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Goal and Outline

• Goal: Develop insight and computational tools
for ambulance-deployment questions

• Why do small towns have to run ambulances
at lower utilizations than cities?

• Should the number of ambulances in
separate regions be proportional to the
number of calls?

• A New Approach to System-Status
Management
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Why do small towns have
to run ambulances at lower

utilizations than cities?
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Number of Calls in a Shift

Typical Fluctuation = 3
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Number of Calls in a Shift

Typical Fluctuation = 8
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Number of Calls in a Shift

Typical Fluctuation = 16
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1664

816

32

FluctuationsAverage Num
of Calls

Number of Calls in a Shift

N 2 √N

• Theory predicts
#calls is roughly
distributed as
Poisson(mean)

• For Poisson,
std dev = √average

• As average gets big,
relative fluctuations
get small
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Impact on Deployment

• Need to plan for N + 2 √N calls, where
N = average

• When N is small this is much bigger
than the mean

• When N is big, not much difference
• Disclaimer: Assumes all ambulances on

shift can cooperate. Not always true in
large areas
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Should the number of
ambulances in separate

regions be proportional to
the number of calls?
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Allocating Ambulances
Provincial or
regional planning

Traffic congestion
disconnects city
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• Two regions, no communication
• Calls that arrive when all ambulances in the

region are busy are “lost”
• What arrangment of c ambulances minimizes

lost calls?
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Two Locations, No Interaction

• Arrival rates λ1 and λ2

• Minimize λ1 L(λ1, c1) + λ2 L(λ2, c2)
•  s/t  c1 + c2 = c

• Q: Should ci
* be proportional to λi ?

• A: No…
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50 ambulances, 20 calls/hr
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10 ambulances, 4 Calls Per Hr
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So Where are We?

• Allocating in proportion to demand is
not always best

• Better to boost allocation to smaller
location slightly

• Limitation: Assumes all ambulances at
a location share the total load
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A New Approach to
System-Status Management
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Relocation

AKA
– Relocation
– Redeployment
– System status

management
– Move up
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Existing SSM Methods

• Have lookup table: Ideal ambulance
locations given number available

• Dispatch available ambulances to keep
those locations full

• Issues:
– Potentially many “cold” moves
– Crew prefers base to street corners
– How do we know it’s better?
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Ingredients for our Method

• Real-time information on ambulances
– GPS coordinates
– Status, e.g., at hospital for 12 minutes

• A simulation model of ambulance dynamics
• A function, V say, that gives the value or

quality of a configuration
• Managerial decisions on when and where to

consider redeployment
– E.g., Upon call completion only, or other times too
– E.g., Only to bases, or to other locations too
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1

Assume send ambulance to 1

Do 10 times:

     Simulate immediate future,
     and look up V for final
     ambulance positions, status

Compute average of V values

= 50.1 say

V=50.1

2

Assume send ambulance to 2

Do 10 times:

     Simulate immediate future,
     and look up V for final
     ambulance positions, status

Compute average of V values

= 63.2

V=63.2
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Some Features

• Super-fast simulations in real time
• Exploits upcoming information, e.g.,

Ambulance 2 should be free shortly
• Can limit potential moves

– To ambulances completing a call, or
– To ambulances already on the road, or
– To small set of destinations

• Dispatcher can intervene - override, query
• Can restrict relocations to “high benefit” ones
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Where Did V Come From?

• Selected in initial training phase - not in
real time

• Use “Approximate Dynamic
Programming” methods in conjunction
with simulation: “computer learning”

• Guess V - simulate it - improve it
• Computationally intensive!
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Shortcomings

• Need a simulation model
– Must be maintained
– Be careful to use right model for right day

• Need to customize for each installation
• Doesn’t work well with “large scale events”

like 9/11
• Haven’t yet tried multiple levels of care
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“Convergence”
(Edmonton – Thanks Armann)
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“Convergence” (Edm)
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Extra Redeployments? (Edm)
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Other Call Volumes?
(Certain City - Thanks Alex, Andrew)
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Varying # Ambulances
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What is Next For Us?

• Multiple levels of care
• How much better are street corners

than bases?
• Interaction with large-scale events
• Testing on high-resolution simulation

software
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Wrap-up
• Rural areas have higher ratio of

variability to average load
• Should increase resources to lower-

loaded areas beyond proportional
• Dynamic relocation can substantially

improve day-to-day performance
• Approximate DP: some art required
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Some Basis Functions

• Expected # missed calls over remaining
horizon

• # waiting calls that will be missed
• Rate of calls arriving to uncovered areas
• Rate of calls arriving to covered areas, that

will likely (Erlang loss) be missed
• If ambulances are not diverted from present

paths, future locations are also important.
Future versions of last 2 basis functions


