Undergraduate Writing Assignments in Mechanical Engineering: Targeting Attribute 7

Anne Parker

Centre for Engineering Professional Practice and Engineering Education

Faculty of Engineering University of Manitoba

Social Sciences and Humanities Research Council of Canada

Conseil de recherches en sciences humaines du Canada

Agenda

- Quick Overview: The Context
- The Writing Assignment Project: Targeting Attribute 7
- The Faculty-Wide Initiative: Developing the Rubrics
- Some Conclusions & Connections

Quick Overview

The Context

The 12 Attributes in Engineering

- 1. Knowledge base for engineering
- 2. Problem analysis
- 3. Investigation
- 4. Design
- 5. Use of engineering tools
- 6. Individual & team work

- 7. Communication skills
- 8. Professionalism
- 9. Impact of engineering on society/environment
- 10. Ethics & equity
- 11. Economics & project management
- 12. Lifelong learning

C.E.A.B., Outcomes & the Attributes

- Accreditation process must identify indicators for the 12 attributes & establish outcomes [i.e., what students know & can do] (http://www.engineerscanada.ca/accreditation-resources)
- Outcomes-based assessment requires evaluation of student learning + encourages accountability, taking a step back & reflecting on such things as
 - The "design readiness" of our graduates their technical proficiency
 - ☐ The communicative competence of our graduates their proficiency in communicating the engineering work
- □ Implicit in the list of 12 attributes all are equally important to the Engineering program & the engineering professional [though the expected competency level can vary]

Attribute 7: Communication Skills

- Also called "professional skills" i.e., they are integral to the profession
- We know the skills will include proficiency in writing & speaking
- But more difficult to define & measure than the traditional technical skills

This difficulty can lead to....

- "sterile notions of traditional grammar" –
 because grammar can be more quantifiable
- The engineering penchant for templates reduces an engineering genre to a "static recipe" rather than an "adaptive response to rhetorical exigencies"

[Broadhead, pp. 24-25]

Working definition – the ability to:

- communicate complex engineering concepts within the profession and with society at large;
 - includes reading, writing, speaking and listening;
 - also includes the ability to comprehend and write effective reports and design documentation;
 - also means the ability to give and effectively respond to clear instructions
- More than just remediation of writing deficiencies

Targeting Attribute 7 in a course

- Developing students' communicative competence
- Developing their disciplinary knowledge, including knowledge of the discipline-specific genres
- Developing "layered literacies" that encompass all the ways that engineers can "use language in producing information & solving problems" [Cargile Cook, pp. 5-6]

"Reality Check" – in Engineering

- Communication rarely mentioned as contributing to engineering success [Davis, 2010]
- The technical work often viewed as the "real work" [Ford and Riley, 2003]

"Reality Check" - in Engineering programs:

- limited number of course options available for developing communication skills throughout a student's program but even were this not the case –
- "paucity of requirements for writing instruction" few guidelines as to what communication skills require mastery of the material or correct grammar?

[G. Broadhead, 1999]

At the University of Manitoba

- Received 6 years of accreditation in 2012
- Our dean initiated an ambitious project to:
 - Analyze & define what the proficiency levels of our graduates might be for all 12 attributes at the student, course & program levels
 - Evaluate & improve our performance –
- Overarching goal is the continual improvement of student learning
- For Attribute 7 2 initiatives may help us meet these objectives and fulfill the C.E.A.B.'s requirements

The Writing Assignment Project

Targeting Attribute 7 at the U of M

Objectives of the National Study

- Provide systematic research about the writing demands placed on students in a variety of disciplines
- Identify the goals of discipline-specific student writing
- Map these writing demands & create a "program profile"
- Ultimately, promote discussion at the department & the faculty level curriculum, pedagogy,
- Findings can help to initiate the way writing is taught & supported within the departments/faculties

Variables studied include:

- "Nesting" or linking of assignments
- Audience
- Length of an assignment
- Time to complete the assignment
- Grading criteria & feedback provided
- Genre
- Frequency of assignments according to program year

Definition of "written assignment"

"course assignments where students were required to write extended prose in the documents that they handed in; a self-contained unit of discourse" [included writing reports in class time & reports that received a separate grade]

The Project at the U of M

- Collected course syllabi from all the departments [of Mechanical Engineering, Electrical and Computer Engineering, Biosystems Engineering, Civil Engineering and Design Engineering]
- Coded and reported on the data collected from 36
 Mechanical Engineering course syllabi offering 102
 written assignments [2013-2014] focus today

A. Parker, Edmonton, April 2015

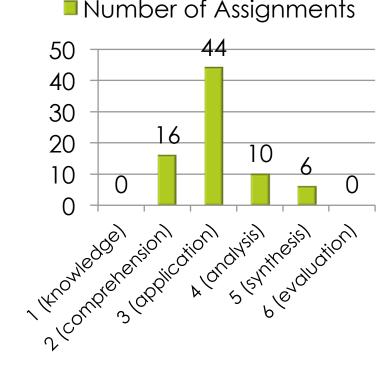
Findings

Mechanical Engineering

Written Assignments in M.E.

- Analyzed course syllabi that cited 102 written assignments given in 36 courses
- Missing or incomplete information about:
 - the feedback provided [only lab reports did] or criteria used [1 course syllabus did]
 - the relative weightings of the written & technical elements
 - assignment length & the time given to complete the assignment
 - the genre

Genre (instructor's term used)


Term Used	Number
"Assignment"	48
Research, project, progress or draft report	22
Lab assignment, report, laboratory	16
Design project, problem, work	11
Mini-project	3
Meeting minutes	1
Poster	1
Total # of Assignments	102

Observations

- 29 course syllabi identifiedA7 [102 assignments]
- Most writing assignments identified A7
- "reports/projects" represent over ½ of all assignments [most common genre]
- Lab reports most common genre in 2nd & 3rd years

Expected Competency Levels: A7

- Most writing assignments asked students to apply knowledge (combine separate elements into whole)
- Determined by the instructors

Expected Competency Level

Frequency of Written Assignments

	Year 2	Year 3	Year 4	Total
# of courses in sample	4	10	22	36
Total # of written assignments	16	18	68	102
Average # of written assignments per course	4.0	1.8	3.1	2.8

Observations

- Amount & type of written work required –varies in each year of a student's program – but significantly higher in 4th year
- On average students write almost 3 assignments per course (2.8) throughout their undergraduate M.E. degree
- CEAB attributes & outcomes were clearly indicated on each syllabus, but assignmentspecific detail was not

More observations

- Engineering very adept at creating charts of attributes, outcomes & competency levels
- Less adept at such pedagogical "stuff" as clarifying assignment genres, evaluation protocols, intended audience or even the requirements of the assignment
- And what are the relative weightings given to the written & the technical components of an assignment? is the "real work" the technical work after all? hard to tell

The Faculty-wide Initiative

Developing the Rubrics

For Attribute 7 –

How do we include it in our engineering curriculum?

How do we show that the desired outcomes have been met?

Rubrics may help us do that......

Rubrics help us to

- outline the performance levels [including the expected competency level]
- develop a comprehensive assessment tool

[J. Seniuk Cicek, Nariman Sepehri & J.P.Burakı

An understanding of the roles and responsibilities o public interest.

INDICATOR.	Level 1 Meeds Work
APEGM Code of Ethics: Awareness and understanding of the APEGM Code of Ethics and the Professional Engineering Act of Manitoba. Ability to evaluate and judge a situation using facts and the APEGM Code of Ethics and the Professional Engineering Act of Manitoba.	Little awareness runaware of the APEGNI Code of Ethics and the Professional Engineering Act of Manitoba.
Personal and Workplace Health and Safety: Awareness and understanding of personal and workplace health and sefety.	Unfamiliar with the importance of personal and workplace health and safety ignores workplace safety principles.
Registration as Professional Engineer: Knowledge of the need for and the process of being a Registered Professional Engineer	Demonstrates no known benefit or process for becaming a P.Eng.

Finally..... Rubrics help us to

- Develop a common language [a foundation for developing a shared understanding & common goals between all the stakeholders]
- Prepare our students to be "academically qualified to begin the process to be licensed as professional engineers"
- (http://www.engineerrscanada.ca/accreditation-resources)

E.G., For "Communication Skills," A7

- "Written Communication Skills" one focus area for A7
- "genre & disciplinary conventions" one "indicator" for the focus area [of written communication skills]
- performance levels strong, competent [benchmark], developing or needing work

"Genre" indicator: "competent" performance level

Competent	Demonstrates familiarity with, understanding of and use of the conventions inherent within the engineering genre and
	context/discipline

Developing the Rubrics: Some Added Benefits

- □ Has created a "culture of engagement" in engineering education – includes the Faculty, the professors, our industry partners, our students [Seniuk Cicek, Sepehri & Burak]
- Has helped all of us consider what attributes & competencies an engineer must possess, including communicative competence

Some Conclusions & Connections

Connecting the Written Assignments Project & the Faculty Initiative

Communication & Engineering

- Communication skills within the engineering curriculum should be integrated & iterative
- practice-based [not an "add-on"] leads to a stronger performance
- acknowledged as "equally important to engineering practice"- recognition by the program & the students as integral to the job & employer expectations

[M. Davis, 2010]

Written Assignment Project & Rubrics

- Writing project illustrates the importance of time spent on
 - Clarifying our pedagogical goals
 - Defining our expectations, such as the length of the assignments, feedback provided & genre required
- Illustrates the need for thinking deeply about what we need to teach, how we teach it & how we assess it

What Engineering now needs to ask:

- What do we want students to learn when they do a written assignment?
- Increase the student's knowledge of the discipline?
- Improve the student's skill in communication in particular, writing?
- Both?
- If so HOW?

Written Assignment Project & Rubrics

- Writing project can help to inform the continued development of the rubrics – by highlighting what needs to be included & the language we use
- Likewise the rubrics can help us to tailor our course assignments and syllabi so that accreditation outcomes are met, & attributes, indicators & assessment are clearly targeted

A. Parker, Edmonton, April 2015

Thanks!

Acknowledgements

Social Sciences and Humanities Research Council of Canada

Conseil de recherches en sciences humaines du Canada

- Roger Graves, Kathryn Marcynuk & Aly Koskela (Written Assignment Project]
- Douglas Ruth, NSERC Chair in Design Engineering
- Jillian Seniuk Cicek, Nariman Sepehri, Paul Laboissiere & J.P. Burak, Sub-committee Members, Faculty-wide Initiative [Rubrics]
- Ken Ferens, Industry Forums 1-6

References

- M.T. Davis, "Assessing technical communication within Engineering contexts, IEEE Transactions on Professional Communication[Special Section on Assessment in Professional Communication], v.53, n.4, pp. 33-45, 2010.
- J.D. Ford and L.A. Riley, "Integrating communication and engineering education: A look at curricula, courses, and support systems," Journal of Engineering Education, October Issue, pp. 325-328, 2003.
- G.J. Broadhead, "Addressing multiple goals for engineering writing: The role of course-specific websites," Language and Learning across the Disciplines [Special Issue on Communications across the Engineering Curriculum], v.3, n. 2, pp. 19-43, 1999.
- K. Cargile Cook, "Layered literacies: A theoretical frame for technical communication pedagogy," Technical Communication Quarterly, v.11, n.1, pp. 5-29, 2002.