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• How does random diffusion de-mix a 

suspension?
• What can we do with active matter?
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What’s a Colloid?

Colloids are small particles 
dispersed in a liquid.  They 
come in a variety of sizes - 
typically from 10nm to 
10µm - shapes and colors.  

Because of their small size, 
Brownian forces (kT) 
compete against 
interparticle forces (V) and 
hydrodynamics to set the 
structure and determine 
properties.

PROGRESS ARTICLE

300 nm

100 nm

40 nm

5 nm

Faceted polyhedra

500 nm

Rods and ellipsoids

1 μm2 nm 5 μm Patterned

10 nm 100 nm 1 μm

50 nm

Branched

10 nm

Colloidal molecules

1 μm

100 nm

10 μm

500 nm200 nm

10 μm

50 nm

100 nm

10 nm

Figure 1 Representative examples of recently synthesized anisotropic particle building blocks. The particles are classified in rows by anisotropy type and increase in size
from left to right according to the approximate scale at the bottom. From left to right, top to bottom: branched particles include gold31 and CdTe71 tetrapods. DNA-linked gold
nanocrystals50 (the small and large nanocrystals are 5 nm and 10 nm respectively), silica dumb-bells72, asymmetric dimers73 and fused clusters17 form colloidal molecules.
PbSe74 and silver cubes10 as well as gold26 and polymer triangular prisms15 are examples of faceted particles. Rods and ellipsoids of composition CdSe75, gold76, gibbsite4

and polymer latex60 are shown. Examples of patterned particles include striped spheres77, biphasic rods14, patchy spheres with ‘valence’34, Au–Pt nanorods78 (the rod
diameters are of the order of 200–300 nm) and Janus spheres13. Images reprinted with permission from the references as indicated. Copyright, as appropriate, AAAS, ACS,
RSC, Wiley-VCH.

expanded the range of possible colloidal structures to include, for
example, tetragonal, trigonal, simple cubic and ionic phases41,42.
These phases are moving closer to attaining the structural
complexity that future applications require. Adding shape and
interaction anisotropy to the particles further extends the possible
assemblies to motifs potentially as complex as those seen in
molecular crystals.

Indeed, although a general predictable relationship between
anisotropic building-block structure and the structure and
symmetry of ordered arrays produced from these building blocks
is not yet in hand, nanocolloid assembly is governed by the same
thermodynamics that produces ordered equilibrium structures in
systems of atoms and molecules. In fact, molecular analogues
such as liquid crystals, surfactants and block copolymers exhibit
building-block anisotropy that is conceptually similar to and
as diverse as the examples in Fig. 1. Thus, potentially, if
non-idealities peculiar to particles such as jamming and gelation
are avoided, anisotropic nanocolloidal particles ought to assemble
into morphologies as diverse as those of molecules. Applying the

analogy between molecules and nanocolloids implied by statistical
thermodynamics allows a rough assessment of the possibilities.

First, consider the analogy with crystallography. Atomic and
molecular packings are well-studied subjects, not only in the
context of the possible crystallographic space groups, but also
in terms of their relationship to the underlying point group
of the molecular species. Powerful computational schemes can
predict energetically favourable configurations (at least at 0 K)42.
For atoms, a suite of highly symmetric near-close-packed structures
that balance the constraints of atomic size and charge neutrality
dominate. This motif seems to hold as well on the colloidal
scale42–44. In addition, because nanoparticle and colloidal macro-
ions, unlike atoms, have nearly continuously tunable size and
charge, ionic crystals with no known atomic or molecular analogue
have been discovered42,45,46.

Addition of the directionality associated at the molecular
scale with covalent and hydrogen bonding expands the possible
structures towards those that are more open (such as diamond
and zeolites) and anisotropic (such as graphite). The directionality
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tion; second, the number of nearest neighbors
must not exceed six. For Janus particles whose
hydrophobic domains are hemispheres, Fig. 1A
displays pathways of reversible self-assembly, all
of which we observed. They form a complex net-
work in which multiple cluster possibilities em-
anate from every point and, likewise, routes from
every point can meet. The hydrophobic patches
lend appreciable orientational freedom to indi-
vidual particles within the clusters. This promotes
dynamical interconversion between clusters through
three major mechanisms: step-by-step addition of
individual particles, fusion of smaller clusters into
a larger one, and isomerization. The clusters in this
regime, with a size range N = 2 to 7 (fig. S1), are
similar to those formed in depletion-induced assem-
bly of homogeneous particles (5), except that for
homogeneous particles the clusters must be kept
isolated to avoid further aggregation. Here, cluster
aggregation is prevented by electrostatic repul-
sion between the charged surface regions, allowing
clusters to live in close proximity without fusing.

The ability to control the long-range repulsion
makes it possible to switch on clustering at will
by adding salt to Janus spheres in deionized
water. We found that after the distribution of
cluster sizes equilibrated (fig. S2), their shapes
continued to change. For example, the capped
trigonal bipyramid (CTBP) shape with cluster
sizeN = 6 formed first, then gradually isomerized
to themore symmetric octahedral shape (Fig. 1B).
These kinetic data are consistent with a reversible
first-order reaction with rate constants given in
the figure caption. In this system, the octahedral
shape is more stable. Nonetheless, the CTBP iso-
mer forms first, because growth proceeds via
rotation of a particle in a feeder cluster. Particles
located at the cluster ends have the largest ro-
tational freedom and thus act as the points where
additional particles join the cluster, causing elon-
gated structures to form. In a cluster, particles
constantly jiggle about their mean positions; this
process is analogous to highly excited vibrational
motion in molecules, where the vibrations oc-
casionally cause collective rearrangements. Mo-
lecular reaction dynamics occur on picosecond or
faster time scales (21), whereas these colloidal
transformations occur on the time scale of sec-
onds and can be visualized one by one without
ensemble averaging. These reaction dynamics are
illustrated in movie S1, showing cluster growth
from smaller clusters, and movies S2 and S3,
showing cluster isomerization via different path-
ways. Unlike micelles formed from molecules,
whose predominant growthmechanism is through
addition of monomers to preexisting micelles
(10), the rigid, spherical shape of these colloidal
building blocks allows them to rotate without
change of position such that clusters grow at their
ends by fusing with other clusters. A second dif-
ference is that, unlike molecular micelles whose
fluidity encourages shape to equilibrate rapidly,
these colloidal clusters possess definite config-
urations. For the same number of particles in a
cluster, there are distinctly different, long-lived shapes.

Fig. 1. Clusters formed from Janus spheres with one hydrophobic hemisphere. (A) Network of reaction
pathways, all of which we have observed in experiments at 3.8 mM NaCl. Reaction mechanisms of
monomer addition, cluster fusion, and isomerization are denoted by black, red, and blue arrows,
respectively. Isomers with N = 6 and N = 7 elemental spheres are highlighted in boxes. Movie S1 shows a
simple example of cluster growth by the fusion of two clusters. (B) A study of isomerization between two
types of N = 6 clusters, the capped trigonal bipyramid (CTBP) and the octahedron (OCT). Here and in all
other images, the Janus spheres have a diameter of 1 mm. After initiating the cluster process by setting the
NaCl concentration at 3.8mM, the partition of Janus spheres between clusters of different size equilibrates
after 20 min (see fig. S2) but isomerization continues. Once the total number of hexamers (black filled
circles) has stabilized, isomerization (fraction of CTBP, blue open circles) is consistent with first-order
reaction kinetics in time t, d[OCT]/dt = k1[CTBP] – k–1[OCT], time constant 34 min, k1/k–1 = 2.2, and
k1 = 0.02min−1. Here the calculation is based on the ensemble behavior of many clusters, among which
individual ones can follow different reaction pathways. Movies S2 and S3 compare different pathways of
isomerization.

Fig. 2. Triple helices formed at higher salt concentration and higher particle concentration. (A) Geo-
metrical representation of helix growth by face-sharing tetrahedra. (B) Comparison of a small chiral
cluster (3.8 mM NaCl) and a longer helical cluster (5 mM NaCl). For both cases, fluorescence images of
both right-handed and left-handed structures are shown. (C) Fluorescence image illustrating the stability
of wormlike structures at high volume fraction. Movie S6 shows the fusion of two chiral chains by
Brownian motion.
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Figure 1 Representative examples of recently synthesized anisotropic particle building blocks. The particles are classified in rows by anisotropy type and increase in size
from left to right according to the approximate scale at the bottom. From left to right, top to bottom: branched particles include gold31 and CdTe71 tetrapods. DNA-linked gold
nanocrystals50 (the small and large nanocrystals are 5 nm and 10 nm respectively), silica dumb-bells72, asymmetric dimers73 and fused clusters17 form colloidal molecules.
PbSe74 and silver cubes10 as well as gold26 and polymer triangular prisms15 are examples of faceted particles. Rods and ellipsoids of composition CdSe75, gold76, gibbsite4

and polymer latex60 are shown. Examples of patterned particles include striped spheres77, biphasic rods14, patchy spheres with ‘valence’34, Au–Pt nanorods78 (the rod
diameters are of the order of 200–300 nm) and Janus spheres13. Images reprinted with permission from the references as indicated. Copyright, as appropriate, AAAS, ACS,
RSC, Wiley-VCH.

expanded the range of possible colloidal structures to include, for
example, tetragonal, trigonal, simple cubic and ionic phases41,42.
These phases are moving closer to attaining the structural
complexity that future applications require. Adding shape and
interaction anisotropy to the particles further extends the possible
assemblies to motifs potentially as complex as those seen in
molecular crystals.

Indeed, although a general predictable relationship between
anisotropic building-block structure and the structure and
symmetry of ordered arrays produced from these building blocks
is not yet in hand, nanocolloid assembly is governed by the same
thermodynamics that produces ordered equilibrium structures in
systems of atoms and molecules. In fact, molecular analogues
such as liquid crystals, surfactants and block copolymers exhibit
building-block anisotropy that is conceptually similar to and
as diverse as the examples in Fig. 1. Thus, potentially, if
non-idealities peculiar to particles such as jamming and gelation
are avoided, anisotropic nanocolloidal particles ought to assemble
into morphologies as diverse as those of molecules. Applying the

analogy between molecules and nanocolloids implied by statistical
thermodynamics allows a rough assessment of the possibilities.

First, consider the analogy with crystallography. Atomic and
molecular packings are well-studied subjects, not only in the
context of the possible crystallographic space groups, but also
in terms of their relationship to the underlying point group
of the molecular species. Powerful computational schemes can
predict energetically favourable configurations (at least at 0 K)42.
For atoms, a suite of highly symmetric near-close-packed structures
that balance the constraints of atomic size and charge neutrality
dominate. This motif seems to hold as well on the colloidal
scale42–44. In addition, because nanoparticle and colloidal macro-
ions, unlike atoms, have nearly continuously tunable size and
charge, ionic crystals with no known atomic or molecular analogue
have been discovered42,45,46.

Addition of the directionality associated at the molecular
scale with covalent and hydrogen bonding expands the possible
structures towards those that are more open (such as diamond
and zeolites) and anisotropic (such as graphite). The directionality
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            Why do we care?
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Stokes-Einstein Relation

Brown (circa 1827)
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W. Sutherland (1905)!

(1859-1911)!

(age 20)!

7



n·rg + PeL(r
c

)n
z

g = Dah(✓)g

n·rg = Dah(✓)g

� PeL(r
c

)n
z

g

n·rg + PeL(r
c

)n
z

g

= Dah(✓)g

D = kTM

 

=

kT

6⇡⌘a

!

4

How did the field start?

Einstein (circa 1905)

Brownian Motion

€ 

x 2

€ 

t€ 

2D

Mean-square displacement

Stokes (circa 1851)

n·rg + PeL(rc)nzg = Dah(✓)g

n·rg = Dah(✓)g

� PeL(rc)nzg

n·rg + PeL(rc)nzg

= Dah(✓)g

D = kTM

 

=

kT

6⇡⌘a

!

FH
= �6⇡⌘aU

4

n·rg + PeL(rc)nzg = Dah(✓)g

n·rg = Dah(✓)g

� PeL(rc)nzg

n·rg + PeL(rc)nzg

= Dah(✓)g

D = kTM

 

=

kT

6⇡⌘a

!

FH
= �6⇡⌘aU

Re = ⇢Ua/⌘ ⌧ 1

4

n·rg + PeL(r
c

)n
z

g = Dah(✓)g

n·rg = Dah(✓)g

� PeL(r
c

)n
z

g

n·rg + PeL(r
c

)n
z

g

= Dah(✓)g

D = kTM

 

=

kT

6⇡⌘a

!

4

Stokes-Einstein-Sutherland Relation
Sutherland (circa 1879)
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Einstein and the effective viscosity
In Annalen der Physik (1906; corrected 1911)
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Einstein and Avagadro’s Number
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Jean B. Perrin (1926 Nobel Prize)

2/4/13 11:08 AM

Page 1 of 1http://upload.wikimedia.org/wikipedia/en/4/44/PerrinPlot2.svg

Definitive proof of the 
atomic nature of matter

11



‘Generalized’ Stokes-Einstein-Sutherland Relation

solvent
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Characteristic Scales:  A Simple Example

Spherical particle of 0.5µm of specific gravity 2 falling in water.
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The amazing rheology of spheres
In Annalen der Physik (1906; corrected 1911)
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The amazing rheology of spheres

Einstein (1906) Batchelor (1977)

€ 

aα€ 

aβ

€ 

rαβ

€ 

aγ

€ 

rαβIf you can do three, you can do N 

Stokesian Dynamics

How about the next term,           ?  Another 70 years?

n·rg + PeL(rc)nzg = Dah(✓)g

n·rg = Dah(✓)g

� PeL(rc)nzg

n·rg + PeL(rc)nzg

= Dah(✓)g

D = kTM

 

=

kT

6⇡⌘a

!

FH
= �6⇡⌘aU

Re = ⇢Ua/⌘ ⌧ 1

u0 ⇠ 1/r2 , S ⇠ 1/r3

g(r)

�⌘H = 5.0�2

�⌘B = 1.2�2

SB

⌘eff = ⌘
⇣
1 +

5
2�+ 5.0�2

+ 1.62�2
+O(�3

)

⌘

4

n·rg + PeL(rc)nzg = Dah(✓)g

n·rg = Dah(✓)g

� PeL(rc)nzg

n·rg + PeL(rc)nzg

= Dah(✓)g

D = kTM

 

=

kT

6⇡⌘a

!

F

H
= �6⇡⌘aU

Re = ⇢Ua/⌘ ⌧ 1

u0 ⇠ 1/r2 , S ⇠ 1/r3

g(r)

�⌘H = 5.0�2

�⌘B = 1.2�2

S

B

⌘eff = ⌘
⇣
1 +

5
2�+ 5.0�2

+ 1.2�2
+O(�3

)

⌘

F

H
= �R

⇤
(x)·U

4

16



Stokesian Dynamics (Re << 1)

Hydrodynamic:

m ⋅ dU
dt

= FH + FB + FP

τ p ~ O(m / 6πηa)

    ≈10−8s

Particle Motion:

Stokes drag

€ 

FH = −R x( ) ⋅ U −U∞( )

Brownian: O(10−13s)

€ 

FB = 0  ,   FB 0( )FB t( ) = 2kTR x( )δ t( )

Interparicle/
external: FP = ΔρVpg ,  electrostatic, etc.

Shape, multiparticle, bounded, etc.

€ 

a
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Nature of Hydrodynamic Forces:  FH = - R(x)•U
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Nature of Hydrodynamic Forces:  FH = - R(x)•U
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0

F/
6 π
η
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6543210
(r-2)/a

Near Field
Lubrication

Far Field
Many Body

Total

€ 

1 r( )

Lubrication:  closely spaced 
particles move as a single 
(rigid) rod, whether you push 
or pull.

Push

Pull

Lubrication:  near-field, two-body problem

19



Nature of Hydrodynamic Forces:  FH = - R(x)•U
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Stokesian Dynamics:  FH = - R(x)•U
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The amazing rheology of spheres

Three dimensional unbounded flow  -- periodic boundary conditions

Pe = ˙ γ a2 D = 6πηa3 ˙ γ kTHydrodynamics 
Brownian Motion
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Near Equilibrium Behavior:  ω → ∞

1

2

4

6
8

10

2

4

6
8

100

η
´ ∞

(φ
)

0.70.60.50.40.30.20.10.0
φ

Stokesian Dynamics (N=27-64)
Phillips, et al  (1989)
Ladd (1990)
Phung (1994)

Accelerated Stokesian Dynamics
 N=125  N=343
 N=512  N=1000
 N=2000

Experimental Results
van der Werff, et. al. (1989)
Shikata & Pearson (1994)

Asymptotic Form
 6.5ln(1/ε) + 0.17/ε
ε = (1 − φ/φrcp)

φrcp= 0.64

¥01 ª 1+ 5
2¡ + 5¡ 2 as ¡ ! 0

¥01 ª (1° ¡=¡ m)° 1 as ¡ ! ¡ m

ʹ′ η ∞ ~ 1 + 5
2 φ + 5φ2   as   φ → 0

ʹ′ η ∞ ~ ln(1 −φ φm )−1    as   φ →φm
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Zero-shear Brownian viscosity (Pe = 0)
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10
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3
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4

Δ
η
B /
η
0

0.60.50.40.30.20.10.0

φ

 van der Werff & de Kruif (1989)
 Segre et al (1995)
 Cheng et al (2002)
 SD, Foss & Brady (2000)
 ASDBM-nf, Banchio & Brady (2008) 
 Constant Stress, Swan & Brady (2012)   
 Dilute Theory, Batchelor (1977) 

ΔηB =η Pe→ 0( )− $η∞
φ = 0.58

€ 

η = ʹ′ η ∞ φ( ) + ∇ ⋅ RSURFU
−1 0( )∇ ⋅ RSURFU

−1 t( ) dt
0

∞

∫

(Banchio & Brady 2003)

Pusey & van Megen (1986)
0.48  0.50 -- 0.55   -----   0.58  ----  0.61
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Sheared ‘Hard-Sphere’ Suspensions

Three regimes:
Pe  << 1,  Brownian dominated
Pe   ~  1,  Balance
Pe  >> 1,  Hydrodynamic dominated

V
kT

φ

Fluid State

“Condensed” State

Pe =
6πηa3 ˙ γ 
kT

=   Brownian Time
Flow Time

=   a
2 / D
1/ ˙ γ 

, D = kT / 6πηa

Photo by Y. Monovoukas
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Brownian & hydrodynamic contributions to stress
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Stokesian Dynamics
  φ = 0.45, N = 27

 Total
 Hydrodynamic
 Brownian 

ηr

Pe = ˙ γ a2 D = 6πηa3 ˙ γ kT€ 

ηr
B φ( )x

y
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ηr
H φ( )

!
Bender & Wagner (1996)
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Rheology:  Simulation vs. Experiment
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van der Werff, et. al. (1989)
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φ  = 0.488

D'Haene, et. al. (1993)
 φ  = 0.276
 φ  = 0.389
 φ  = 0.460
 φ  = 0.484

Stokesian Dynamics
φ  = 0.316
φ  = 0.419
φ  = 0.47
φ  = 0.49

 

Pe = ˙ γ a2 D = 6πηa3 ˙ γ kT

ηr

G. Bossis and J. F. Brady: Rheology of Brownian suspensions 1871 

4.0..-----------------------, 
Extrapolated Pe -> 0 Limit 

1.5 

Pe·1 =0 

o Total viscosity 
o Hydrodynamic viscosity 
D. Brownian viscosity 

0.0 
1.0.2 10.1 10 0 101 102 103 1()4 105 

Pe 

FIG. 2. Relative viscosity as a function of the Peclet number for a mono-
layer of hard spheres: (-0-) total relative viscosity; (--/:1--) Brownian con-
tribution: (-0-) hydrodynamic contribution without the self part: 
- 5/3 'PA' 

Einstein's 5/2 <p) and the Brownian viscosity of this hard-
sphere suspension. By hard-sphere suspension we mean a 
suspension of particles that interact uniquely through hy-
drodynamic and Brownian forces; there are no interparticle 
forces. We can see that the hydrodynamic part remains con-
stant with a value of O. 71 ± 0.01 from Pe = 0 to Pe = 1 and 
then rises up to = 1.9 for Pe = oc. It is worth noting that 
for Pe = 104 even if the Brownian motion is very small (it 
scales as Pe - I) its influence is still quite important since 
= 1.51 instead of 1.9. The Brownian contribution at zero 

Peclet number has been extrapolated from a quadratic de-
pendency on Peclet number: ",:(Pe) = ",:(0) - A Pe2. 
General consideration about reversing the direction of shear 
in simple shear flow requires that the viscosity be a function 
of the square of the Peclet number. 22 

The total relative viscosity in Table II) is presented 
in Fig. 2. The qualitative behavior is quite similar to that 
observed experimentally.23-25 We observe a shear thinning 
region at low shear rates and then a plateau followed by a 
shear thickening region which begins between Pe = 103 and 
Pe = 104. This behavior can be easily understood by looking 
at the change in the local structure with the shear rate. 

The Brownian viscosity is given by the relation (21c); 
and, as noted before, if we consider pairwise hydrodynamic 
interactions it reduces to 

TABLE II. Cluster statistics as a function of the Peclet number. If the gap 
between two spheres is smaller than Ee they belong to the same cluster. S, 
and S2 are, respectively, the average size and average mass of the clusters 
[cf. Eqs. (26) and (27)]. 

P, Ee = 10-3 Ee = 10-2 Ec = 10-' 

S, 1.006 1.025 1.305 
0.25 S2 1.0115 1.052 1.671 

S, 1.054 1.372 2.34 
100 S2 1.117 1.\936 5.25 

S, 2.07 2.76 4.79 
00 S2 5.17 7.67 13.06 

"': = - (27/161T)(<p2/Pe) f W(r)xy;,.2g (r)dr, (25) 

where W(r) is a known function of the separation distance r 
between the two spheres; at large distances (actually r> 4a) 
it decreases as for a monolayer5 and 1/';; for a 3D sus-
pension,7 whereas for two particles at contact W = + 6.96 
for a monolayer and W = + 6.37 in 3D. At low Peclet 
numbers the deformation of the pair-distribution function is 
linear in the Peclet number as expressed by Eq. (23) and we 
get a constant value as Pe -> O. At higher shear rates the angu-
lar deformation of g( r) no longer responds linearly, and ap-
pears to saturate at high Peclet numbers in the range 
HX) < Pe < 10 000, as can be seen in Fig. 3 of Bossis and 
Brady.4 On the other hand, the function W(r) has no singu-
larity for r = 2a and decreases rapidly as a function of r. 
Thus we expect that the integral in Eq. (25) will become 
constant at high shear rates and that the viscosity will de-
crease as Pe - 1 as the scaling in Eq. (25) indicates. This is 
indeed what we find numerically for Pe > 10. 

This apparent Pe - 1 decay of the Brownian viscosity 
cannot, however be the ultimate scaling as Pe -> oc. The gen-
eral considerations about reversing the direction of shear in 
simple shear flow, predict that the Brownian stress should 
ultimately decay as Pe - 2 as Pe -> oc. That this should be the 
case can also be seen from Eq. (25) by noting that at 
Pe - 1 = 0, g( r) is an even function of x (reversing the direc-
tion of flow does not change the structure), and thus the 
integral in Eq. (25) is zero. Perturbation from the infinite 
Peclet number state should proceed in inverse powers ofPe, 
i.e., g(r)-goo(r) +Pe-lg_l(r) + ... as Pe->oc, and 
g _I (r) will be odd in x. Thus, the "': - Pe-2 as Pe-> oc. 

The simulation results shown in Table I are not, appar-
ently, at high enough Peclet number to detect the proper 
scaling as Pe -> oc . The same can also be said ofthe low Peclet 
number results. The extreme limits of high and low Pe pose 
numerical difficulties as the deformation of the microstruc-
ture is slight, requiring a very high level of statistical accura-
cy. 

The diminution of the Brownian viscosity with the Pe-
clet number is responsible for the shear thinning behavior 
since the hydrodynamic part remains constant for Pe < 1. 
The increase of the hydrodynamic viscosity accounts for the 
shear thickening part, and we shall see that it comes from the 
formation of transient clusters. In the absence of Brownian 
motion, experiments26 and simulations27 on a monolayer 
have demonstrated the existence of clusters whose size in-
creases with the volume fraction of solids. These situations 
correspond to an infinite Peclet number. When Brownian 
motion is added, it efficiently destroys the larger clusters 
[principally through the action of V' Ri'ul in Eq. (22)] as 
can be seen in Fig. 3 where we have plotted the percentage of 
spheres belonging to clusters which contain at least N 
spheres as a function of the size (in number of spheres) of 
each cluster. We see that for Pe = 0.25 there are no clusters 
of three or more spheres, whereas for Pe = 104,40% of the 
spheres belong to clusters of 3 or more and at infinite Peclet 
number 68% belong to clusters of 3 or more. The large dif-
ference between the two curves for Pe - 1 = 0 and 
Pe- I = 10-4 shows that a very small amount of Brownian 

J. Chern. Phys., Vol. 91, No.3, 1 August 1989 
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Mechanism of shear thickening:  hydroclusters
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Mechanism of shear thickening:  hydroclusters
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Wagner & Brady (Phys. Today 2009)
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anisotropic. The transient hydroclusters are the defining fea-
ture of the shear-thickening state. 

Referring back to figure 1, one can see that a colloidal
volume fraction ϕ = 0.50 produces a latex dispersion whose
viscosity is 1 Pa·s at a low shear stress and again at one more
than four orders of magnitude higher. The same viscosity
emerges for very different reasons, though. Changes in the
particles’ size, shape, surface chemistry, and ionic strength
and in properties of the suspending medium all affect the in-
terparticle forces, which dominate the viscosity at low shear
stress. Hydrodynamic forces, in contrast, dominate at high
shear stress. Understanding the difference is critical to for-
mulating a dispersion that behaves as needed for specific
processes or applications.

As shown in figure 3, rheo-optical measurements on
model dispersions experimentally confirm the predictions of

simulations that the shear-thickened state is driven by dissi-
pative hydrodynamic interactions. The flow generates strong
anisotropy in the nearest-neighbor distributions (see box 3).
The anisotropies give rise to clusters of particles and con-
comitant large stress fluctuations8 that, in turn, lead to high
dissipation rates and thus a high shear viscosity. The forma-
tion of hydroclusters is generally reversible, though, so re-
ducing the shear rate returns the suspension to a stable, flow-
ing suspension with lower viscosity. Moreover, even very
dilute dispersions will shear thicken, although the effect is
hard to observe.9

Controlling shear thickening requires different strate-
gies from those typically employed to control the low-shear
viscosity. The addition, for example, of a polymer “brush”
grafted or adsorbed onto the particles’ surface can prevent
particles from getting close together. With the right selection
of graft density, molecular weight, and solvent, the onset of
shear thickening moves out of the desired processing
regime.10 The strategy is often used to reduce the viscosity at
high processing rates but could increase the suspension’s
low-shear viscosity.

Indeed, because the separation between hydroclustered
particles is predicted to be on the order of nanometers for typ-
ical colloidal dispersions, shear-thickening behavior directly
reflects the particles’ surface structure and any short-range
interparticle forces at play. Fluid slip, adsorbed ions, surfac-
tants, polymers, and surface roughness all significantly influ-
ence the onset of shear thickening. Simple models based on
the hydrocluster mechanism have proven valuable in pre-
dicting the onset of shear thickening and its dependence on
those stabilizing forces.11

Figure 4 shows a toy-model calculation in which shear
thickening is suppressed by imposing a purely repulsive
force field—akin to the effect of a polymer brush—around
each particle that prevents the particles from getting too close
to each other.9 When the range of the repulsive force ap-
proaches 10% of the particle radius, the shear thickening is
effectively eliminated and the suspension flows with low vis-
cosity. Manipulating those nanoscale forces, the particles’
composition and shape, and properties of the suspending
fluid so as to control the sheer thickening, however, remains
a challenge for the suspension formulator.

Beyond hard spheres
Although the basic micromechanics of shear behavior in col-
loidal suspensions are understood, many aspects of the fas-
cinating and complex fluids remain active research problems.

At very high particle densities, dispersions can un-
dergo discontinuous shear thickening whereby the
suspension will not shear at any higher rate. Rather,
increasing the power to a rheometer, for example,
leads to such dramatic increases in viscosity and
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Figure 3. The measured viscosity of a concentrated col-
loidal suspension (squares) can be resolved into two com-
ponents—a thermodynamic component (circles) associated
with the stochastic motion of particles and a hydrodynamic
component (triangles) associated with forces acting be-
tween particles due to motion through the suspending
fluid. Light-scattering experiments combined with numeri-
cal simulations determine which forces dominate in differ-
ent stress regimes. (Adapted from ref. 13.) 
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Figure 4. Shear thickening can be suppressed by
reducing the interactions between particles, as
shown here based on numerical calculations. The ex-
tent of the reduction affects whether an increasing
Péclet number (a measure of shear rate) leads to a
shear-thickening state or a shear-thinning one. The
effect is evident experimentally when a polymer
layer, or brush, is grated onto the particles: The dis-
persion becomes progressively less viscous as the
brush thickness on each particle increases. (Adapted
from ref. 9.)
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Mechanism of shear thickening:  hydroclusters
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anisotropic. The transient hydroclusters are the defining fea-
ture of the shear-thickening state. 

Referring back to figure 1, one can see that a colloidal
volume fraction ϕ = 0.50 produces a latex dispersion whose
viscosity is 1 Pa·s at a low shear stress and again at one more
than four orders of magnitude higher. The same viscosity
emerges for very different reasons, though. Changes in the
particles’ size, shape, surface chemistry, and ionic strength
and in properties of the suspending medium all affect the in-
terparticle forces, which dominate the viscosity at low shear
stress. Hydrodynamic forces, in contrast, dominate at high
shear stress. Understanding the difference is critical to for-
mulating a dispersion that behaves as needed for specific
processes or applications.

As shown in figure 3, rheo-optical measurements on
model dispersions experimentally confirm the predictions of

simulations that the shear-thickened state is driven by dissi-
pative hydrodynamic interactions. The flow generates strong
anisotropy in the nearest-neighbor distributions (see box 3).
The anisotropies give rise to clusters of particles and con-
comitant large stress fluctuations8 that, in turn, lead to high
dissipation rates and thus a high shear viscosity. The forma-
tion of hydroclusters is generally reversible, though, so re-
ducing the shear rate returns the suspension to a stable, flow-
ing suspension with lower viscosity. Moreover, even very
dilute dispersions will shear thicken, although the effect is
hard to observe.9

Controlling shear thickening requires different strate-
gies from those typically employed to control the low-shear
viscosity. The addition, for example, of a polymer “brush”
grafted or adsorbed onto the particles’ surface can prevent
particles from getting close together. With the right selection
of graft density, molecular weight, and solvent, the onset of
shear thickening moves out of the desired processing
regime.10 The strategy is often used to reduce the viscosity at
high processing rates but could increase the suspension’s
low-shear viscosity.

Indeed, because the separation between hydroclustered
particles is predicted to be on the order of nanometers for typ-
ical colloidal dispersions, shear-thickening behavior directly
reflects the particles’ surface structure and any short-range
interparticle forces at play. Fluid slip, adsorbed ions, surfac-
tants, polymers, and surface roughness all significantly influ-
ence the onset of shear thickening. Simple models based on
the hydrocluster mechanism have proven valuable in pre-
dicting the onset of shear thickening and its dependence on
those stabilizing forces.11

Figure 4 shows a toy-model calculation in which shear
thickening is suppressed by imposing a purely repulsive
force field—akin to the effect of a polymer brush—around
each particle that prevents the particles from getting too close
to each other.9 When the range of the repulsive force ap-
proaches 10% of the particle radius, the shear thickening is
effectively eliminated and the suspension flows with low vis-
cosity. Manipulating those nanoscale forces, the particles’
composition and shape, and properties of the suspending
fluid so as to control the sheer thickening, however, remains
a challenge for the suspension formulator.

Beyond hard spheres
Although the basic micromechanics of shear behavior in col-
loidal suspensions are understood, many aspects of the fas-
cinating and complex fluids remain active research problems.

At very high particle densities, dispersions can un-
dergo discontinuous shear thickening whereby the
suspension will not shear at any higher rate. Rather,
increasing the power to a rheometer, for example,
leads to such dramatic increases in viscosity and
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Figure 3. The measured viscosity of a concentrated col-
loidal suspension (squares) can be resolved into two com-
ponents—a thermodynamic component (circles) associated
with the stochastic motion of particles and a hydrodynamic
component (triangles) associated with forces acting be-
tween particles due to motion through the suspending
fluid. Light-scattering experiments combined with numeri-
cal simulations determine which forces dominate in differ-
ent stress regimes. (Adapted from ref. 13.) 

N
O

R
M

A
LI

Z
ED

V
IS

C
O

SI
TY

PÉCLET NUMBER
10−2 10−1 100 101 102 103 104

0.4

0.6

0.8

1.0

2.0

Figure 4. Shear thickening can be suppressed by
reducing the interactions between particles, as
shown here based on numerical calculations. The ex-
tent of the reduction affects whether an increasing
Péclet number (a measure of shear rate) leads to a
shear-thickening state or a shear-thinning one. The
effect is evident experimentally when a polymer
layer, or brush, is grated onto the particles: The dis-
persion becomes progressively less viscous as the
brush thickness on each particle increases. (Adapted
from ref. 9.)
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Sudden Thickening (Maranzano & Wagner 2001)
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Shear thickening (the amazing part!)

‘Liquid Armor’
(Wagner)

Walking on water

Neat 
Kevlar

STF 
Kevlar

A bullet-proof vest

Cornstarch in water
also known as ‘oobleck’
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Active Matter:  External fields

Particles with a dielectric 
mismatch with the solvent 
will chain up when an 
external field is applied
(Winslow 1940).

‘Magnetorheological Fluid’

Particle chaining

Velev, NCState

B∞

The material can be changed 
from a low to high viscosity 
fluid (and even to a solid!) 
reversibly in a mille-second.
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Active Matter:  External fields

Magnetorheological Fluid

GM's Magnetic Ride Control is a 
complete, stand-alone vehicle 
suspension control system that 
uses innovative magneto-
rheological fluid-based actuators, 
four wheel-to-body displacement 
sensors, and an onboard computer 
to provide real-time, continuous 
control of vehicle suspension 
damping.

Cadillac Seville STS 2002
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Active Matter:  Internal activity
Paramecium Listeria Bacteria

Kinesin Motors Catalytic Nanomotors
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Active Matter:  Internal activity

Rotation of a magnetic particle.—While the vortex de-
cay technique offers a simple and intuitive way to estimate
the viscosity, it is indirect and based on a number of
assumptions about the flow structure, strain rate depen-
dence, etc. To probe the viscosity directly, we used a
technique based on measuring the viscous drag exerted
on a rotating magnetic particle in a rotating magnetic field
(see Fig. 4). We connected orthogonal pairs of magnetic
coils through current amplifiers to synchronized function
generators in order to create a magnetic field with a con-
stant amplitude of 0–10 Gs rotating horizontally in the
plane of the liquid film. A magnetized 100 !m Nickel
particle was placed in the center of the liquid film and
was held in place by gravity (through the gravitational
depression of the film). First, we determined the direction
of the particle’s internal magnetic moment by applying a
relatively strong constant magnetic field (10 Gs) of known
direction, forcing the particle to align its magnetic moment
with the direction of the applied field. Then, using custom-

made MATLAB software, we compared the image for an
arbitrary position and orientation of the particle with the
reference image and extracted the direction of the magnetic
moment of our particle ". This technique has much better
precision than the corresponding integration of angular
velocity of rotation. Second, we applied a rotating mag-
netic field H with an amplitude of 3 Gs and a rotational
frequency of ! ¼ 0:5 Hz.
The viscosity # can be extracted from the balance of

rotational viscous drag Tv / #@t" with the magnetic
torque Tm / !0H sin$, where $ is the angle between the
magnetic moment and the external field and !0 is the
particle’s magnetic moment. In the case of synchronous
rotation of the particle and field, @t" ¼ !, the viscosity
can be extracted from the angle $, since #" ðsin$Þ=!.
We measured the orientation of the particle’s internal
magnetic moment in each recorded frame while filling
the chamber with N2. Because of imperfection in the
particle’s shape and a noncircular depression of the film
by the particle, the angle$ fluctuates slightly near its mean
value (constant stray magnetic fields are excluded by pre-
cise calibration of our magnetic system). However, due to
the change in the viscosity, the mean value of $, and
correspondingly, magnetic torque Tm increases with time
(Fig. 5) as the N2=O2 ratio increases (hence the bacterial
motility decreases). The particle stops rotating when the
motility of the bacteria drops below some critical value: the
viscosity of the suspension becomes so high that the torque
required for rotation of the particle at constant rate ! is
larger than the maximum magnetic torque.
In the course of filling the chamber with N2, the torque

averaged over the period of rotation increased from 0.15 to
1 (measured in units of maximal possible torque) and then
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FIG. 3. Viscosity for 6 different concentrations of bacteria. #0

is the viscosity of the liquid without bacteria. Inset: instant
viscosity vs time during decay of the vortex for density n ¼
2:9% 1010. The dashed line is the average value of the viscosity
during the slow phase of decay. See movies 1 and 2 in [19].
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FIG. 5 (color online). Viscosity vs speed of the bacteria for
two concentrations: (a) n & 1:8% 1010 cm'3 (j) and
(b) n & 1010 cm'3 (d). Corresponding concentrations are in-
dicated in Fig. 3 [areas (a) and (b)]. #0 is the viscosity of the
solution of immobilized bacteria. Inset: Magnetic torque Tm (j)
calculated as sinð$Þ and typical velocity of tracers Vm ¼ 2hjVrji
(d) vs time. The dashed line shows the nonphysical values of Tm

and # calculated for a magnetic particle that is stuck.

Magnetic coils

Nickel
particle

Liquid film
with bacteria

FIG. 4 (color online). Left: a thin liquid film containing a
bacterial suspension and submersed Ni particle spanning be-
tween four movable fibers. Two pairs of magnetic coils create a
rotating magnetic field (four green arrows). Right: Field of view
of the microscope. The particle’s magnetic moment is shown by
a short yellow arrow and the external magnetic field by a long
green arrow. See movie 3 in [19].
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value (constant stray magnetic fields are excluded by pre-
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required for rotation of the particle at constant rate ! is
larger than the maximum magnetic torque.
In the course of filling the chamber with N2, the torque
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FIG. 4 (color online). Left: a thin liquid film containing a
bacterial suspension and submersed Ni particle spanning be-
tween four movable fibers. Two pairs of magnetic coils create a
rotating magnetic field (four green arrows). Right: Field of view
of the microscope. The particle’s magnetic moment is shown by
a short yellow arrow and the external magnetic field by a long
green arrow. See movie 3 in [19].
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Conclusions

• Hydrodynamics plays a fundamental role in the 
behavior of colloids

• Stokesian Dynamics is a general molecular-
dynamics-like method for studying colloids

• Even the humble sphere has a rich rheology - 
shear thins and shear thickens

• The fun has just begun!
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Figure 1 Representative examples of recently synthesized anisotropic particle building blocks. The particles are classified in rows by anisotropy type and increase in size
from left to right according to the approximate scale at the bottom. From left to right, top to bottom: branched particles include gold31 and CdTe71 tetrapods. DNA-linked gold
nanocrystals50 (the small and large nanocrystals are 5 nm and 10 nm respectively), silica dumb-bells72, asymmetric dimers73 and fused clusters17 form colloidal molecules.
PbSe74 and silver cubes10 as well as gold26 and polymer triangular prisms15 are examples of faceted particles. Rods and ellipsoids of composition CdSe75, gold76, gibbsite4

and polymer latex60 are shown. Examples of patterned particles include striped spheres77, biphasic rods14, patchy spheres with ‘valence’34, Au–Pt nanorods78 (the rod
diameters are of the order of 200–300 nm) and Janus spheres13. Images reprinted with permission from the references as indicated. Copyright, as appropriate, AAAS, ACS,
RSC, Wiley-VCH.

expanded the range of possible colloidal structures to include, for
example, tetragonal, trigonal, simple cubic and ionic phases41,42.
These phases are moving closer to attaining the structural
complexity that future applications require. Adding shape and
interaction anisotropy to the particles further extends the possible
assemblies to motifs potentially as complex as those seen in
molecular crystals.

Indeed, although a general predictable relationship between
anisotropic building-block structure and the structure and
symmetry of ordered arrays produced from these building blocks
is not yet in hand, nanocolloid assembly is governed by the same
thermodynamics that produces ordered equilibrium structures in
systems of atoms and molecules. In fact, molecular analogues
such as liquid crystals, surfactants and block copolymers exhibit
building-block anisotropy that is conceptually similar to and
as diverse as the examples in Fig. 1. Thus, potentially, if
non-idealities peculiar to particles such as jamming and gelation
are avoided, anisotropic nanocolloidal particles ought to assemble
into morphologies as diverse as those of molecules. Applying the

analogy between molecules and nanocolloids implied by statistical
thermodynamics allows a rough assessment of the possibilities.

First, consider the analogy with crystallography. Atomic and
molecular packings are well-studied subjects, not only in the
context of the possible crystallographic space groups, but also
in terms of their relationship to the underlying point group
of the molecular species. Powerful computational schemes can
predict energetically favourable configurations (at least at 0 K)42.
For atoms, a suite of highly symmetric near-close-packed structures
that balance the constraints of atomic size and charge neutrality
dominate. This motif seems to hold as well on the colloidal
scale42–44. In addition, because nanoparticle and colloidal macro-
ions, unlike atoms, have nearly continuously tunable size and
charge, ionic crystals with no known atomic or molecular analogue
have been discovered42,45,46.

Addition of the directionality associated at the molecular
scale with covalent and hydrogen bonding expands the possible
structures towards those that are more open (such as diamond
and zeolites) and anisotropic (such as graphite). The directionality

558 nature materials VOL 6 AUGUST 2007 www.nature.com/naturematerials
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