brackets represent the area around the enzyme and if you have another amino acid or protein or some other compound [writes "AA protein compound"] that can surround the enzyme and for this it would need to push this in and push this top in [the top and bottom of the enzyme] and where I boxed it then these little grooves should fall into place to form or to match up with the substrate.

[•]Linenberger, K.J.; Bretz, S.L.; "Generating Cognitive Dissonance in Student Interviews through Multiple Representations," Chem. Educ. Res. Pract., 2012, Advance Article, DOI: 10.1039/C1RP90000064A

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

- 14. Select the answer that best describes the binding in the image.
- A. The enzyme changes shape before the substrate binds to the enzyme.
- B. An activator always binds the enzyme to change its shape, after which the substrate can bind.
- C. The enzyme changes shape as the substrate binds to the enzyme.
- D. The reaction will not proceed because the enzyme does not match the substrate.
- 15. Which statement best explains how the enzyme in the image changes conformation?
- A. Two additional molecules push on both the top and bottom of the enzyme.
- B. Interactions with the substrate align the enzyme with the substrate.
- C. A molecule binds to an allosteric site on the enzyme.
- D. A molecule binds to a second active site on the enzyme.

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

Full Study Sample

- 16 Institutions (N = 707)
 - 78% White/Caucasian
 - 57.3% Female
 - 81.2% 3rd & 4th year

Biology 32% Biochemistry/ Molec. Biology 20% Other 6% Chemistry Nutrition/ Exercise Science 14%

Courses

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

ESICI Descriptive Statistics

•Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

Reliability & Factor Analysis

- Underlying assumptions about singularity of construct being measured
- Inter-item correlations assume coherent whole

How does this align with what we know about students' fragmented knowledge structures and misconceptions?

Reliability & Factor Analysis

- Underlying assumptions about singularity of construct being measured
- Inter-item correlations assume coherent whole

"a low Cronbach's α would be quite reasonable, and a high Cronbach 's α does not guarantee that the test will be more reliable...may be an indication that there are redundant items that should be removed."

More Meaningful Measures

- Kolmogorov-Smirnov value
- Item Response Theory
 - item difficulty, ρ
 - item discrimination, D
 - point-biseral index, r_{pbi}
- Ferguson's δ
- Item Response Curves
- Confidence & 4-Tier for strength

[•] Ding and Beichner, "Approaches to data analysis of multiple-choice questions." *Physical Review Special Topics Physics Education Research*, 2009, 5, 20103-1 – 20103-15.

[•] Morris, G.A.; Branum-Martin, L.; Harshman, N.; Baker, S.D.; Mazur, E.; Dutta, S.; Mzoughi, T.; McCauley, V. "Testing the Test: Item Response Curves and Test Quality," Am. J. Phys., 2006, 74(5), 449-453.

Caleon, I.S. & Subramaniam, R. "Do Students Know What They Know and What They Don't Know? Using a Four-Tier Diagnostic Test to Assess Students'
 Alternative Conceptions," Research in Science Education, 2010, 20, 313 – 337

ESICI Descriptive Statistics

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

ESICI Item Difficulty & Discrimination

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

Test-Retest Difficulty

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

$$\rho$$
= 0.792

$$D = 0.345$$

$$r_{pbi} = 0.382$$

- 14. Select the answer that best describes the binding in the image.
- A. The enzyme changes shape before the substrate binds to the enzyme.
- B. An activator always binds the enzyme to change its shape, after which the substrate can bind.
- ★ C. The enzyme changes shape as the substrate binds to the enzyme.
 - D. The reaction will not proceed because the enzyme does not match the substrate.

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

$$\rho = 0.654$$

$$D = 0.534$$

$$r_{pbi} = 0.435$$

- 15. Which statement best explains how the enzyme in the image changes conformation?
- A. Two additional molecules push on both the top and bottom of the enzyme.
- B. Interactions with the substrate align the enzyme with the substrate.
 - C. A molecule binds to an allosteric site on the enzyme.
 - D. A molecule binds to a second active site on the enzyme.

Item Response Curve

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," *Biochemistry and Molecular Biology Education*, EarlyView, DOI: 10.1002/bmb.20622

Enzyme-Substrate Interactions Concept Inventory

- Types of complementarities
- Enzyme conformational change
- Where and to what an inhibito binds
- Where the enzyme binds/ interacts with the substrate

[•]Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," Biochemistry and Molecular Biology Education, EarlyView, DOI: 10.1002/bmb.20622

Acid Strength & Question "Tiers"

- **Q2.** Compound C is the most acidic of the above three structures. Which of the following represents the correct trend in acid strength for compounds A and B?
 - 1. A < B
 - 2. B < A
- Q3. Select or provide the *best* reason to justify your answer for question 2:
 - 1. B is more acidic than A because B has a more electronegative acidic atom than A.
 - 2. B is more acidic than A because the benzene better stabilizes the conjugate base than the carbonyl groups of A.
 - 3. A is more acidic than B because the carbonyl groups better stabilize the conjugate base than the benzene of B.
 - 4. A is more acidic than B because A has two oxygen atoms instead of one oxygen atom.

[•]Treagust, D.F. "Development and Use of Diagnostic Tests to Evaluate Students' Misconceptions in Science," Int. J. Sci. Educ., 1988, 10, 159 – 169.

[•]McClary, L.M. & Talaquer, V. "Heuristic Reasoning in Chemistry: Making Decisions about Acid Strength," Int. J. Sci. Educ., iFirst 14 Dec 2010.

[•]McClary and Bretz, "Development and assessment of a diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength," *Intl. J. Sci. Educ.*, iFirst, DOI: 10.1080/09500693.2012.684433

Confidence & Question "Tiers"

How confident are you about the *answer* you chose? How confident are you about the *reason* you chose?

Genuine: significant,* mean confidence > 3.50 (or > 50%)

Spurious: significant,* mean confidence < 3.50 (or > 50%)

[•] Caleon, I.S. & Subramaniam, R. "Do Students Know What They Know and What They Don't Know? Using a Four-Tier Diagnostic Test to Assess Students' Alternative Conceptions," Research in Science Education, 2010, 20, 313 – 337

[•] McClary and Bretz, "Development and assessment of a diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength," Intl. J. Sci. Educ., iFirst, DOI: 10.1080/09500693.2012.684433

ACID I Descriptive Statistics

[•] McClary and Bretz, "Development and assessment of a diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength," *Intl. J. Sci. Educ.*, iFirst, DOI: 10.1080/09500693.2012.684433

ACID I Mean Confidence

[•] McClary and Bretz, "Development and assessment of a diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength," *Intl. J. Sci. Educ.*, iFirst, DOI: 10.1080/09500693.2012.684433

ACID I Item Difficulty vs. Mean Confidence

[•] McClary and Bretz, "Development and assessment of a diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength," *Intl. J. Sci. Educ.*, iFirst, DOI: 10.1080/09500693.2012.684433

ACID I Strength of Misconceptions

Item	CF	CFC	CFW	CDQ
1	64.00	62.65	64.42	-0.086
2	71.81	68.42	73.55	-0.228
3	60.40	60.83	60.27	0.024
4	60.82	64.78	57.84	0.312
5	59.77	55.89	64.67	-0.397
6	53.86	56.35	52.57	0.166
7	66.64	67.56	66.44	0.050
8	61.78	66.63	56.23	0.440
9	53.12	58.35	50.53	0.334

- mean confidence (CF)
- mean confidence when answered correctly (CFC)
- mean confidence when answered incorrectly (CFW)
- mean confidence quotient (CDQ)

[•] McClary and Bretz, "Development and assessment of a diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength," *Intl. J. Sci. Educ.*, iFirst, DOI: 10.1080/09500693.2012.684433

Conclusions

- Multiple representations elicit cognitive dissonance.
- Students have difficulty understanding representations in each of Johnstone's domains.
- Students have difficulty translating between Johnstone's domains.
- Misconceptions exist in all disciplines of chemistry.

Acknowledgements

Acid-base reactions

Acidity

Atomic emission, flame tests & energy level diagrams

Covalent & ionic bonding

Enzyme-substrate interactions

Oxidation-reduction reactions

[•] Holme, Bretz, Cooper, Lewis, Pienta, Stacy, Stevens, Towns. "Enhancing the Role of Assessment in Curriculum Reform in Chemistry," Chem. Educ. Res. Pract., 2010, 11, 92-97

[•] Grove and Bretz, "CHEMX: Assessing Students' Cognitive Expectations in Learning Chemistry," J. Chem. Educ., 2007, 84(9), 1524-1529

[•] McClary and Bretz, "Development and assessment of a diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength," *Intl. J. Sci. Educ.*, iFirst, DOI: 10.1080/09500693.2012.684433

Bretz and Linenberger, "Development of the Enzyme-Substrate Interactions Concept Inventory," Biochemistry and Molecular Biology Education, EarlyView, DOI: 10.1002/ bmb.20622

Acknowledgements

- All the students who share with us their thinking about chemistry
- Bretz CER Group
- Dr. Ellen Yezierski
- Dr. Jennifer Lewis
- Dr. Melanie Cooper
- NSF-DUE-CCLI, Award #0817297
- NSF Graduate Research Fellowship #1144472
- NSF-DRL-DRK-12 Doctoral Fellows Program, Award #0733642

Concept Inventories

- Acid-base reactions
- Acidity
- Atomic emission & flame tests
- Covalent & ionic bonding

- Enzyme-substrate interactions
- Intermolecular forces
- Oxidation-reduction reactions

Interested in using a concept inventory in your classroom?

Contact
Stacey Lowery Bretz
bretzsl@muohio.edu