The Micromechanics of Colloidal Dispersions

John F. Brady

Divisions of Chemistry \& Chemical Engineering and Engineering \& Applied Science
 California Institute of Technology, Pasadena, CA

With help from: My students and postdocs
And backed by: NSF, NASA, ONR, PRF

ICI Distinguished Lecture
University of Alberta
19 September 2013

Outline

- What's a colloid and why do we care?
- How did the field start?
- The amazing rheology of spheres. (Or how to walk on water and make a bullet-proof vest.)
- How does random diffusion de-mix a suspension?
- What can we do with active matter?
- Conclusions

What's a Colloid?

Colloids are small particles dispersed in a liquid. They come in a variety of sizes typically from 10 nm to $10 \mu \mathrm{~m}$ - shapes and colors.

Because of their small size, Brownian forces (kT) compete against interparticle forces (V) and hydrodynamics to set the structure and determine properties.

Why do we care?

Branched

Rods and ellip

Colloidal molecules

Faceted pol

(b)

physics today

How did the field start?

The answer is Einstein.

Einstein (circa 1905)

Stokes-Einstein Relation

$$
D=k T M\left(=\frac{k T}{6 \pi \eta a}\right)
$$

$R e=\rho U a / \eta \ll 1$
Brownian Motion

$$
\boldsymbol{F}^{H}=-6 \pi \eta a \boldsymbol{U}
$$

Mean-square displacement

Brown (circa 1827)

W. Sutherland (1905)

LXXV. A Dymamical Theory of Diffusion for Non-Electrolytes and the Molecular Milass of Albumin. By Wirliam Suthurland \ddagger.

IN a paper commonicated to tho Australian Association for the Advancement of Scionce at Dumedin, 1904, on the Measuroment of Large Molecular Massos, a purely dynamical theory of diffusion was ontlined, with the aim of getting a formula for calealating from the data of diffusion those farge moleenlar masses for which the ordinnry methods fail. The formula obtained male the velocity of diffusion of a substaneo through a liquid vary inversely as the radius a of its molecule and inversely as the viscosity of tho liquit. On applying it to the best data for coefficients of diffusion D it was found that the products a D , instead of being constant, diminished with incrensing a in a manner which made extrapolation with the formula for substances like albumin seem precarious. After looking a little more olosely into the dynamical conditions of the problem, it seems to me that the diminution of $a \mathrm{D}$ can be nocounted for, and can be expressed by an empirical formula which enables us to extrapolate with confidence for a value of a for albumin, and so to assign for the molecular mass of albumin a value whoso accuracy depends on that with which D is measured.

The theory is very similar to that of "Ionization, Ionic Velocities and Atomic Sizes" (Phil. Mag. Feb. 1902). Let a molecule of solute of radius a move with velocity V parallel to an a axis through the dilute solution of viscosity η. Then the resistance F to its motion is given by Stokes's formula

$$
\begin{equation*}
\mathrm{F}=6 \pi \mathrm{~V} \eta a \frac{1+2 \eta / \beta a}{1+3 \eta / \beta a} \tag{1}
\end{equation*}
$$

* A thoorem attributed to Welber. Soe Gray and Matthews' 'Bessel's Functions,' p. 228.
t See 'Theory of Sound,' 8 203, equations (14), (16).
\ddagger Communicated by the Author.
Phil. Mag. S. 6. Vol. 9. No. 54. June $1905 . \quad 3$ F

(1859-1911)
where β is the coefficient of sliding friction if there is slip between the diffusing molecule and the solution. For N molecules of solute per c.c. of solution the total resistance will be N times this, and in the steady state of diffusion will equilibrate the driving force due to variation of the osmotic pressure of the solute, namely $d p / d x$, which by the osmotic laws is RTde/dx, if c is the concentration of the solute at a and \mathbf{R} is the gas constant. Hence

$$
\begin{equation*}
\mathrm{RT} \frac{d c}{d x}=6 \pi \mathrm{~V}_{\eta} a \mathrm{~N} \frac{1+2 \eta / \beta a}{1+3 \eta / \beta a} \tag{2}
\end{equation*}
$$

and the required formula for the coefficient of diffusion with C for the number of molecules in a granme-molecule is

$$
\begin{equation*}
\mathrm{D}=\frac{\mathrm{RT}}{6 \pi \eta a \mathrm{O}} \frac{1+3 \eta / \beta a}{1+2 \eta / \beta a} \tag{3}
\end{equation*}
$$

How did the field start?

Einstein (circa 1905)

Brownian Motion

Stokes-Einstein-Sutherland Relation

Mean-square displacement

$$
D=k T M\left(=\frac{k T}{6 \pi \eta a}\right)
$$

$$
\boldsymbol{F}^{H}=-6 \pi \eta a \boldsymbol{U}
$$

$$
R e=\rho U a / \eta \ll 1
$$

Sutherland (circa 1879)
Stokes (circa 1851)

Einstein and the effective viscosity

In Annalen der Physik (1906; corrected 1911)

$$
\eta_{e f f}=\eta\left(1+\frac{5}{2} \phi\right), \phi=\frac{4}{3} \pi a^{3} n
$$

Einstein and Avagadro's Number

Einstein (circa 1905)

In Annalen der Physik (1906; corrected 1911)

$$
\eta_{e f f}=\eta\left(1+\frac{5}{2} \phi\right), \phi=\frac{4}{3} \pi a^{3} n
$$

$$
\frac{\eta_{e f f}}{\eta}-1=\frac{5}{2} \frac{4}{3} \pi\left(\frac{\mathrm{gm}-\mathrm{mole}}{\mathrm{vol}}\right) N_{A} a^{3}
$$

Avagadro (circa 1811)

Stokes-Einstein-Sutherland Relation: $\quad D=\frac{R T}{6 \pi \eta} \frac{1}{N_{A} a}$

$$
\begin{aligned}
N_{A} & =6.56 \times 10^{23} \\
a & =4.9 \AA
\end{aligned}
$$

Jean B. Perrin (1926 Nobel Prize)

Definitive proof of the atomic nature of matter

'Generalized' Stokes-Einstein-Sutherland Relation

solvent molecules

- Separation of length and time scales between the motion of the 'particle' and that of a solvent molecule: $a / b \gg 1$
particle/
solvent time:
\# collisions in particle time:
\# of solvent molecules per particle

$$
\tau_{p} / \tau_{s} \sim(a / b)^{2}
$$

$$
N_{c} \sim(a / b)^{4}
$$

$$
N_{s} / N_{p} \sim(a / b)^{3}
$$

$$
\boldsymbol{D}_{r o t}=k T M_{r o t}\left(=\frac{k T}{8 \pi \eta a^{3}}\right)
$$

FIG. 2. The force of the fluid resistance acting on ball A approaching a solid molecular or 3-9 wall, $U=2.0, b=3.0$. The solid line represents the exact continuum result [2].

Vergeles, et al PRL (1995)

Characteristic Scales: A Simple Example

Spherical particle of $0.5 \mu \mathrm{~m}$ of specific gravity 2 falling in water.

Particle Size: $\quad a=\frac{1}{2} \mu \mathrm{~m}$
Fall Speed: $U=\frac{1}{2} \mu \mathrm{~m} / \mathrm{s}$

$$
\begin{array}{ll}
\left(\frac{\text { inertial }}{\text { viscous }}\right) & R e=\frac{\rho U a}{\eta} \\
\left(\frac{\text { advection }}{\text { diffusion }}\right) & P e=\frac{U a}{D}
\end{array}
$$

Reynolds Number: $R e=\frac{1}{2} \times 10^{-6}$
Diffusivity: $D=\frac{1}{2}(\mu \mathrm{~m})^{2} / \mathrm{s}$
Peclet Number: $P e=\frac{1}{2}$

Stokes - Einstein -Sutherland Relation: $D=k T R^{-1}=\frac{k T}{6 \pi \eta a}$

Outline

- What's a colloid and why do we care?
- How did the field start?
- The amazing rheology of spheres. (Or how to walk on water and make a bullet-proof vest.)
- How does random diffusion de-mix a suspension?
- What can we do with active matter?
- Conclusions

The amazing rheology of spheres

Einstein (1905)

Batchelor

In Annalen der Physik (1906; corrected 1911)

$$
\eta_{e f f}=\eta\left(1+\frac{5}{2} \phi\right), \phi=\frac{4}{3} \pi a^{3} n
$$

The next correction, $O\left(\phi^{2}\right)$, took 70 years! Why?

1) Long-range interactions

$$
u^{\prime} \sim 1 / r^{2} \quad, \quad S \sim 1 / r^{3}
$$

2) Microstructure

$g(\boldsymbol{r})$
3) Brownian contribution to stress
\boldsymbol{S}^{B}
:---
$\Delta \eta^{B}=1.2 \phi^{2}$

The amazing rheology of spheres

$$
\eta^{e f f}=\eta\left(1+\frac{5}{2} \phi+5.0 \phi^{2}+1.2 \phi^{2}+O\left(\phi^{3}\right)\right)
$$

Einstein (1906) Batchelor (1977)

How about the next term, $O\left(\phi^{3}\right)$? Another 70 years?

If you can do three, you can do N

> Stokesian Dynamics

Stokesian Dynamics ($\operatorname{Re} \ll 1$)

Particle Motion: $\quad \boldsymbol{m} \cdot \frac{d \boldsymbol{U}}{d t}=\boldsymbol{F}^{H}+\boldsymbol{F}^{B}+\boldsymbol{F}^{P}$

$$
\begin{aligned}
\therefore \bigodot_{\circ}^{\circ}: \tau_{p} & \sim O(m / 6 \pi \eta a) \\
& \approx 10^{-8} s
\end{aligned}
$$

Hydrodynamic:
$\boldsymbol{F}^{H}=-\boldsymbol{R}(\boldsymbol{x}) \cdot\left(\boldsymbol{U}-\boldsymbol{U}^{\infty}\right)$
Stokes drag

Brownian:

$$
\overline{\boldsymbol{F}^{B}}=0, \overline{\boldsymbol{F}^{B}(0) \boldsymbol{F}^{B}(t)}=2 k \operatorname{TR}(\boldsymbol{x}) \delta(t) \quad O\left(10^{-13} s\right)
$$

Interparicle/ external:

$$
\boldsymbol{F}^{P}=\Delta \rho V_{p} \boldsymbol{g}, \text { electrostatic }, \text { etc. }
$$

Shape, multiparticle, bounded, etc.

Nature of Hydrodynamic Forces: $F^{H}=-\boldsymbol{R}(x) \cdot U$

Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres

John C. Crocker
James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinots 60637
(Received 25 July 1996; accepted 14 November 1996)
The hydrodynamic coupling between two isolated $0.97 \mu \mathrm{~m}$ diameter polystyrene spheres is measured by reconstructing their Brownian motion using digital video microscopy. Blinking optical tweezers are used to facilitate data collection by positioning the spheres in the microscope's focal

FIG. 1. The measured relative (top) and center of mass (bottom) diffusion coefficients for a pair of colloidal spheres of diameter $2 a=0.966 \mu \mathrm{~m}$ as a function of dimensionless separation ρ. The solid curves indicate the theoretical prediction given by Eqs. (2)-(5). The dashed line indicates the asymptotic diffusivity $D_{0} / 2$ (top) and $D_{0}^{\prime} / 2$ (bottom).

Nature of Hydrodynamic Forces: $\boldsymbol{F}^{H}=\boldsymbol{-} \boldsymbol{R}(\boldsymbol{x}) \cdot \boldsymbol{U}$

Lubrication: closely spaced particles move as a single (rigid) rod, whether you push or pull.

Lubrication: near-field, two-body problem

Nature of Hydrodynamic Forces: $F^{H}=-\boldsymbol{R}(x) \cdot \boldsymbol{U}$

Far-field, many-body problem

$$
\boldsymbol{F}^{H}=-\boldsymbol{R}^{*}(\boldsymbol{x}) \cdot \boldsymbol{U}
$$

Stokesian Dynamics: $F^{H}=\boldsymbol{-}(\boldsymbol{x}) \cdot \boldsymbol{U}$

$$
\boldsymbol{F}^{H}=-\boldsymbol{R}^{*}(\boldsymbol{x}) \cdot \boldsymbol{U}
$$

Periodic Boundaries

Implement matched asymptotic expansions dynamically for thousands of particles in $O(N \ln N)$ operations for millions of time steps.

$$
\frac{d \boldsymbol{x}}{d t}=\boldsymbol{U}=\left(\boldsymbol{R}^{*}(\boldsymbol{x})\right)^{-1} \cdot \boldsymbol{F}^{o t h e r}
$$

The amazing rheology of spheres

Three dimensional unbounded flow -- periodic boundary conditions

$$
P e=\dot{\gamma} a^{2} / D=6 \pi \eta a^{3} \dot{\gamma} / k T
$$

Near Equilibrium Behavior: $\omega \rightarrow \infty$

Zero-shear Brownian viscosity $(P e=0)$

Sheared 'Hard-Sphere' Suspensions

Brownian \& hydrodynamic contributions to stress

Rheology: Simulation vs. Experiment

Mechanism of shear thickening: hydroclusters

Hydrodynamic stress: $S^{H} \sim \eta \dot{\gamma} a^{3}$

$$
\eta^{H} \sim \eta a^{3} N / V
$$

$$
\eta^{H} \sim \eta b^{3} 1 / V \sim \eta a^{3} N / V
$$

Wagner \& Brady (Phys. Today 2009)

Shear rate or shear stress

cluster due to hydrodynamic lubrication forces

Mechanism of shear thickening: hydroclusters

Mechanism of shear thickening: hydroclusters

Shear thickening (the amazing part!)

Walking on water

A bullet-proof vest

Neat Kevlar

STF
Kevlar

Cornstarch in water also known as 'oobleck'
'Liquid Armor' (Wagner)

Outline

- What's a colloid and why do we care?
- How did the field start?
- The amazing rheology of spheres. (Or how to walk on water and make a bullet-proof vest.)
- How does random diffusion de-mix a suspension?
- What can we do with active matter?
- Conclusions

Active Matter: External fields

Particles with a dielectric mismatch with the solvent will chain up when an external field is applied (Winslow 1940).
'Magnetorheological Fluid'

The material can be changed from a low to high viscosity fluid (and even to a solid!) reversibly in a mille-second.

Magnetorheological fluid

Without Magnetic Field

With Magnetic Field

Active Matter: External fields

Magnetorheological Fluid

GM's Magnetic Ride Control is a complete, stand-alone vehicle suspension control system that uses innovative magnetorheological fluid-based actuators, four wheel-to-body displacement sensors, and an onboard computer to provide real-time, continuous control of vehicle suspension damping.

Cadillac Seville STS 2002

Active Matter: Internal activity

Paramecium

Kinesin Motors

Listeria Bacteria

Catalytic Nanomotors

Active Matter: Internal activity

Berg (Harvard)

Paxton et al (Penn State)

$\mathrm{n}, 10^{10} \mathrm{~cm}^{-3}$

Solokov \& Aranson PRL (2009)

Outline

- What's a colloid and why do we care?
- How did the field start?
- The amazing rheology of spheres. (Or how to walk on water and make a bullet-proof vest.)
- How does random diffusion de-mix a suspension?
- What can we do with active matter?
- Conclusions

Conclusions

- Hydrodynamics plays a fundamental role in the behavior of colloids
- Stokesian Dynamics is a general molecular-dynamics-like method for studying colloids
- Even the humble sphere has a rich rheology shear thins and shear thickens
- The fun has just begun!

Acknowledgements

PhD Students

Lou Durlofsky
Ron Phillips
Julia Lester
Thanh Phung
Jeff Morris
Mike Vicic
David Foss
Asimina Sierou
Jim Swan
Roseanna Zia

Postdocs

Johan Bergenholtz
Aldolfo Banchio

Funding
NSF
NASA
ONR
PRF
IFPRI

Collaborators
Georges Bossis
Norm Wagner
George Petekidis

The End

