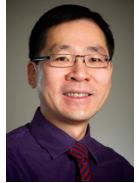
Online quizzes and blended/flipped learning in CHEM 101

Lead

Christie McDermott Assistant chair, UG student services


Team

Yoram Apelblat Chem 10X coordinator Faculty lecturer

Charles Lucy 3M teaching fellow Alex Brown Associate chair, UG

Arthur Mar Grunt

Roy Jensen Sessional instructor

CHEM 101 Introductory University Chemistry

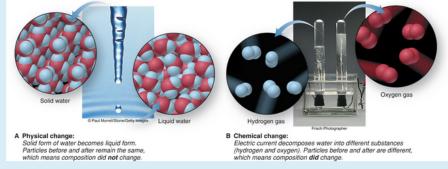

What's the deal?

- Humongous multisection course (>1700 students/year)
- Some sections co-taught with Chem 103 (for engineers)
- Core requirement (Science and ALES); elective (Arts, Education, ...)
- Diverse student backgrounds, interest, preparedness
- "Common" curriculum, different teaching styles, traditional lectures

Investment in blending/flipping and quizzes in CHEM 101

	Veinot	Mar	McDermott	Apeblat	Jensen
High school review quiz		+	+		+
Problem sets (not for marks)	+	+	+	+	+
Regular online quizzes (for marks)		+			+
Pre-class videos, "concept quizzes"					+
Video tutorials with self-assessments	+	+	+	+	+
Quizzes on video tutorials			+	+	+
Blended lecture attendance optional			+	+	
Exam sequels		+			

High school review quiz



- Defines expectations of prerequisite knowledge
 - basic concepts and definitions, significant figures, naming and formulas, moles and stoichiometry
- Eliminates one week of in-class "review" (Chapters 1-4)
- Familiarizes students to Moodle platform and quiz formatting
- Provides feedback on preparedness for Chem 101
- Unlimited attempts but need >50% to access further online quizzes for marks

High school review: Physical vs. chemical changes

Physical and chemical changes

Fig. 1.1 in your textbook shows the difference between physical and chemical change: Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

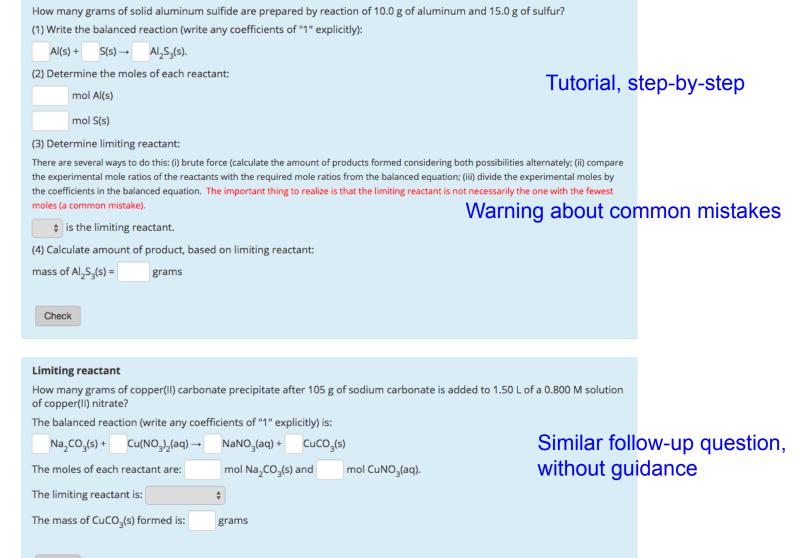
Tutorial

Physical properties (e.g., melting point, density) are characteristics of a substance shown by itself, without changing into or interacting with other substances. In a **physical change**, a substance changes its physical properties but not its composition.

Chemical properties (e.g., flammability, reactivity with acids) are characteristics of a substance as it changes into or interacts with another substance. In a **chemical change (or reaction)**, a substance is converted into different substance(s).

-
Question

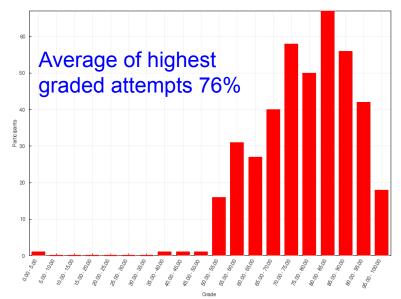
Ignition of gasoline is a chemical reaction of hydrocarbons with oxygen, to form carbon dioxide and water.

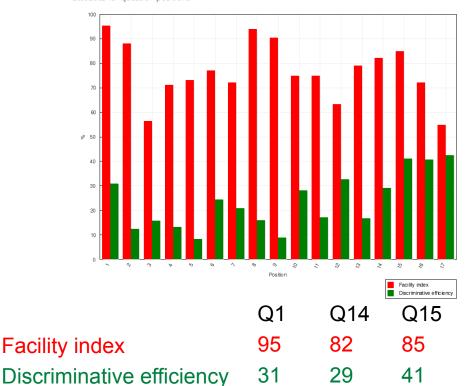

Evaporation of sweat is a physical change of water from liquid to gaseous states.

In dissolution, the sugar molecules previously arranged regularly in a crystalline state are now dispersed and surrounded by water molecules, but individual sugar molecules remain intact.

Feedback

High school review: Limiting reactant calculation


Limiting reactant tutorial


Check

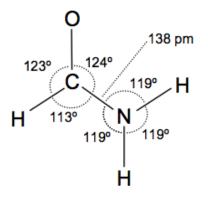
High school review quiz: Performance

Overall number of students achieving grade ranges

Statistics for question positions

After one week of classes:

- 367/406 students (90%) completed first attempts
- average 71%
- 11 students have never accessed eClass

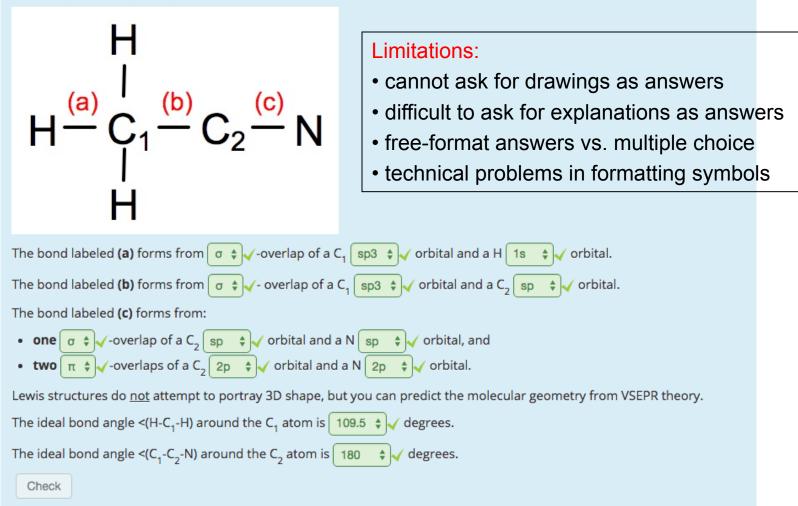

Problem sets: If you build them, they will not come

"Problem sets will be posted regularly. It is highly recommended that you work them out on your own as the questions resemble those on exams."

PROBLEM SET 4: MOLECULAR SHAPES; VALENCE-BOND AND MO THEORY CHEM 101/103 (Section H1 Mar) Oct. 9, 2014

References: 10.2–10.3 Molecular shapes; 11.1–11.3 Valence bond theory, MO theory Similar problems in Silberberg: Chap. 10: 34–48 even, 55, 57; Chap. 11: 13, 25, 32–42 even, 55

- 3. (Final exam, 2008) Formamide, with the skeletal structure shown, is used to manufacture pharmaceuticals such as penicillin.
 - (a) Draw possible Lewis structures, indicate formal charges, and explain which is the best resonance structure.
 - (b) Propose a bonding scheme based on the most important resonance structure.
 - (c) Predict the molecular geometry and bond angles around the N atom from VSEPR theory, based on the best resonance structure. Then suggest an explanation for the bond angles of 119° that are actually observed from experiment.



"To ensure that you are doing homework regularly, you will complete online assessments (for marks) periodically."

Online quizzes: They will come

Valence bond theory

The **skeletal** structure for acetonitrile (CH₃CN) is shown. Draw for yourself the best Lewis structure. Propose a bonding scheme by indicating the **hybridization** of the central atoms and the **orbital overlaps** for each bond.

Question types available in Moodle

Types

True-false

Multiple choice

Matching

Random short-answer matching

Short answer

Numerical

Essay (requires manual marking)

Cloze (embedded answers)

Calculated simple

Calculated

Calculated multichoice

My opinions:

- T/F virtually useless
- MC use intelligently but sparingly

• Use sparingly

• Must account for all possible entries, including misspellings and misformatting

• Best compromise available

- Applicable if result can be coded by single mathematical formula
- Range of randomized variables
- Complex to code, often not worth the hassle

Simple questions

Multiple choice in multiple versions

Real gases

Under which conditions is the gas most likely to behave according to the ideal gas law?

Select one:

⊖ He gas at 37.5 K and 750 torr	cross out
○ Ne gas at 375 °C and 0.75 atm	cross out
○ CH ₄ gas at 37.5 °C and 7.5 atm	cross out
⊖ H ₂ O gas at 375 K and 750 torr	cross out
○ SF ₆ gas at 375 °C and 0.75 atm	cross out
Check	

Real gases

Under which conditions is the gas least likely to behave according to the ideal gas law?

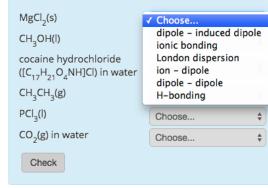
Select one:

0	Ar gas at 37.5 °C and 75 torr	cross out
0	H ₂ gas at 37.5 K and 7.5 atm	cross out
0	Ne gas at 37.5 °C and 75 torr	cross out
0	O ₂ gas at 37.5 K and 75 torr	cross out
0	Cl ₂ gas at 37.5 K and 7.5 atm	cross out
(Check	

Real gases

Under which conditions is the gas least likely to behave according to the ideal gas law?

Select one:


SO ₂ gas at 37.5 K and 7.5 atm	cross out
 He gas at 37.5 K and 750 torr 	cross out
O Ne gas at 37.5 K and 7.5 atm	cross out
N ₂ gas at 37.5 °C and 75 torr	cross out
N ₂ O gas at 37.5 °C and 750 torr	cross out
Charle	

Check

Matching

Interparticle forces

Determine the **dominant** interparticle force present in these substances.

Formal charge

Evaluate the formal charge of the atom indicated in these molecules.

N in NO ₂	Choose 🛊	
O in BrO	Choose 🛊	
N in CN	Choose 🛊	
$\operatorname{Pin}\operatorname{PCl}_3$	Choose 🛊	
P in PH4	Choose	
	1-	
Check	0 1+	
	1+	

Calculation questions

Question:

Isotopes and natural abundance

A hypothetical element X has two naturally occurring isotopes: A with an isotopic mass of 64.465 and B with an isotopic mass of 62.601. If the element X has an atomic mass of 63.518, what is the percent abudance of isotope A?

Provide your answer as a simple number (not scientific notation), without the % symbol. For full credit, your answer must be within 1% of the correct value.

Δ	L	r	۱	c	a,	A.I	e	r	-	
	ı		I	2		٠	6		٠	

Check

If you instruct students to write in scientific notation, this is what you get: 6.022E-23, 6.022*10^-23, 6.022E*^10-23, 6.022#@!-23. So best to avoid!

Important to define a tolerance and clarify this to students

Editing:

Question text*

Isotopes and natural abundance

A hypothetical element X has two naturally occurring isotopes: A with an isotopic mass of {mass1} and B with an isotopic mass of {mass2}. If the element X has an atomic mass of {atmass}, what is the percent abudance of isotope A?

Provide your answer as a simple number (not scientific notation), without the % symbol. For full credit, your answer must be within 1% of the correct value.

- Answers

Answer 1 formula =	
({atmass}-{mass2})/({mass1}-{mass2})*100	Grade 100% \$
Tolerance ±	
0.01 Type Relative \$	

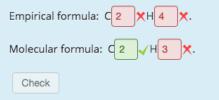
> Wild cards parameters used to generate the values

Cloze questions

Question:

Gaseous hydrocarbon

A 0.217-g sample of a gaseous hydrocarbon (C_xH_y) occupies 189 mL at 22.0 °C at 753 torr. Calculate the molar mass of this hydrocarbon in g/mol. *Express your answer as a simple number without units (not scientific notation); for full credit, the last digit of your answer should be within* ±1 of the correct value, with an appropriate number of significant figures.


Molar mass: 28.0 🗸 g/mol.

Complete combustion of 1.523 g of this gaseous hydrocarbon (C_xH_y) yields 4.779 g of carbon dioxide and 1.957 g of water. Calculate the moles of C and H in this amount of the hydrocarbon. *Express your answers as simple number without units (not scientific notation); for full credit, the last digit of your answer should be within ±2 of the correct value, with an appropriate number of significant figures.*

0.109 \times moles C in C_xH_v

.216 🗙 moles H in C_xH_v

Determine the empirical and molecular formulas of this hydrocarbon. *If a subscript in the formula is "1", enter it explicitly.*

Editing:

Question text*

Gaseous hydrocarbon

A 0.217-g sample of a gaseous hydrocarbon ($C_x H_y$) occupies 189 mL at 22.0 °C at 753 torr. Calculate the molar mass of this hydrocarbon in g/mol. *Express your answer as a simple number without units (not scientific notation); for full credit, the last digit of your answer should be within* ±1 of the correct value, with an appropriate number of significant figures.

Molar mass: {4:NUMERICAL:=28.1:0.1} g/mol.

Complete combustion of 1.523 g of this gaseous hydrocarbon (C_xH_y) yields 4.779 g of carbon dioxide and 1.957 g of water. Calculate the moles of C and H in this amount of the hydrocarbon. *Express your answers as simple number without units (not scientific notation); for full credit, the last digit of your answer should be within ±2 of the correct value, with an appropriate number of significant figures.*

{2:NUMERICAL:=0.1086:0.0002} moles C in C_yH_y

{2:NUMERICAL:=0.2172:0.0002} moles H in C_xH_v

Determine the empirical and molecular formulas of this hydrocarbon. *If a subscript in the formula is "1", enter it explicitly.*

Empirical formula: C{1:SA:=1}H{1:SA:=2}.

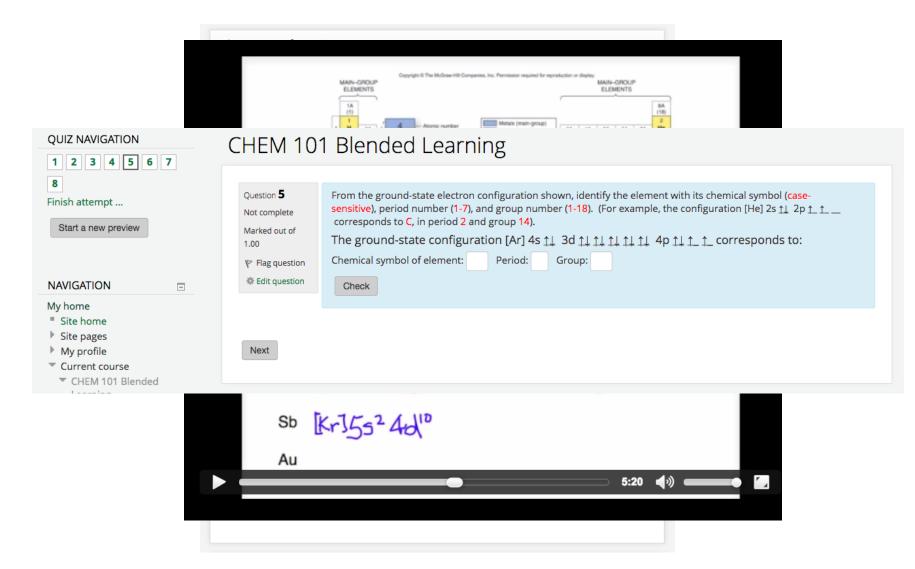
Molecular formula: C{1:SA:=2}H{1:SA:=4}.

Cloze format allows mix of question types in one block of text, approaching how we really do calculations by hand.

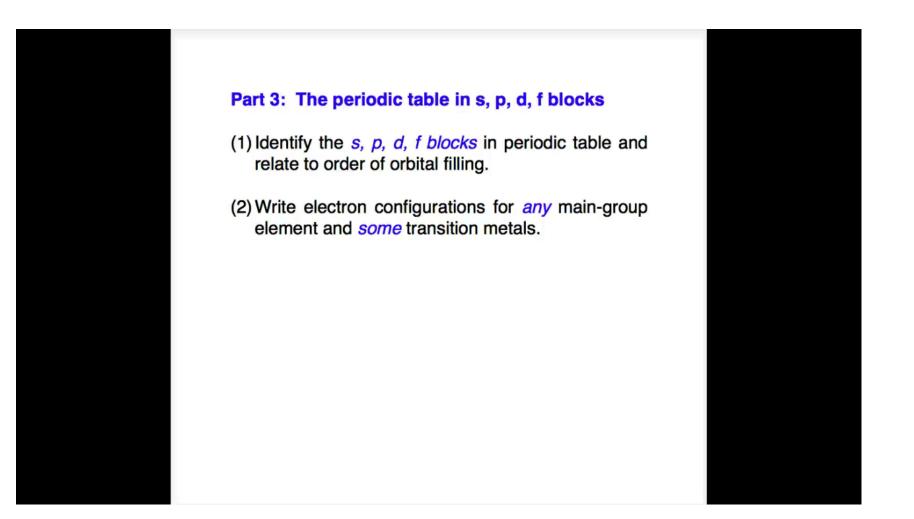
Problem sets vs. online quizzes: Activity reports

Unit 1. Atoms	
- Lectures	1942
- Problem Sets	3765
Voline quiz 1. One-electron atoms	5751
Voline quiz 2. Many-electron atoms	4413

Unit 2. Molecules

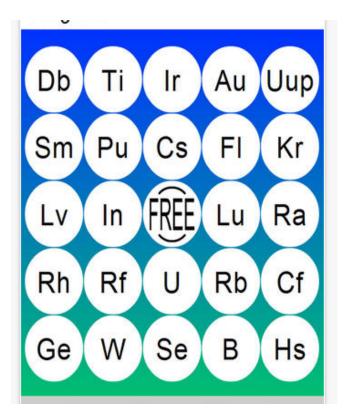

- Lectures	975
Problem Sets	3050
Online quiz 3. Models of chemical bonding	3882
Online quiz 4. Molecular shapes and bonding theories	4197
Online quiz 5. Main-group elements; acids and bases	3397

Unit 3. Gases, Liquids, and Solids


- Lectures	689
- Problem Sets	1638
Online quiz 6. Gases and kinetic molecular theory	3600
Online quiz 7. Phase changes and intermolecular forces	2847

- Are online lecture notes really essential?
- Do students only do assignments for marks?

Video tutorial: Electron configurations


Part 3 of video tutorial

Video tutorial: Molecular shapes

Molecule Shapes (1.05)		-	
e Teacher Help			101-00
Model Real Molecules			PhE
Image: Name Image: Name		Molecule - SF ₄ Options - Show Lone Pairs Show Bond Ang	5
Molecule Geometry Electron Geometry		4.8	
	08:05	4 » ——	

In-class activities

Square Planar

Write electron configurations for these elements

Draw Lewis structures for these molecules

Video lectures and assessments: Activity reports

Chem 101/103 (TR 0930-1050)

~380 students Dr. Mar (Optional)

Electron Configurations Video Lecture

Worksheets - Click first and print out	611
Elec. Conf. Part 1	737
Y Elec. Conf. Part 1 Self-Assessment	1548
Elec. Conf. Part 2	458
Y Elec. Conf. Part 2 Self-Assessment	912

Topic discussed in class on Sept. 18 62

Completed Part 1 assessment:

Before Sept. 18 class: 19/380 students (5%) Before Sept. 25 quiz: 130/380 students (34%) Before final exam: 244/380 students (64%) Unlimited access

Chem 101 (MWF 1000-1050)

~340 students Dr. Apelblat (Required)

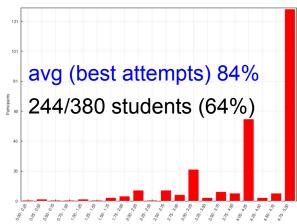
Electron Configurations (lecture 7 - Friday, Sept 19, 2014)

Online lecture - PowerPoint presentation	527
Lecture 7 - My original notes on electron configuration	734
- Worksheets - Print me first!	667
B Worksheet 1	210
B Worksheet 2	153
Electron Configurations Part I	1057
Topic discussed in class on Sept. 19	2167

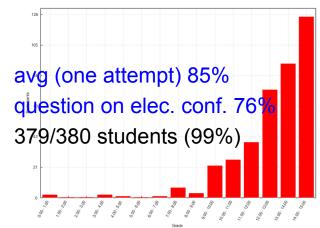
Completed Part 1 assessment:

Before Sept. 19 class: 295/340 students (87%) Accessible only until Sept. 20 account companyo

Electron Configurations Part III Assessment (not for marks) 1302

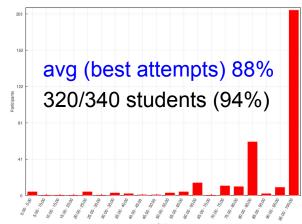

100

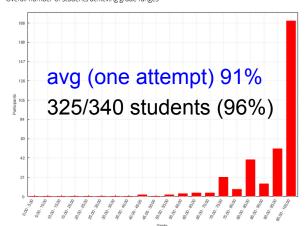
Video lecture assessments: Performance


Chem 101/103 (TR 0930-1050) ~380 students Dr. Mar (Optional)

Part 1 assessment

Overall number of students achieving grade ranges


Online quiz. (on "Many-electron atoms")


Chem 101 (MWF 1000-1050) ~340 students Dr. Apelblat (Required)

Part 1 assessment

Overall number of students achieving grade ranges

Online quiz (on Elec. Conf. only)

"Can I do something for extra credit?"

Question from in-class quiz 2:

(2) Identify the acid and the base among the reactants, and indicate which definitions (Arrhenius, Brønsted-Lowry, Lewis) apply.

NaH + $H_2O \rightarrow H_2$ + NaOH

"Exam sequel" question:

Acid-base definitions

Many students had difficulty analyzing the reaction of LiH or Nalther Mall use Nett for this discussion

NaH + $H_2O \rightarrow H_2$ + NaOH NaH is an example of a hydride, that is, a compound between hy			
about combinations of hydrogen with nonmetals, with transition What kind of hydride is NaH? ionic hydride \Rightarrow What is the oxidation state of hydrogen in NaH? -1 \Rightarrow	 Optional but worth so negligibly little (<0.01% to overall mark) that student ranking is unaffected 		
In the Arrhenius definition, an acid is a source of $H^{\dagger}(aq)$ and a base is a source of OH (aq). Does NaH contain H^{\dagger} or OH in its formula? no \downarrow Does the Arrhenius definition apply to this reaction? no \downarrow			
In the Brønsted-Lowry definition, an acid donates H^{\dagger} and a base accepts H^{\dagger} . (Note that there is no requirement for the reaction to be in aqueous solution in this definition.) You can neglect Na ⁺ from both sides of the reaction because it is just a spectator ion; the products are really just H_2 and OH ⁻ . The OH ⁻ species is derived by transfer of H ⁻ among the reactants from H2O to the hydride ion in NaH \downarrow . Therefore, the Brønsted-Lowry definition does apply; the acid is			
H2O \Rightarrow and the base is NaH \Rightarrow .			

Summary

Benefits

- Defines minimal expectation for student homework
- Regular assignments staves off cramming
- Provides feedback to students and instructor on mastery of topics
- Serves as useful tool for review

Challenges

- Extremely time-consuming to set up question bank, poor organization tools in Moodle
- Limited range of questions possible, cannot ask for written explanations or rationale for answers
- Must explain to students that online questions are <u>not</u> necessarily representative of real exam questions