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E-Companion—“Approximating Vehicle Dispatch Probabilities for Emergency 

Service Systems with Location-Specific Service Times and Multiple Units per 

Location” by Susan Budge, Armann Ingolfsson, and Erhan Erkut. 

 

This online companion contains the following additional material: 

• Appendix A: Literature Review 

• Appendix B: Comparison of the AH Model to Simulation and the Exact Hypercube Model 

• Appendix C: Derivation and Magnitude of Station-Specific Correction Factors 

• Appendix D: Proof of Theorem 1 

• Appendix E: Sensitivity to Service Time Distribution 

• Appendix F: Additional Computational Results 

Appendix A: Literature Review 

Two main streams of literature are relevant to the problem of considering server unavailability in 

emergency response systems.  The first is that on the development of analytical models that allow for the 

calculation of measures related to server availability.  The second is that related to location models for 

emergency service systems that incorporate such measures.  Table A-1 summarizes the methods that will 

be discussed here in terms of the assumptions made about the four areas of the system outlined in the 

paper.  Note that for the first three characteristics, the column heading is the characteristic and for each 

model we state the assumption made about that characteristic, but for the last characteristic (server 

cooperation) we focus on a specific aspect of the characteristic (server dependence) and only provide 

information about that aspect within the table.  The reason for this is that all of the models incorporate 

some information about server cooperation, typically in the form of a “closest available ambulance” 

dispatch rule, and the main differences between the models in terms of this characteristic are in the way 

that they model the server dependence aspect.  Additionally, we have attempted to list the models in order 

of increasing realism, although given the variety of assumptions, in some cases the order is admittedly 

subjective. 

A major development in the first stream is the hypercube queueing model (Larson, 1974), which 

models server cooperation and dependence between servers in spatial queueing systems.  This model 

allows the exact calculation of server-specific busy fractions and dispatch probabilities.  For an s-server 

system, it involves the solution of 2
s
 simultaneous equations, and as a consequence it is 
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computationally intensive for large systems.  Larson (1975) and Jarvis (1985) calculate server-specific 

busy fractions and dispatch probabilities with dependence using approximations to the hypercube model 

that assume servers are sampled randomly without replacement from an / / /M M s ∞  system (Larson, 

1975) or an / / /M M s s  system (Larson, 1975, and Jarvis, 1985).  In addition to the improvement in 

tractability offered by these approximate models, Jarvis’ model allows one to consider service times that 

depend on the server and the customer, so that variations in the components of the service time that 

depend on the call location can be taken into account.  Larson and McKnew (1982) extend both the exact 

and approximate hypercube model to allow for three possible server states, corresponding to idle, on 

patrol, or busy, in a police context.  In a similar vein, Birge and Pollock (1989) formulate a method in 

which a system of non-linear equations is solved iteratively in order to approximate a much larger exact 

linear equation system.  Like Larson and McKnew’s approach, Birge and Pollock’s method is not 

restricted to binary server states. 

Table A-1: Summary of model assumptions of previous literature involving methods for estimating busy 

fractions and dispatch probabilities. 

Reference No. of 

vehicles per 

station 

Average 

workload 

Average service time Server 

dependence 

Daskin (MEXCLP, 1983) Multiple Constant Constant None 

ReVelle and Hogan (1988) Single Allowed to vary  Constant Within small 

regions only 

Birge and Pollock (1989)  Single Allowed to vary Dependent on server 

location and call location  

None 

Goldberg and Szidarovszky 

(1991, 1991b) 

Single Allowed to vary Dependent on server 

location and call location 

None 

Goldberg and Paz (1991) Multiple Allowed to vary Dependent on server 

location and call location 

None 

Goldberg and Szidarovszky 

(1991c) 

Multiple Allowed to vary Dependent on server 

location and call location 

Within a station 

only 

Larson (Approximate 

Hypercube, 1975) 

Single Allowed to vary Constant Yes – modeled 

approximately 

Larson (Exact Hypercube, 

1974) 

Multiple Allowed to vary Dependent on server Yes – modeled 

exactly 

Jarvis (1985) Single Allowed to vary Dependent on server 

location and call location 

Yes – modeled 

approximately 

Larson and McKnew (Exact 

version, 1982) 

Multiple Allowed to vary Dependent on server Yes – modeled 

exactly 

Larson and McKnew 

(Approximate version, 1982) 

Single Allowed to vary Dependent on server Yes – modeled 

approximately 

Goldberg and Benitez (1990) Single Allowed to vary Dependent on server 

location and call location 

Yes – modeled 

approximately 

Burwell, Jarvis, and 

McKnew (1993) 

Multiple Allowed to vary Dependent on server 

location and call location 

Yes – modeled 

approximately 
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When there is more than one server located at a particular station it would usually be desirable to 

distribute the station’s workload evenly between those servers and so these ambulances should be 

dispatched with equal probability to incoming calls.  When two or more servers are equally preferred in 

the dispatch order for a particular demand location, it is referred to as a preference tie.  Burwell, Jarvis, 

and McKnew (1993) extend the hypercube approximations by providing ways to account for preference 

ties and co-located servers.  They suggest a “modified internal stacking method,” that computes server-

specific utilization and dispatch probabilities in the presence of arbitrary preference ties, making use of the 

correction factors developed by Larson (1975).     

It is possible to use the server-specific approximation approaches developed by Larson (1975) and 

Jarvis (1985) to compute station-specific performance measures for systems with multiple vehicles at 

some stations using an approach that Burwell (1986) termed post-averaging.  Burwell (1986) proves the 

validity of this approach for a special case where average service times depend only on the server and only 

one station has multiple servers, and he provides a counter-example that demonstrates that the approach is 

not always valid.  We consider it plausible that post-averaging is a correct approach in the setting that we 

consider, where several stations may have multiple vehicles, preference ties occur only because of co-

location, and average service times depend both on the server location and the call location, but this has 

not been proven, to our knowledge.  When the input data is organized by station, the post-averaging 

approach requires pre- and post-processing.  The pre-processing involves arbitrarily breaking preference 

ties, and it can be done as shown in Figure A-1.  The post-processing procedure averages performance 

measures over servers that, in reality, are given equal preference by all demand locations. 

Goldberg et al. (1990) describe a method for calculating server-specific busy fractions in order to 

calculate expected coverage in the objective function of their optimization problem.  A number of related 

papers present extensions to this model (including allowing co-located servers) (Goldberg and Paz, 1991, 

Goldberg and Szidarovszky 1991c), and provide a focus on estimation of the server busy fractions 

(Goldberg and Szidarovszky, 1991, 1991a-c).  Many of these works include an assumption of 

independence between servers and in one (Goldberg and Szidarovszky, 1991c), the authors suggest a way 

to improve the accuracy of the estimated busy fractions by including correction factors similar to those of 

Jarvis, but state that these had not been developed for the extensions in that paper (multiple vehicles per 

station and multiple vehicles responding to a call).  The model for multiple vehicles per station does 

account for dependence among the vehicles in each station (using Erlang’s loss formula) but assumes 

server independence between stations.  One paper (Goldberg and Benitez, 1990) presents a 
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method (the “Decomposition method”) for approximately calculating server busy fractions without 

assuming independence and compares the results to those obtained using Jarvis’ approximate method as 

well as an approximation that assumes independence between servers.  The results indicated that both the 

Decomposition method and Jarvis’ method performed better than the method with the independence 

assumption, and that as the system load increased the differences became more pronounced.  They also 

found that the Decomposition method and Jarvis’ method performed equally well for low loads, but that 

Jarvis’ method performed better for higher loads.   

Some lessons from the papers of Goldberg and Szidarovszky (1991, 1991a-c) are relevant to our 

work.  The first is that for estimating the server utilization, a Seidel iterative process converges at a faster 

rate than a Normal iterative process over a broad range of cases.  The next is that it is valuable to 

formulate the problem in such a way that the server busy fractions at each step of the iterative process will 

always stay in the range [0, 1].  Finally, they suggest a way to deal with incorporation of correction factors 

to correct for the assumption of independence, without affecting the convergence results.  In particular, 

they were able to provide theoretical convergence guarantees (i.e., a set of sufficient conditions that 

guarantee convergence) under the independence assumption, but could only extend these to the 

approximate hypercube procedure by assuming a single server at each station and that the correction 

factors were pre-specified constants, independent of the system load.   

 

for each demand node j in N do: 

 k � 1, i � 1, n � 1 

 while k ≤ Σi si  

  τ’kj � τij 

  a’kj � aij + (n – 1)/Σi si 

  n � n + 1 

  if n > si then 

   n � 1 

   i � i + 1 

  end if 

  k � k + 1 

 end while 

 sort {a’1j, a’2j, …} in ascending order, replace each entry with its rank. 

end do 

Figure A-1: Pre-processing of station-level data for use with a server-based approximate hypercube 

model.  This procedure expands the station-demand node preference matrix into a server-demand node 

preference matrix (a’kj) and similarly expands the average service time matrix to create (τ’kj), by replacing 

the column for each station with multiple vehicles with columns for each vehicle.  
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The second stream of literature, location models for emergency service systems that incorporate 

methods of modeling server unavailability, is relevant in terms of motivating this work.  Taken together, 

these papers highlight the importance of modeling server unavailability and specifically, the need for 

models that take into account the aspects of emergency service systems that we focus on (demand 

variation by station, multiple servers per station, customer/server dependant service times, and server 

cooperation).  Brotcorne, Laporte, and Semet (2003) provide a recent survey of this stream.  Here, we 

mention only a few papers that are representative of how models of ambulance availability have been 

embedded in optimization models for facility location: Daskin (1983), who incorporated a system-wide 

busy fraction into the maximal covering location problem of Church and ReVelle (1974), and ReVelle and 

Hogan (1988, 1989), who incorporate local estimates of ambulance unavailability (region-specific busy 

fractions). 

Our paper’s main contribution is to adapt the approximate hypercube model for use with station-

specific data and to prove that a restricted version of the model is guaranteed to converge. 

Appendix B: Comparison of the AH Model to Simulation and the Exact 

Hypercube Model  

The system we deal with can be described as a multi-server loss system with distinguishable servers.  

Analysts who would like to evaluate the performance of such systems have three main options: (1) exact 

numerical solution, (2) discrete event simulation, and (3) an approximate approach, such as the 

approximate hypercube model.  These three approaches have different strengths and weaknesses and all of 

them deserve to be in an analyst’s toolkit.  The advantage of an exact approach is obvious: it provides 

exact answers.  The main drawback is that the size of the state space (and, therefore, the required storage 

space) needed to model the system as a Markov process grows rapidly with system size and the level of 

detail that the model includes, i.e., the “curse of dimensionality.”  The advantages of simulation include 

the flexibility to represent as much detail as desired and the availability of powerful and relatively easy-to-

use software.  The drawbacks of simulation are that all answers are subject to sampling error and run 

lengths required to achieve acceptable accuracy are highly dependent on such system characteristics as the 

number of servers, the average system utilization, and even which performance measure is to be 

estimated.  Koopman (1972) discusses the pros and cons of an exact approach versus simulation in greater 

detail, in the context of queueing systems with time-varying parameters.  
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Against this backdrop, the advantages of the approximate hypercube model are easily stated: it is fast, 

with computation times that grow slowly with system size, and it is sufficiently accurate for most practical 

purposes. 

To make matters more concrete, consider how large an instance of the exact hypercube model is 

solvable with current computing technology.  The size of the state space for this model is 2
s
, where s is the 

number of servers.  At a minimum, one must store the entries in the vector of steady state probabilities 

(the entries in the transition rate matrix could be computed as needed, rather than stored).  With single 

precision floating point arithmetic (requiring 8 bytes per entry) and a 1,000 Gb hard drive (the largest 

capacity currently available), s can be at most ( )9

2log 1000 10 /8 36 × =  .  In contrast, we have used the 

approximate hypercube model for systems with as many as 57 servers (the Calgary Health Region, which 

includes the city of Calgary and adjacent rural communities). 

For simulation, Srikant and Whitt (1996) provide approximate formulas for run lengths to estimate 

blocking probabilities in loss systems with specified precision.  They argue that the computational effort 

to simulate a loss system is approximately proportional to the arrival rate λ times the simulation run length 

t, or in other words, to the expected number of simulated calls for service.  From equations (9), (14), (15), 

(17), and (20) in their paper, we obtain the following approximation for the simulation computational 

effort for a lightly loaded loss system (one with λτ < s) with a Poisson arrival process and i.i.d. service 

times with coefficient of variation equal to 1: 

 
2

2

/ 2 / 2

2 2

2z
t e

β −γλ ≈
ε πγ

.  

Here, / 2zβ  is the upper / 2β  percentile of a standard normal distribution, ε  is the desired 1−β  

confidence interval half width for the blocking probability, and ( ) /sγ = λτ − λτ .  Figure A-1 shows the 

computational effort as a function of the number of servers, for / sρ = λτ  equal to 30%, 50%, and 70%, 

assuming that a 95% confidence interval with a half width of 0.01% for the blocking probability is 

desired. 

As Figure B-1 makes clear, the simulation effort increases rapidly with ρ  and decreases rapidly with 

the number of servers.  Obtaining a reliable estimate for the blocking probability, however, may not be 

sufficient.  More important would be to obtain reliable estimates of the dispatch probabilities for each 

demand node, for the most preferred servers.  Estimating the simulation effort required to obtain 
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reliable estimates of these probabilities is a topic worthy of further research.  However, the available 

estimates for run lengths required to estimate blocking probabilities suggest that simulation is most 

efficient when utilization is low and the number of servers is large. 
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Figure B-1: Simulation effort required to estimate blocking probabilities in a loss system to 0.01% with 

95% confidence, as a function of number of servers and offered load per server (rho). 

To conclude, an exact approach is feasible with a small number of servers and simulation is likely to 

be effective for systems with low utilization and a large number of servers.  In contrast to these more 

accurate approaches, the performance of the approximate hypercube model is far less sensitive to the 

number of servers and the system utilization. 

Appendix C: Derivation and Magnitude of Station-Specific Correction Factors  

Consider an / / /M M s s  system with arrival rate λ , average service time τ  (we discuss how to estimate 

τ  later), and let / sρ = λτ .  We will refer to this / / /M M s s  system (which approximates the real 

system) as the parallel system.  To simplify notation we suppress the dependence of various quantities on 

the node j .  We establish a correspondence between the parallel system and the real system as follows.  

When a call arrives from node j , the dispatcher in the real system first checks whether any of the (1)s  

ambulances at the most preferred station for that node are available.  If none are available, then the 

dispatcher checks whether any of the (2)s  ambulances at the second-most preferred station are 
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free, and so on, until a station is found with at least one free ambulance.  The corresponding sequence of 

events in the parallel system is to first select (1)s  servers at random and check whether at least one of them 

is idle.  If not, then select (2)s  servers at random from the (1)s s−  servers that have not been checked 

already (i.e., sampling without replacement) and continue in this manner until a station with at least one 

free server is found. 

With this correspondence in mind, we define the following events for the parallel system: 

 
th

th

: exactly  servers are busy

: all servers at  preferred station are busy

: the  preferred station has at least one free server

n

k

k

S n

B k

F k

 

Additionally, we define 1, 1 2n n
B B B B≡ ∩ ∩ ∩L . 

Using the law of total probability, we can express the probability that the first free server is found at 

the 
th

k  preferred station as 

 

1, 1 1, 1

1

1, 1 1, 1

1

Pr{ } Pr{ | }

Pr{ | }Pr{ | }

s

k k k k n n

n

s

k n k k n n

n

B F B F S P

B S F B S P

− −
=

− −
=

∩ = ∩

= ∩

∑

∑
 (C-1) 

Letting ( 1) (1) (2) ( 1)k k
z s s s− −= + + +K  be the total number of ambulances at the 1k −  most preferred 

stations, consider the probability that all of these ambulances are busy, given that a total of n  servers are 

busy, i.e., 1, 1Pr{ | }
k n

B S− .  If u  ambulances have been checked and found to be busy, then the chances 

that the 
st( 1)u + ambulance checked is busy are ( ) /( )n u s u− − .  It follows that 

 ( 1)

( 1)

1
1, 1

( 1)

0

0 if 1 or 

Pr{ | }
if 1 and 

k

k

z
k n

k

u

k z n

B S n u
k z n

s u

−

−

−
−

−

=

= >


=  −
> ≤ −

∏
. (C-2) 

The probability that the 
th

k  preferred station has at least one free ambulance, given that all ambulances at 

the 1k −  most preferred stations are busy and a total of n  ambulances are busy is 
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( )

1, 1 1, 1

( )

1

( 1)

( )

0 ( 1)

Pr{ | } 1 Pr{ | }

1 if 

( )
1 if 

( )

k

k k n k k n

k

s

k

k

u k

F B S B B S

z n

n z u
z n

s z u

− −

−
−

= −

∩ = − ∩

>


− += 
− ≤ − +

∏
 (C-3) 

Combining (C-1) – (C-3) and substituting 0( ) / !n

n
P s P n= ρ  results in 

 

( 1) ( )

( 1)

( 1) ( )

( 1)

1 11
( 1)

1, 1 0

0 0 ( 1)

1 11

0

0 0

( )( )
Pr{ } 1

! ( )

( )

!

k k

k

k k

k

z sns
k

k k

n z u u k

z zns

n z u u

n z us n u
B F P

n s u s z u

s n u n u
P

n s u s u

−

−

−

−

− −−
−

−
= = = −

− −−

= = =

 − +ρ −
∩ = − 

− − +  

 ρ − −
= − 

− −  

∑ ∏ ∏

∑ ∏ ∏

 (C-4) 

Now it is necessary to relate 1, 1Pr{ }
k k

B F− ∩  to the dispatch probabilities
ij

f  of the real system.  In the 

parallel system, the fraction of time each server is busy is (1 )
s

r P= ρ − . Therefore, we set 

 ( )( 1) ( )

1, 1 ( )Pr{ } ({ }, , ) 1k kz s

k k j k j
B F Q s k r r−

− ∩ = ρ −  (C-5) 

Solving for the correction factor, substituting (C-4), and re-introducing the subscript, j, where appropriate 

to show the dependence on the demand node, gives 

 

( )

( 1) ( )

( 1)

( 1) ( )

1 11

0

0 0

( )

( )

!
({ }, , )

1

k j k j

k j

k j k j

z zns

n z u u

j k j z s

s n u n u
P

n s u s u
Q s k

r r

−

−

−

− −−

= = =

 ρ − −
− 

− −  ρ =
−

∑ ∏ ∏
 (C-6) 

Figure C-1 illustrates how ( )({ }, , )
j k j

Q s kρ  varies with ρ  and k and for different scenarios ( ){ }
k

s .  In 

the first scenario (Panel 1), each of ten stations has one server.  In this case, (C-6) reduces to the correction 

factor formula (5) from Jarvis (1985).   The second scenario (Panel 2) is identical to the first except that 

the fourth preferred station has two servers.  The third scenario (Panel 3) has two servers at the second 

preferred station and three servers at the fourth preferred station.  In Panel 4, the correction factors for a 

number of different scenarios, or ( ){ }
k

s , are shown as identified in the legend, all for ρ = 0.4.  By 

comparing the graphs, one can see that increasing the number of servers at a particular station results in 

steeper functions beyond that station (towards the less preferred stations), and that the impact is much 

larger for lower values of system load.  It is also evident from the graph in Panel 3 that as the number of 

servers increases, the linearly interpolated curves will not necessarily remain convex.   
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An additional insight from Panel 4 is that the correction factors are the same for the same number of 

total more preferred servers at a given k, even if the ( ){ }
k

s  vector up to that k is not the same (e.g., 

scenarios {1,3,1,1,1,1,1,1,1,1}  and {1,1,1,1,1,3,1,1,1,1}).  Finally, note that although the vertical axis is 

truncated (at a value of 4 for the first 3 panels, and a value of 30 in the fourth panel), the values of Q can 

be much higher than this, especially at low loads and when there are multiple servers in the most preferred 

stations (at the lower values of k).  

 

 

Figure C-1: Graphs of ( )( ){ }, ,
j k j

Q s kρ . The first panel is for one server per station, the second panel has 

an additional server at the fourth preferred station, and the third panel has an additional server at the 

second preferred station and two additional servers at the fourth preferred station.  Panel 4 is for 0.4ρ =  

and gives a number of different scenarios, or ( ){ }
k

s , as identified in the legend.   
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Appendix D: Proof of Theorem 1 

Proof: Under the assumptions of the theorem, the algorithm can be described as follows: 

 ( )
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h h h h h

i i I ij l j

j l

s
h

h h h i
i i i i s

h h

i i i

r i I

V f r r r c r h i I

V
r g V r h i I

V s r

−

− − −

= =

−

−−

= =

= ≡ = =

 
 = ≡ = =
 + 

∑ ∏

K

K K K

K K

 

where ( )({ }, , )
ijij j ij j a j ijc Q s a= λ τ ρ  are positive constants.  We will use induction to prove that the sequence 

0{ }h

i h
r

∞

=  is non-increasing and bounded in the range [0, 1], for each i, which implies that these sequences 

converge.  Suppose that 11 0, 1,2, ,h h

i i
r r i I

−≥ ≥ ≥ = K .  This implies that 1 0, 1,2, ,h h

i i
V V i I

+≥ ≥ = K , 

because 
i

f  is non-decreasing in all of its arguments.  In turn, 11 0h h

i i
r r

−≥ ≥ ≥  and 1 0h h

i i
V V

+≥ ≥  taken 

together imply that 11 h h

i i
r r

+≥ ≥  because 
i

g  is non-decreasing in its two arguments.  Furthermore, it is 

easy to verify that 1 0h

i
r

+ ≥ .  Finally, direct substitution demonstrates that 0 11 0, 1,2, ,
i i

r r i I= > ≥ = K  and 

this completes the induction proof. Q.E.D. 

Appendix E: Sensitivity to Service Time Distribution 

The parallel / / /M M s s  system assumes exponentially distributed service times and the exact model 

that is closest to the system that we model (the exact hypercube model) also assumes exponentially 

distributed service times, with a mean that depends on the responding server (but not on the call location).  

In reality, the service time distributions are likely to have a coefficient of variation (CV) that is 

considerably smaller than 1 (the value for an exponential distribution) because the service time is the sum 

of components including the chute time, the travel time, and the on-scene time, all of which have CVs less 

than one.  Fortunately, the occupancy probabilities in the / / /M M s s  model are insensitive to the shape 

of the service time distribution beyond the mean (see, e.g., Gross and Harris, 1998).  Computational 

experiments by Jarvis (1975) indicate that although results for the loss version of the exact hypercube 

model are not completely insensitive to the shape of the service time distribution, its impact is extremely 

small.   
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We will use two examples, adapted from Jarvis (1975), to test how sensitive the steady state 

probabilities for a loss system with distinguishable servers are to the shape of the service time distribution.  

Jarvis uses distributions with a CV of 1 (an exponential distribution) and strictly between 0 and 1 (a 

convolution of two exponential distributions).  We complement Jarvis’ exact numerical results with 

simulation results for a system with deterministic service times (CV = 0), which allows us to see the range 

of results when the CV varies from 0 and 1.  Both examples assume two stations with one server each and 

two demand nodes.  In one example, the mean of the service time distribution depends only on the server 

and in the second example, the mean depends both on the server and the demand node. 

We implemented the simulation with the SSJ library (L’Ecuyer, 2004).  We simulated approximately 

3 × 10
8
 arrivals for each system, which resulted in 95% confidence interval half-widths (computed using a 

batch means approach) of less than 10
-4

 for all estimated probabilities shown below. 

The data for the first example is shown in Table D-1.  Jarvis computed the steady state probabilities of 

four system states (empty, unit 1 busy, unit 2 busy, both units busy) for both an exponential service time 

distribution and a convolution of two exponential distributions.  Table D-2 compares his results to 

simulation results for deterministic service times (to validate our simulation model, we also simulated the 

two systems that Jarvis solved.  The results agree to three digits.)  We see that the impact of the service 

time distribution on the steady state probabilities is quite small, appearing only in the third digit.  Note that 

the system is so heavily loaded that almost 50% of the calls are lost, so it represents an extreme situation 

that is unlikely to occur in reality.  We would expect to see even less sensitivity to the shape of the service 

time distribution for more realistic examples. 

Table D-1: Data for first example. 

Demand 

node 

Arrival 

rate 

 Server Mean service 

time 

Mean of 1st exp. 

component 

Mean of 2nd exp. 

component 

1 1  1 3/2 1 1/2 

2 2  2 7/12 1/3 1/4 

Table D-2: Results for first example. 

 Service time distribution 

State Exponential* Sum of exponentials* Deterministic 

Empty 0.128729 0.127742 0.125 

Unit 1 busy 0.262 0.263 0.265 

Unit 2 busy 0.123 0.124 0.125 

Both units busy 0.486 0.486 0.485 

* From Jarvis (1975) 
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In the second example, the arrival rates for the two demand nodes remain the same.  Now, we assume 

that station 1 is the closest to demand node 1 and that station 2 is the closest to demand node 2.  The 

average service times remain the same as before when the closest unit responds but we add 1/2 time unit 

to the average service time if the unit that responds is not the closest.  Table D-3 shows simulation results 

for this example, with exponential and deterministic service time distributions.  Here, we see larger 

differences than in the first example, but still, when rounded to two digits, all of the probabilities are the 

same for the two service time distributions. 

Table D-3: Results for second example. 

State Exponential Deterministic 

Empty 0.103 0.097 

Unit 1 busy 0.239 0.243 

Unit 2 busy 0.114 0.117 

Both units busy 0.544 0.544 

These simulation results strengthen Jarvis’ conclusion that the shape of the service time distribution 

beyond its mean has a small impact on steady state probabilities for loss systems with distinguishable 

servers. 

Appendix F: Additional Computational Results 

Magnitude of Correction Factors 

Figure F-1 provides information about the correction factors for the subset of cases (648 in total) of the 

Edmonton dataset in which all stations had at least one ambulance.  We tabulated the correction factors, 

Q , for these scenarios based on the value of k, the preference of the station in the response list for the 

demand node, using small bin sizes at the low end of the scale and larger bin sizes for higher values of Q  

(and hence use a log scale for the horizontal axis in the figure on the right).  The graphs give, for each bin, 

the relative portion of the correction factors for various station preferences, k.  As the graphs show, in 

general, less preferred stations have higher correction factors.  However, even second and third preferred 

stations have correction factors that are in some cases considerably higher than one.   
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Figure F-1: Relative frequencies of correction factors by station preference (the first through fourth 

preferred stations are shown on the left graph, and the sixth and eighth preferred stations are 

shown on the right graph) for 648 scenarios of the Edmonton dataset.  The horizontal axis for 

the right graph uses a log scale. 

Measurement Error 

In our experimental design to evaluate measurement error, we considered 4, 8, or 10 open stations, shown 

in Table F-1, together with the fraction of total demand from each station’s district.  We considered a 

station’s “district” to consist of all demand nodes for which that station was closest.  For each set of open 

stations, we used four different ambulance allocations, shown in Table F-2.  This table shows, for each 

allocation and each station, the number of ambulances as well as the station’s district demand divided by 

the number of ambulances.  The latter number provides a first-order approximation of the workload 

imposed on each ambulance.  In the rightmost column, we show the maximum difference between these 

workload estimates, which is a measure of how balanced an allocation is. 

 

Table F-1: Fraction of total demand from each station’s district. 

 
Station number 1 2 3 4 5 6 7 8 9 10 Total 

Using stations 6, 7, 9, and 10      24% 13%  22% 41% 100% 

Using stations 1 and 4-10 8%   6% 11% 13% 13% 13% 8% 29% 100% 

Using all stations. 8% 7% 3% 6% 8% 7% 12% 13% 8% 29% 100% 
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Table F-2: Ambulance allocations.  Each cell shows the number of ambulances allocated to the station, 

with the station’s district demand divided by the number of ambulances in parentheses.  The 

rightmost column shows the maximum difference between the numbers in parentheses. 

 
 Station 

Allocation 1 2 3 4 5 6 7 8 9 10 Diff. 

1      1 (24% ) 1 (13% )  1 (22% ) 1 (41% )  0.28  

2      1 (24% ) 1 (13% )  2 (11% ) 2 (20% )  0.13  

3      2 (12% ) 1 (13% )  2 (11% ) 3 (14% )  0.03  

4      2 (12% ) 2 (7% )  2 (11% ) 2 (20% )  0.14  

5 1 (8% )   1 (6% ) 1 (11% ) 1 (13% ) 1 (13% ) 1 (13% ) 1 (8% ) 1 (29% )  0.23  

6 1 (8% )   1 (6% ) 1 (11% ) 2 (6% ) 2 (7% ) 1 (13% ) 2 (4% ) 2 (14% )  0.11  

7 1 (8% )   1 (6% ) 2 (6% ) 2 (6% ) 2 (7% ) 2 (6% ) 3 (3% ) 3 (10% )  0.07  

8 2 (4% )   2 (3% ) 2 (6% ) 2 (6% ) 2 (7% ) 2 (6% ) 2 (4% ) 2 (14% )  0.11  

10 1 (8% ) 1 (7% ) 1 (3% ) 1 (6% ) 1 (8% ) 1 (7% ) 1 (12% ) 1 (13% ) 1 (8% ) 1 (29% )  0.25  

10 1 (8% ) 2 (3% ) 1 (3% ) 1 (6% ) 1 (8% ) 1 (7% ) 2 (6% ) 2 (6% ) 1 (8% ) 2 (14% )  0.11  

10 1 (8% ) 2 (3% ) 1 (3% ) 2 (3% ) 2 (4% ) 2 (3% ) 3 (4% ) 2 (6% ) 2 (4% ) 3 (10% )  0.07  

10 2 (4% ) 2 (3% ) 2 (2% ) 2 (3% ) 2 (4% ) 2 (3% ) 2 (6% ) 2 (6% ) 2 (4% ) 2 (14% )  0.13  

We simulated each allocation for system loads ( / sρ = λτ ) ranging from 0.1 to 0.9 by varying the 

total arrival rate of calls to the system.  The system load values are approximate because the average 

service time, τ , depends on the individual vehicle utilizations and so we estimated the average service 

time value (assuming an average system-wide utilization to calculate the dispatch probabilities).  See the 

published version of the main paper for a comparison of the results of the simulation and the results of our 

approximation procedure.  The relative error is generally under 2%. 
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