Assess this: Educational Assessment Challenges and Practical Solutions Symposium 2015

Using concept inventory questions to measure student understanding and assess teaching methodologies

Saewan Koh University of Alberta Faculty of Science

Outline

- * What is a concept inventory?
- Differences from Student assessment
- * How are used and created?
- Implementation in Biology 108 Blended Learning Project

What is a concept inventory?

- "Series of questions designed to determine whether a student has an accurate working knowledge of a specific set of concepts for a given field." Wikipedia
- * "A Concept Inventory is an outline of core knowledge and concepts for a given field and a collection of multiple choice questions designed to probe student understanding of these fundamental concepts." Radish 2000

Differences from student assessment

Norm-referenced test

Student assessment

Concept Inventory

Differences from student assessment

Norm-referenced test

Student assessment

Criterion-referenced test

Concept Inventory

Differences from student assessment

Concept Inventory

Student's conceptual understanding

Distractors use common student misconceptions.

Based on peer review. Research component.

Student Assessment

Tests knowledge but not necessarily understanding

Distractors not necessarily based on misconceptions.

Not based on research.

Uses of concept inventories

- Assessing student understanding
- Assessing learning gains
- Assessing misconceptions
- Assessing teaching methodologies

- Determine key concepts that are essential for area of study
- Determine common misconceptions
- 3. Develop multiple choice questions
- * 4. Create test
- * 5. Validate

- * 1. Determine key concepts that are essential of area of study
 - Based on survey of literature. E.g. Concept inventory of Natural Selection (Anderson 2002) or Force Concept Inventory (Hestenes 1992)
 - Based on learning outcomes/objectives for course

- Determine common misconceptions
 - Past exams.
 - Published concept inventories.
 - Student interviews.
 - * Opened ended questions.

- 3. Develop multiple choice questions
 - Questions can come from published concept inventories
 - * Or where questions do not exist create new ones
 - Include correct answer as well as common misconceptions

- & 4. Create test
 - Factual knowledge
 - Mechanisms and beliefs

- * 5. Validate:
 - Discriminability
 - Consistency amongst test groups
 - Internal consistency of test

- Blended Learning Award 2015 PDLC
- Converting six topic areas
- Assess the efficacy of the conversions
 - Does blended learning improve learning gains in Biology 108?

		Sec1	Sec2
 Cross over Experimental 	Module 1	BL	TL
Design	Module 2	TL	BL
 Blended learning vs Traditional learning 	Module 3	BL	BL
 between sections within section 	Module 4	BL	TL
	Module 5	TL	BL
	Module 6	BL	BL

- CI questions at the start of each module.
 - Online or in-class clicker questions
- Short CI test after each module
 - Learning gains
- Surveys at the end of some of the modules
 - Engagement and satisfaction
- Interviews with a subset of students

- Relationships amongst:
 - Learning gains (understanding)
 - 2. Satisfaction
 - * 3. Engagement
 - * 4. Grades

Developing Concept Inventories

	Inventory	Team	Development Phase	Courses	# of Students Involved
	0. General Student Misconceptions in Biology	Joan Sharp	Reviewed student misconceptions and questions designed to address them (preliminary work).		
Completed	1. Meiosis	Pam Kalas Carol Pollock Jennifer Klenz Angie O'Neill	18 questions were validated through student interviews and were classroom tested.	BIOL 121 BIOL 334	~800
	2. Operon	Jared Taylor Elizabeth Imrie Karen Smith George Spiegelman	25 questions were validated through student interviews and were classroom tested.	BIOL 112	~1700
	3. Population and Community Ecology	Malin Hansen Thomas Deane Greg Bole Brett Couch	19 questions were validated through student interviews and were classroom tested.	BIOL 121 BIOL 230 BIOL 304	~800
	4. Speciation	Erica Jeffery Michelle Tseng Greg Bole	16 questions were validated through student interviews and were classroom tested.	BIOL 121	~600
In Progress	5. Transcription and Translation	Rosemary Oh-McGinnis Jared Taylor Sunita Chowrira	27 questions are currently being developed. Classroom testing will be done in BIOL 112 and BIOL 200.	BIOL 112 BIOL 200	~10
	6. Experimental Design	Thomas Deane Kathy Nomme Carol Pollock	25 questions are currently being developed. Classroom testing will be done in BIOL 140.	BIOL 140	~25
	7. Microevolution	Michelle Tseng Greg Bole	15 questions are currently being developed. Classroom testing will be done in BIOL 121 and BIOL 336.	BIOL 121 BIOL 336	~25

UBC Biology

 Multiple concept inventories in biology developed or developing.

Birol et al, 2012

Developing Concept Inventories

1) NATURAL SELECTION

Conceptual Inventory of Natural Selection (CINS) (20 MC items, scenarios)

Anderson DL, Fisher, KM, Norman JG. 2002. Development and validation of the conceptual inventory of natural selection. *Journal of Research in Science Teaching* **39**: 952-978.

Anderson DL. 2003. Natural selection theory in non-majors' Biology: instruction, assessment, and conceptual difficulty. Thesis (Ph.D.) University of California, San Diego and San Diego State University, San Diego, CA.

2) MACROEVOLUTION

Measure of Understanding of Macroevolution (MUM) (28 items: 27 MC items, plus one open- ended item, diagrams)

Nadelson LS, Southerland SA. 2010. Development and preliminary evaluation of the Measure of Understanding of Macroevolution: Introducing the MUM. *The Journal of Experimental Education* **78**: 151–190.

3) EVOLUTIONARY RELATIONSHIPS

Basic Tree Thinking Assessment (two tests, 10 MC items each, diagrams) Baum DA, Smith SD, Donovan SSS. 2005. The tree-thinking challenge. Science **310**: 979-980.

4) GENETICS LITERACY

Genetics Literacy Assessment Instrument (GLAI) (31 MC items) FOUR ITEMS PROVIDED in Bowling et al. Genetics 2008; ALL in Moskalik 2007)

Bowling BV, Acra EE, Wang L, Myers MF, Dean GE, Markle GC, Moskalik CL, Huether CA. 2008. Development and evaluation of a genetics literacy assessment instrument for undergraduates. *Genetics* **178**: 15-22.

Bowling BV, Huether CA, Wang L, Myers MF, Markle GC, Dean GE, Acra EE, Wray FP, Jacob, GA. 2008. Genetic literacy of undergraduate non-science majors and the impact of introductory biology and genetics courses. *BioScience* **58**: 654-660.

Developing Concept Inventories

5) GENETICS

Genetics Concept Assessment (GCA) (25 MC items, diagrams) ISmith MK, Wood WB, Knight JK. 2008. The genetics concept assessment: A new concept inventory for gauging student understanding of genetics. CBE Life Sci Edu 7, 422-430.

additional future tests to be posted online at www.colorado.edu/sei/departments/mcdb_assessment.htm

6) GENETICS

Genetics Literacy (13 two-tiered MC items, diagrams) Tsui CY, Treagust D. 2009. Evaluating secondary students' scientific reasoning in genetics using a two-tier diagnostic instrument. International Journal of Science Education **32**: 1073-1098.

7) INTRODUCTORY BIOLOGY

Biology Concept Inventory (BCI) (30 MC items) ITEMS PROVIDED ON-LINE at http://bioliteracy.colorado.edu/

Klymkowsky MW, Garvin-Doxas K, Zeilik M. 2003. Bioliteracy and teaching efficacy: What biologists can learn from physicists. *Cell Biol Educ* **2**: 155-161.

Garvin-Doxas K, Klymkowsky MW, Elrod S, 2007. Building, using, and maximizing the impact of concept inventories in the biology education: a meeting report. *CBE- Life Science Education* **6:** 277-282.

Klymkowsky M.W., K. Garvin-Doxas. 2008. Recognizing students' misconceptions through Ed's tools and the Biology Concept Inventory. PloS Biology 6: e3. doi:10.1371/journal.pbio.0060003.

Garvin-Doxas K, Klymkowsky MW. 2008. Understanding randomness and its impact on student learning: Lessons learned from building the Biology Concept Inventory (BCI). *CBE-Life Sciences Education* **7**: 227–233.

8) ANIMAL DEVELOPMENT

Developmental Biology Content Survey (15 MC items) Knight JK, Wood WB. 2005. Teaching more by lecturing less. Cell Biology Education **4**: 298-310.

Types of assessment

- Satisfaction USRI
- Engagement NSSE
- Student assessment Tests and exams
- Understanding Concept inventories

Summary

- * What is a concept inventory?
- Differences from Student assessment
- * How are used and created?
- Implementation in Biology 108 Blended Learning Project

Thanks to

- Norma Nocente Center for Teaching and Learning
- Tracy Onuczko Center for Teaching and Learning
- Heather Proctor Dept Biological Sciences
- Lien Luong Dept Biological Sciences
- Provost Digital Learning Committee