
Providing timely feedback through continuous 

integration in computer science education
Gokce Akcayir1, Denilson Barbosa2, Carrie Demmans Epp1

1EdTeKLA Group, Dept. of Computing Science, University of Alberta, 2 Dept. of Computing Science, University of Alberta

Continuous integration (CI) in 

Computer Science (CS) education

Continuous Integration is a professional 

practice that automatically attempts to build 

the software product every time new code is 

added.

CI in CS education:

▪ makes student progress visible [5]

▪ increases engagement [4]

▪ helps prepare undergraduate students for 

their career [2]

▪ supports team collaboration [1]

▪ provides continuous rapid feedback [3]

CI in the database course

The Database Management Systems 

course covers fundamental algorithms and 

data structures

Problem

Lack of early feedback

Results in

Students having no idea about the 

correctness of their work until it has been 

graded

Possible solution

Research Purpose

To examine if CI use

▪ is feasible

▪ helps students

▪ reduces the amount of TA work

Developer(s) 
writes code

CI tool 
runs tests

Code is ready for next 
step or deployment

Problem 
detected

Everything 
okay

Method

Research design

Action research

Participants

Students and TA’s of the course

Procedure

CI Integrated into 3rd year course 

▪ students were taught about CI 

▪ then, they were asked to use it before 

submitting their three programming 

assignments

Data collection

Focus groups and one-on-one interviews

Data analysis

Content analysis

Results

Benefits of CI in the course

▪ Engaging in a professional practice

▪ Students fealt reassured about their 

assignment submissions

▪ Provided clear and informative feedback

Issues related to CI use in the course

▪ Feedback on limited aspects of their code 

(e.g., validating formatting)

▪ Student lack of familiarity with CI

References

[1] Bruegge, B., Reiss, M., & Schiller, J. (2009). Agile Principles 

in Academic Education: A Case Study. In Proceedings of Sixth 

International Conference on Information Technology: New 

Generations, 1684–1686. https://doi.org/10.1109/ITNG.2009.76

[2] Eddy, B. P., Wilde, N., Cooper, N. A., Mishra, B., Gamboa, 

V. S., Shah, K. M., Deleon, A. M., & Shields, N. A. (2017). A 

Pilot Study on Introducing Continuous Integration and Delivery 

into Undergraduate Software Engineering Courses. In 

Proceedings of 30th Conference on Software Engineering 

Education and Training (CSEE&T), 47–56. 

https://doi.org/10.1109/CSEET.2017.18

[3] Schroeder, A., Klarl, A., Mayer, P., & Kroiß, C. (2012). 

Teaching agile software development through lab courses. In 

Proceedings of the 2012 IEEE Global Engineering Education 

Conference (EDUCON), 1–10. 

https://doi.org/10.1109/EDUCON.2012.6201194

[4] Sheth, S., Bell, J., & Kaiser, G. (2012). Increasing Student 

Engagement in Software Engineering with Gamification. 

Retrieved from 

https://academiccommons.columbia.edu/doi/10.7916/D8H99DF

0

[5] Süß, J. G., & Billingsley, W. (2012). Using continuous 

integration of code and content to teach software engineering 

with limited resources. In Proceedings of 34th International 

Conference on Software Engineering (ICSE), 1175–1184. 

https://doi.org/10.1109/ICSE.2012.6227025


