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Abstract 

In the present work, available direct and indirect methods for isobaric liquid heat capacity 

estimation are evaluated relative to experimental data for divers hydrocarbon mixtures for which 

elemental analysis, refinery and molecule based characterization are experimentally accessible. 

The study focuses on identification of systemic and random deviations between specific 

calculation approaches and experimental data, based on characterization method so that their 

preferred range of use in process simulators can be identified. The roles for new elemental 

composition based predictive heat capacity correlations in particular are explored. The 

Dadgostar-Shaw correlation for liquid heat capacities (direct) and the Lastovka-Shaw correlation 

for ideal gases + a departure function (indirect), both based on elemental composition, provide 

accurate heat capacity values for a broad range of fluids at saturation and are, for example, 

preferred over the widely used Lee-Kesler correlation for liquids based both on accuracy and 

range of application. In order to implement these element-based heat capacity correlations into 

commercial chemical engineering process simulator software, the number of atoms per unit 

mass, must either be available from experimental measurement, or be estimated from available 

property data with little deviation because both heat capacity correlations are sensitive to this 

value.  

An API method, available in the literature, systematically underestimates carbon and 

heteroatom content and leads to biased heat capacity estimates with significant error for the 

element composition based correlations. Two approaches for estimating the number of atoms per 

unit mass are reported: one based on regressing liquid density values at 25  , molar mass and 

boiling point, and the other approach is based on applying a feed forward neural network with 

one hidden layer to the same property data. A data set obtained from the NIST TRC chemistry 



 

 

webbook  comprising 154 organic liquid compounds comprising n-alkanes, n-alkenes, n-alkynes, 

naphthenics, aromatics, and heteroatom containing compounds are used to train the correlations 

and the neural networks. 97 compounds were used to regress correlation coefficients. 70, 15, and 

15 percent of the data were used to train, test, and validate the neural network, respectively. Both 

approaches correct the bias and reduce the deviation of the heat capacity estimates and niches for 

the application of direct and indirect element-based heat capacity correlations for liquids are 

identified. 
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1   Introduction 

1.1   Unconventional Heavy Oil Reserves Overview 

Conventional and unconventional oil are among the main world energy sources. The 

techniques used for producing or extracting unconventional oil are more complex and energy 

intensive than those needed for conventional oil [1]. New techniques such as steam injection for 

the oil sand industries have been developed to increase the efficiency of unconventional oil 

production [2]. According to OPEC, the largest proven oil reserves including non-conventional 

oil deposits are in Venezuela (20% of global reserves), Saudi Arabia (18%), Canada (13%) and 

Iran (9%) [3]. The scale of the unconventional resources dwarfs conventional and more readily 

produced resources. For example, Canada’s oil sands deposits contain estimated 1.7 to 2.5 

trillion barrels of heavy oil in place [4]. However, using present technologies and estimated 

economy conditions, only about 10% (173 billion bbl) can be recovered [4]. What makes 

Canada’s non-conventional oil resource use grow quickly compared to other oil fields in the 

world is the political stability and the size of the Canadian resource. The unconventional 

resources are also diverse. Over 95% of Canadian oil reserves comprise 15 separate oil sand 

deposits located in the province of Alberta (OSAs). The three main deposits are the Athabasca 

Wabiskaw-McMurray (commonly referred to as the Athabasca Oil Sands), the Cold Lake 

Clearwater, and the Peace River Bluesky-Gething deposit which occupy an area of 142,000 km
2
.  

Production methods also vary by location. For the Athabasca oil sands deposit, 80% is expected 

to be produced by in situ methods and the other 20 % by open-pit mining [5]. In situ bitumen 

production is currently performed using Steam-Assisted Gravity Drainage (SAGD) a process 

developed by Roger Butler in 1970 [5]. Other production methods are at various stages of 
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development and implementation. Thus while these resources are lumped together as 

unconventional, they are diverse in nature, present in diverse geological environments, and 

subject to diverse production methods. These resources also pose numerous challenges with 

respect to technology development and the environment more broadly. 

1.2    Characterization of Bitumen and Heavy Oil 

Thermophysical property knowledge of heavy oil, bitumen and their fractions not only helps 

to improve existing technologies. It also helps identify innovative methods for extraction or that 

recover more oil from reserves, and in particular those approaches that are economically viable 

because property knowledge is used to populate process and property models. Three types of 

property knowledge and models underly process development: 

1. Transport properties and models (e.g.: viscosity, mass and thermal diffusivity) 

2. Equilibrium phase behavior properties and models (PVT phase diagrams, phase density, phase 

compositions, solubilities, …) 

3. Energy measurements and models ( heat capacity, enthalpies of  mixing, vaporization, …) 

 

Since characteristics and properties of heavy oil are dependent on the level of solvent or water 

washing arising in situ or ex situ, bacterial degradation of the resource, thermophysical 

properties are expected to differ with the locality, and the depth of reservoirs. Thermophysical 

properties of produced fluids are also expected to diverge based on production method and 

surface facilities employed for separation, transport and refining. Since collecting data for all 

possible heavy oil, their fractions and various mixtures is impossible, predictive models that 

permit interpolation and more importantly extrapolation are essential. Typically, these models 
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comprise correlations that are built upon oil characterization. Measured composition or property 

data comprise input paramters for these models.  

Conventional hydrocarbon mixtures and their fractions can be categorized as well-defined and 

ill-defined mixtures. In each case, there is a distinct approach for their characterization. A well-

defined mixture is a mixture with a known set of molecules present or a mixture defined as a 

petroleum cut with a  narrow spread of possible molecular structures. Physical properties of such 

mixtures can be obtained from properties of the model components/homologous groups (light n-

paraffins, iso-paraffins, olefins, naphthenics, monoaromatics and polyaromatics) by their specific 

simple mixing rules. Moreover, for well-defined mixtures, specialized structure-property 

correlations for pure compounds can be used [5]. The compositions of ill-defined petroleum 

fluids or fractions is not known. Boiling point (Tb) based fractionation and bulk property 

measurements incorporating specific gravity (SG), viscosity, refractive index, carbon-to-

hydrogen weight (CH) ratio, or average molar mass of the whole fluid and its fractions are used 

to characterize them. Fluid properties are then identified in terms of the number of pseudo-

components (e.g.: boiling ranges) and generalized empirical correlations in terms of Tb. Specific 

gravity is then used for estimation of various properties required for thermodynamic calculations, 

such as molar mass, critical constants, acentric factor, etc [5]. 

For fractions with unknown distillation data (M > 300 g∙mol
-1

),  bulk measurements such as 

molar mass or viscosity may be used together with specific gravity to estimate basic parameters 

and physical properties. If specific gravity is not available, refractive index or CH ratio may be 

employed as an alternate characterization parameter. For fluids possessing a large mass fraction 

of non-distillable material, this approach becomes less appropriate and modeling of such fluids 

becomes more empirical, often requiring introduction of fluid specific or reservoir related tuning 
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parameters. Use of these fluid specific models beyond there narrow scope of development (in 

another reservoir or at out of scope conditions within the same reservoir) is not advised. 

Conventional characterization methods and estimation techniques developed for light oils and 

well-defined oils do not work for heavy oils and bitumen. Heavy oils contain complex mixtures 

of hydrocarbon compounds with a broad distribution of molecular sizes and unknown molecular 

structures. Up to 50% of the heavy oil fluid can be non-distillable. These non-distillable fractions 

comprise large aromatic, O, N, S and heavy metals containing and frequently multifuncitional  

compounds, and are typically polar. Compositions, molar mass ranges (from hundreds to 

thousands of g∙mol
-1

) and molecular structures of the constituents are uncertain and expected to 

be very complex. Some sub-fractions originated from solubility classes (SARA) or from 

chromatography are also complex. Measured bulk properties may exhibit hysteresis (depending 

on the nature of the property). Additionally, since heavy oil fractions are thermally unstable at 

temperatures higher than 250 – 300 
o
C, property data are not measurable in a precise manner. 

Thus, heavy oil, bitumen and their fractions are classified as ill-defined materials and use of 

correlations for constant-pressure liquid heat capacity such as the Lee-Kesler correlation [6] 

which rely on SG, measured under conditions where bitumen and heavy oil are semi solid, and 

Tb, recorded under conditions where bitumen and heavy oil are chemically reactive, or 

extrapolated from some other property are likely to be unreliable or subject to significant 

systematic error. Extending correlation and measurement techniques to include accurate 

representation of ill-defined hydrocarbon fluids is a significant undertaking. The key is to find 

robust and easily measurable properties that are available for both well-defined and ill-defined 

fluids alike and that correlate with properties of interest. In this work, the focus is on constant 
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pressure heat capacity.  Not the development of a correlation but on the implementation issues 

arising in process simulation, as this introduced some surprising challenges and pitfalls. 

 

1.3    Heat Capacity Predictive Correlations  

A series of predictive correlations for constant pressure heat capacity of crystalline 

organic solids, liquids and ideal gases were recently reported [7-10]. Their primary 

application is to predict the thermal behavior of ill-defined hydrocarbons, where elemental 

analysis is one of a few certain composition characteristics available that bridge the gap 

between well-defined and ill-defined hydrocarbon mixtures. Examples include, boiling cuts 

or solubility classes such as asphaltenes or maltenes, where no models or only primitive and 

imprecise models are available for estimating heat capacity. However, the precision and 

accuracy of these correlations has warranted further evaluation, including applications 

arising in light orwell-defined hydrocarbon mixtures, where for example indirect calculation 

approaches for the heat capacity of liquids (ideal gas heat capacity + an equation of state 

based departure functions [11]) or direct correlations (such as the Lee-Kesler correlation [6]) 

are currently implemented in process simulators. Each of these approaches for predicting 

liquid heat capacity have advantages and disadvantages, and possess different input data 

requirements. Identification of hierarchies and the best niches for diverse combinations of 

methods is challenging, as is conveying this complexity to users.  

1.4    Process Simulation Software  

Commercial chemical engineering software is used to design and optimize chemical 

processing systems in industries as diverse as oil and gas processing, petrochemicals, bitumen 

processing, refining, etc. The software is used to model mass and energy flows within equipment 
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and processes, and to size equipment. Thermodynamic and transport properties are computed 

iteratively and have a significant impact on outcomes. Accurate correlations with reliable inputs 

are needed to obtain process or equipment designs that work in the field. These may be based on 

standard correlations, look up tables or artificial neural networks.  
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2   Literature Review  

2.1    Constant Pressure Liquid Heat Capacity 

Constant-pressure liquid heat capacity, defined as Equation 2-1. [12]: 

    
  

  
   2-1 

 

is one of the characteristic thermophysical properties of fluids. In general, heat capacity is 

directly related to temperature derivatives of basic thermodynamic functions. Heat capacity 

values and trends with temperature are widely used in engineering for writing energy balances, 

in thermodynamics for calculating entropy and enthalpy values, and in thermochemistry for 

obtaining reaction enthalpies, which are also functions of temperature. Heat capacity knowledge 

is also needed for evaluating temperature effects for phase and reaction equilibria [13]. 

Unexpected variation in apparent heat capacity helps detect phase transitions and changes in the 

structure of solutions. Heat capacity may also be applied for calculating the temperature 

derivative of vapor pressure and can be used to extrapolate of vapor pressure [14].   

For well-defined hydrocarbon mixtures, the heat capacity of the mixture, remote from the 

critical point for all components, Tr < 0.95, approaches a simple summation for  neighboring 

members of a homologous series [15]: 

  ∑     

 

   

  2-2 

 

where    is the mole or mass fraction and    is the heat capacity of component i per mole or 

mass of component, respectively in a mixture with n components. 

Three different terms for liquid heat capacity are normally used: 
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    : Enthalpy changes with regard to temperature at constant pressure  

    : Enthalpy variation of a saturated liquid with temperature  

       : Required energy for changing the temperature while keeping the liquid in a 

saturated state 

The relationship among these three heat capacity definitions is:  

     
    
  

            (
  

  
  ] (

  

  
)
  
            

  

  
     2-3 

 

All three definitions of liquid heat capacity have similar values except at high reduced 

temperature where the values diverge. Normally either     or     is estimated while        is the 

property measured experimentally [16]. 

 

2.2 Liquid Heat Capacity Estimation 

Methods and techniques for measuring or estimating liquid heat capacity depend on the type 

of liquid, whether it is pure or a mixture, defined or ill-defined, below or above boiling point, etc. 

There are published experimental liquid heat capacity data for many pure hydrocarbons and 

homologous series [13]. There are several techniques for estimating liquid heat capacity directly. 

They were categorized into four general groups by Reid et al. [16]: theoretical, group 

contribution, corresponding states, and Watson thermodynamic cycle [17]. Some of these 

techniques are reviewed here. Liquid heat capacity can also be calculated indirectly using the 

ideal gas heat capacity and a departure function [28]. This latter approach is the default one, for 

example,  in chemical process simulators. 
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2.2.1    Group Contribution Methods 

These methods assume that molecules  are composed of interchangeable fragments or groups. 

Each group contributes to the total molar heat capacity, irrespective of the molecule in which it is 

found. Interaction among groups are ignored. Johnson and Huang [18] published a liquid phase 

heat capacity prediction model based on atomic contributions. Chueh and Swanson [19] 

published an equation for predicting    values based on more complex constituent groups. The 

error for this method is 2 to 3 %, within a limited temperature range (0.7< Tr <0.95). Missenard 

proposed a method based on other structural groups with temperature sensitive values with a 

limited range of application compositionally (i.e.: it cannot be applied for components with 

double bonds), and thermally (the temperature range is limited to the range between the freezing 

point ~ 0.4 Tr and Tr< 0.75) and the error is  5 % [16]. Newer methods, sometimes called 

second-order additive schemes [20, 21], which account for dissimilar contributions, have been 

developed. In these methods what an atom is bonded to is considered. An example for these 

methods is that of Ruzicka and Domalski [22-24]. This type of method allows equation 

development for estimating liquid heat capacity in the range from the melting point to the boiling 

point. The general form of this method is: 

           
 

   
  (

 

   
)
 

  2-4 

 

Where R is gas constant and T is the temperature in K. The following are equations for A, B, and 

D parameters: 

   ∑           

 

   

                  ∑    

 

   

                           ∑    

 

   

 2-5 
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Where ni is the number of groups of type i, k is the total number of different kinds of 

molecular groups. ai, bi, and di are available for 114 various groups listed in [16]. Liquid heat 

capacity at higher temperatures is not covered by this method.  

Good knowledge of the molecular structure of components is necessary for applying these 

techniques for estimating liquid heat capacity. Therefore, group contribution methods are not 

applicable for ill-defined hydrocarbon, such as bitumen and heavy oil. 

2.2.2   Corresponding State Methods   

According to van der Waals, the theorem of Corresponding State Principle (CSP) mentions 

that all fluids, when compared at the same reduced temperature and reduced pressure have 

almost the same compressibility factor and the deviation from ideal gas behavior are almost the 

same [25]. Accordingly, methods for predicting liquid heat capacity have been developed: 

     
  (   )

   
  (   )

   
 2-6 

where (   )
   

 is the simple fluid contribution, (   )
   

 is the deviation function,   
  is the 

ideal gas heat capacity,    is the liquid heat capacity, and   is the acentric factor. Utilizing these 

values, the heat capacity departure function       
   can be estimated.  

Several equations were developed by Lee and Kesler [6, 28] based on Corresponding State 

Methods. In this method the accuracy of Johnson-Grayson enthalpy correlation had been 

investigated particularly for high pressure condition and those near critical region. The same 

relationship was used for the heat capacity estimation of the liquids. Promising results were 

published for the analytical form of the Lee-Kesler heat capacity departure function for liquid 

hydrocarbon heat capacity calculations [28]. The improved correlation for heat capacity of liquid 
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for petroleum fraction is widely used for hand calculations [6]. Normal boiling point and specific 

gravity, which are generally more available properties, are used in this correlation to characterize 

petroleum fraction for        : 

             
  2-7 
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Where Tr is reduced temperature (T/Tpc); Tpc is pseudo-critical temperature in degree Rankine; K 

is Watson characterization factor and spgr is specific gravity 60 F/60 F. The errors for this 

correlation are discussed in Chapter 4.  

Based on the theorem of CSP, Watson [17] developed a two parameter correlation for 

thermodynamic properties of liquids. Later, Reid and Sobel [29] expanded the Watson equation 

for heat capacity to a three-parameter correlation with the critical compressibility as the third 

correlating parameter to calculate heat capacity around a critical region. Moreover, a modified 

method of Watson [17] was developed by Chueh and Swanson [19] 

Tyagi [25] observed that expressing the term          in the Reid and Sobel equations and 

the Chueh and Swanson equations as a function of reduced temperature and reduced pressure 

would yield more accurate value for saturated liquid heat capacity. He then proposed an 

analytical procedure utilizing the enthalpy departure function from the ideal state suggested by 

Lee and Edmister [30] and Stevens and Thodos [31] to predict the values of         and 
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  ⁄      . He introduced three methods among which Method 1 seemed to be more 

promising and described below: 

    
    

  
⁄  
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where     is the enthalpy of saturated liquid. The following generalized equation is for 

isothermal enthalpy difference for pure hydrocarbon described by Lee and Edmister [30]: 

(       
 )

   
              

       
                

          
 

        
                   

   
   

2-12 

where Ais are the generalized constants: A1=6.32873; A2=-8.45167; A3=-6.90287; 

A4=1.87895; A5=-0.33448; A6=-0.018706; A7=-0.2286517; A8=0.18940; A9=-0.002584; 

A10=8.7015; A11=-11.201; A12=-0.05044; A13=0.002255                     

Differentiating Equation 2-12 with respect to temperature gives  
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A group contribution method suggested by Rihani and Doraiswamy [32] is used for 

calculating ideal gas heat capacity,   
 , in the above method: 

  
                      2-14 
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          ∑  ∑   ∑    ∑    2-15 

where   
          is the ideal gas heat capacity of a compound,   

         is the ideal gas 

heat capacity of a group, and a, b, c, and d are the characteristics of that particular group and the 

values for different groups are tabulated by Rihani and Doraiswamy [32]. The summation in 

Equation 2-32 is over all groups in the compound. One can calculate saturated liquid heat 

capacity by substituting Equation 2-15 and 2-13 in Equation2-11. The limitation for this 

approach is, it is good for Tr between 0.4 and 1 and Pr value between saturation pressure and 10.      

Tyagi [25] also suggested two other methods (details on them can be found in [25]); however, 

method 1 is slightly superior among others since it proved to be more accurate around critical 

point. Tyagi’s method can be used in a reduced temperature range of 0.4 to 1 for various organic 

compounds. There are no graphical computations as in the previous Reid-Sobel method, so no 

additional error is introduced. The relative deviation for this method from the experimental data 

is reported to be less than 3%, while for the Reid-Sorel method, the average error is more than 

10% for the compounds with Zc less than 0.23. Furthermore, the error of 8.7% was observed 

using the Reid-Sobel method for all the compounds the Tyagi method was tested for at reduced 

temperature range of 0.7-0.95. It should be emphasized that the enthalpy departure function used 

in this method was developed for pure components. As a result, this approach may not be 

suitable for ill-defined hydrocarbons and mixtures.  

Application of thermodynamic models based on the CSP to predict liquid heat capacity of ill-

defined hydrocarbons is also challenging, since the critical properties are not available, the mean 

molar mass is not known, and the heat capacity of ill-defined hydrocarbon in the ideal gas state, 

the reference state for such calculations, is unknown. Typically, the molecular structure is 
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required for application of the methods for estimating these properties, and also in addition, the 

range of estimated values diverges as molecular mass increases, even in the case of pure n-

alkanes [45]. 

2.2.3    Indirect Methods 

As it is mentioned, in the indirect method the departure function can be calculated based on an 

equation of state and the ideal gas heat capacity of the mixture can be estimated from the existing 

correlations; i.e Equation 2-31. 

Bessieres et al [14] conducted a coparisson in which, a departure function, estimating the heat 

capacity of real gasses [16], was applied to predict heat capacity (Cp) of heavy distillation cuts. 

Equations of state are needed to get derivatives in the following equation: 

          
     ∫  
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where R is the gas constant and   
  is the ideal gas heat capacity. 

Almost all models applied in that study showed that the prediction accuracy decreased as the 

distillation cut’s mean molecular mass (boiling point) increased. Additionally, it was observed 

that those equations of state with parameter fitted on vapor pressure of high molecular mass of 

compounds were more reliable in estimating heat capacity of heavy distillation cuts. 

Consequently, Bessieres et al. [14] proposed that an adjustment of equations of state parameters 

to heavy compounds properties enhances the accuracy of heat capacity estimates. 
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2.2.4    Estimation of Isobaric Liquid Heat Capacity in Simulation Software 

 

Prediction of thermodynamic properties can be performed by different process simulators; 

amongst these thermodynamic properties is the isobaric liquid heat capacity. One of those 

simulators is VMGSim developed by Virtual Materials Group Inc [46]. It has different 

approaches for calculation of the isobaric liquid heat capacity in terms of defined or ill-defined 

materials. For defined materials, the isobaric liquid heat capacity is calculated from the departure 

function method based on a selected property package. In the case of ill-defined materials, 

defined as pseudo-components in VMGSim, the ideal gas heat capacity is first calculated with 

the use of pseudo-component user-defined specific gravity and average boiling point by an ideal 

gas heat capacity estimation method, like the Lee-Kesler correlation described in section 2-2-2; 

then, the isobaric liquid heat capacity is calculated by the same method used for well-defined 

materials; i.e. EOS based departure function plus ideal gas heat capacity (Equation 2-33) 

described in section 2.2.3.  

2.2.5   Heat Capacity Prediction Based on Elemental Composition    

Laštovka and Shaw [10] developed a correlation for ideal gas heat capacity, which is based on 

the assumption that the ideal gas heat capacity of large molecules is primarily a function of the 

number of vibrations per mass of the molecule. With a direct relationship between the numbers 

of vibration modes per mass of a molecule and the number of atoms per mass of the molecule for 

large molecules, a similarity variable can be defined as: 

 

2-17 
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Where    is the stoichiometric coefficient for element i in a compound consisting of N atoms, 

n is the number of elements in the compound, Mi is the molar mass of chemical element i (in 

mol.g
-1

), xi is the mole fraction of element i in the compound, and wi is the mass fraction of 

element i. 

Based on this similarity variable concept, Dadgostar and Shaw [7] developed a predictive 

correlation for the isobaric specific heat capacity of liquids applicable for pure organic 

compounds and ill-defined mixture such as heavy oil, bitumen, and boiling cuts. This correlation 

employs temperature and similarity variable as inputs, along with six universal coefficients: 

                  
              

     2-18 

For T > 200 K: 

             
        2-19 

Six universal coefficients appearing in Equation 2-18 and 2-19 are reported in Table 2-1:  

Table 2-1: Universal coefficients for Dadgostar-Shaw correlation 

Coefficient Value 

    -0.3416 

    2.2671 

    0.1064 

    -0.3874 

    -9.8231E-05 

    4.182E-04 
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The advantage of this correlation over others is the fact that only elemental composition of a 

liquid is required and the structural information is shown to be of the secondary importance. The 

correlation was examined using a test data set including liquid organic compounds and the 

average absolute deviation was calculated to be 0.067 J/g/K. The correlation was also used for 

ill-defined hydrocarbon liquids, and their heat capacity was estimated to within 6 and 2.8% in the 

temperature range of 325 to more than 500 K.  

In order to compare these new correlations with other widely used methods for calculating 

liquid phase heat capacity, Virtual Material Group Inc. published a report [47] comparing five 

different ideal gas heat capacity estimation methods either direct or indirect. For the direct 

methods the Lee-Kesler correlation for ideal gases [28], Lastovka-Shaw, Twu-Black [95], and 

API [96] were used and for the indirect method the Dadgostar-Shaw correlation for liquids was 

used to estimate liquid heat capacity and the heat capacity residual value was estimated by 

different property packages. Five different assays in VMGSim wre characterized in order to 

estimate their ideal gas heat capacity. The α which is a required input for the both Lastovka -

Shaw and Dadgostar-Shaw correlation was estimated based on API method described in the 

following section. Accordingly, the average relative deviation of the Dadgostar-Shaw correlation 

was between 9 to 10 % for the low boiling point pseudo-components to almost 16% for high 

boiling point compounds with the Advanced Peng-Robinson property package.  
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2.3    Elemental Analysis Based on API Approach  

 

For implementing the Dadgostar-Shaw correlation in simulator software, Virtual Material 

Group suggested a way for estimating chemical formulae which can be further used for 

calculating the similarity variable. In this approach based on MW and API gravity of a pseudo-

component, if the component has specific gravity lower than 0.85 (35
o
API) at 15  , it is 

considered as a paraffin-type component and a typical alkane formula is used. If the specific 

gravity is greater than 0.85 (35
o
API), the formula is calculated from the percentage of S, N and 

C/H ratio which are functions of the API gravity of the pseudo-component [15] as shown in 

Table 2-2. The other approach implemented in the VMGsim software is so-called “content 

curve”, where the formulas are calculated based on the elemental curves added in the Content 

Curves tab, and the α can be calculated accordingly. 
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Table 2-2: Elemental percentages of liquid hydrocarbons based on degree of API [15] 

Gravity 

(Degree of API) 

Sulfur 

(Percentages by weight) 

Inerts 

(Percentages by weight) 

Carbon-to-hydrogen 

weight ratio 

0 2.95 1.15 8.80 

5 2.35 1.00 8.55 

10 1.80 0.95 8.06 

15 1.35 0.85 7.69 

20 1.00 0.75 7.65 

25 0.70 0.70 7.17 

30 0.40 0.63 6.79 

35 0.30 0.60 6.50 

 

2.4    Artificial Neural Network 

 

Artificial Neural Networks (ANN) as presented by McCulloch and Pitts [48] are created 

from an approach for developing intelligent systems by modeling the biological structure and 

functions of human brain which has neurons and axons [49,50]. ANNs are collections of small 

individual processing units named neurons (nodes) and the information is passed through the 

neurons by interconnections (axons) [50]. The network is typically consists of three layers: input 

layer, some hidden layers, and output layer [51].  

A single input neuron, shown in Figure 2-1, consists of 5 terms which are all connected to 

each other by Equation 2-20. 
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Figure 2-1: Single input neuron(node) schematic structure 

 

              2-20 

     Where   is the input,   is the weight connecting the input to the neuron,   is the transfer 

function,   is the biased term and   is the output. Figure 2-2 illustrates a neuron with multiple 

inputs represented by Equation 2-21.  

 

 

 

 

 

Figure 2-2: Multiple input neuron schematic structure 

 

                          2-21 
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A neural network with one hidden layer is shown in Figure 2-3. 

 

 

 

 

 

 

Figure 2-3: A neural network schematic structure 

The relationship of inputs and outputs can be represented by a network with biases more 

easily than a network without biases. There are various transfer functions which can be either 

linear or non-linear; however, storing non-linear relationships between the input and output can 

be performed by non-linear transfer functions [50].  

Developing a neural network consists of a main stage named training. In the training step the 

inputs are introduced to the network together with the desired outputs. At this stage, weight 

terms are adjusted in a way that the desired output can be resulted. The training stage stops when 

the satisfactory values for the weights are found and the network uses these weights to make 

decision, to recognize pattern, or to define associations in the test data set [49]. There are several 

learning algorithms (training function) which can be used to train a network, such as the ones 

suggested by Haykin [52] or Neocleous [53]; however, the most widely used is the back 

propagations (BP) and its variants [54, 55]. The training of all patterns of a training data set is 

Input layer Hidden layer Output layer 
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called an epoch. The training set has to cover all the collections of input–output examples. BP 

training is a gradient descent algorithm. It attempts to improve the performance of the neural 

network by reducing the total error by varying the weights along their gradients. 

Artificial intelligent systems are considered as a technology which can be applied to solve 

complex and non-linear problems [49]. Nowadays, ANN are used to estimate thermodynamic 

properties of compounds where it is complex and difficult to predict the properties using 

analytical equations [56-59]. The advantages of ANN compared to conventional methods are 

simplicity, speed, and ability to learn from examples.  

In this work, ANN will be applied to forecast elemental composition which is a required 

input for the recent elemental composition based correlations. With the ANN model, simulator 

software would be able to implement element base correlations for estimating liquid heat 

capacity with high accuracy; that is why, application of an artificial forecasting system which is 

able to estimate the property with acceptable error is examined. 

2.5    Data Regression for Coefficients Calculations 

 

The most frequently used method in data fitting is the least squares method. In the Least 

Squares approach, the sum of the squares of the residuals from the equation application is 

minimized. The residuals are the difference between the observed value and the value predicted 

by a fitting model [60]. Independent variables in this method can be either single or multiple, and 

the output of the least squares regression is an equation which is a function of the independent 

variables and some universal coefficients [61]. A simple regression and least squares method 

cannot be utilized when there are substantial uncertainties in the independent variables.  
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The least squares methods are divided into two categories in terms of linearity; linear and 

non-linear least squares. The regression is called linear when the model includes linear 

combination of the coefficients; on the other hand, i.e. it is called non-linear when the derivative 

of model with respect to each coefficient is neither constant nor dependent only on the value of 

the independent variables [60,61]. Other categories for the least squares method include multiple 

least square and partial least square. When the independents variables are few in the number, are 

not collinear, and have a well-understood relationship to the dependent variables, multiple linear 

regression (MLR) can be a good way to develop a model. However, if any of these three 

conditions is not met, Partial Least Square (PLS) is used to develop a predictive model. It is 

important to say that understanding the underlying relationship between independent and 

dependent variables is not a goal of PLS, i.e. the factors which have negligible effect on the 

response are not considered by applying the PLS method [62].  

2.6    Objectives    

 

Both group contribution based models and corresponding state based models are not 

applicable to estimate liquid heat capacity for ill-defined hydrocarbons. An element based 

correlation (Dadgostar-Shaw) which is a function of α, based on elemental analysis, and 

temperature was developed to estimate heat capacity of ill-defined liquids directly. Liquid phase 

heat capacity can also be estimated indirectly from an element based ideal gas correlation [10] + 

a departure function (indirectly). The dissonance between the values obtained by indirect and 

direct calculation of liquid phase heat capacity, observed during the implementation of the 

elemental analysis based heat capacity correlations in VMGSIM, was surprising and led to the 

inception of this project. The principal objectives of this project are to determine the source of 

the dissonance and to resolve it. A case study approach is adopted where the test fluids may be 
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described on a molecular basis, an element basis, or a refinery (boiling range) basis, and where 

the impacts of elemental composition estimation methods, such as the API method, and 

departure functions may be evaluated.  
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3   Experiments  

3.1    Methodology 

Differential Scanning Calorimetric (DSC) was used in this study to measure the heat capacity 

of compounds experimentally. It should be emphasized that this method requires careful 

calibration before each experiment to yield accurate and reliable data.  

3.1.1    Technical Review 

Differential Scanning Calorimetric is a well-known thermal analysis technique, which is 

applied in a wide temperature range in various areas of research, quality inspection and 

development. The DSC device works based on measuring the difference in the heat flow rate to 

the sample cell and reference cell while they are subjected to a controlled temperature program. 

DSC can easily examine heat capacity, heat of transition, kinetic data, and glass transition and 

purity of a sample. Moreover, DSC curves can be examined to identify substances, to construct a 

phase diagram and to measure degree of crystallinity [63].  

There are two different types of DSC with the same use: the heat flux DSC and the power 

compensation DSC. The DSC, which is utilized in this study, is a heat flux calorimeter. In this 

type of DSC, while both reference and sample cells are heated by the same furnace at a given 

heating rate, the deferential heat flow between two cells is measured, which is proportional to the 

difference in temperature of the cells. [64]. In the power compensation DSC, the reference and 

sample cells seat on two separated furnaces located inside a single heat sink. The power input to 

these two furnaces is controlled so that temperatures of the cells are kept identical throughout a 

given temperature program. The measured signal is the power input difference between the 

furnaces. [65].  
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3.1.2    Principle 

The measured signals in the DSC are the temperature difference and the differential heat flow 

rate. The relation between temperature difference and differential heat flow rate in real DSCs can 

be derived based on some assumptions. Steady-state and non-steady-state processes occur in the 

heat flux DSC. In the steady-state process, it was postulated that there is a constant heat flow 

rate, only one thermal resistance is applied with no interaction between sample and reference 

cells, only the heat capacities of the sample and reference cells are considered, and there is no 

heat loss to the surrounding [66].  

The Biot-Fourier equation for heat conduction (steady-state), together with the formulation in 

absolute values is as follows [63]:  

| ̅|

 
       |      | 3-1 

where  , A, λ, and T are heat flow rate, cross section area, thermal conductivity, and 

temperature, respectively. In other words, the heat flux value,  /A, is proportional to the gradient 

of the temperature while the thermal conductivity, λ, is the proportionality factor. 

Equation 3-1 can be rewritten as follows for the sample, S, and reference, R: 

   
 
       

       

  
 3-2 
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where subscript F stands for furnace and Δl is distance between the measured temperature 

point and the furnace. In the case of absolute thermal symmetry, TS=TR and A is identical so that 

 FS= FR.  
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TS increases by  TS if a constant heat flow rate   <0 is produced in the sample, accordingly, 

temperature differences, TF-TS, and the heat flow rate     decreases. Due to the balance, the 

steady state will reach again, so the change of  FS (  FS) must be equal to  r:  

         
  

  
        

3-4 

Since there is no change on the reference side, we have: 

                  3-5 

And, 

                   3-6 

Consequently: 
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In this model, K is one of the properties given by the DSC manufacture and belongs to heat 

conduction path between the furnace and the samples. It leads to a direct proportionality between 

the measured   and the measurement signal ΔT. The constant heat consumption conditions can 

be obtained in monitoring operations when the sample and the reference sample have different 

“heat capacities”. A higher amount of heat will always go into the sample whose heat capacity is 

greater, in order that the steady-state heating rate is constant. With the heat capacity of the 

sample higher than heat capacity of the reference (Cp,S > Cp,R) the following equation is applied 

for the difference between the heat flow rates to the sample and reference:  

                3-8 

The above approximation could not be assumed if there is no steady state during sample 

transitions or reactions, moreover, the      might change with temperature, but these changes 
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are in many cases quite slow and do not affect the steady-state condition considerably, i.e. so 

called quasi steady state. In this case, the following equation can be used: 

                          3-9 

Or,  

  (           )           3-10 

Where   is the average heating rate.  

Equation 3-10 is the basic equation to measure the sample heat capacity (Cp,S) using a heat 

flus DSC. Practically, the asymmetry of the device should be checked first by a zero line ΔT0 that 

is recorded with both crucibles empty and subtracted from the measured curves.  

In the non-steady state process, except for the ΔT which is not constant in time, other 

assumptions can be used as for the steady-state process. In this case, the equation for the sample 

heat capacity is as follows: 

    
   

  
           3-11 

Where     is the heat flow rate from the furnace to the sample,   (t) is the time dependent 

heat flow rate produced inside the sample (reaction, transition).   

With ΔT=TS-TR , Equation 3-10 becomes: 

 

    
   

  
     

   

  
            3-12 

For the reference sample we have (     by definition):  
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By subtracting two balance equations, the following is obtained:  
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We have the following expressions for the heat flow rates     and    :  
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Where     and     are the global heat resistances between the furnace and the samples and 

the furnace and the reference, respectively. If there is a thermal symmetry    =     = R, thus, 

Equation 3-14 becomes: 
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The asymmetry of the measuring system is taken into account by the second term as the 

difference between heat capacities of the sample and the reference cells. The contribution of the 

thermal inertia of the system is considered in the third term when a measured signal ΔT(t) 

appears. Similarly to the charging or discharging a capacitor of capacity Cp, a time constant   can 

be defined for the heat flow rates in the same way:   

           3-18 

Where R is the effective thermal resistance to the charging or discharging the heat capacity 

(    ). With ΔT changing in time, with this resistance and with the heating rate defined as dTR/dt 

= ß, as the reference sample is usually in a steady-state heating mode, the following equation 

results from Equation 3-17: 
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The temperature dependence of thermal resistance R and heat capacities                  is 

reflected by the second term. This causes the temperature dependence of the measured curve 
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even without any thermal effect in the sample. The third term in Equation 3-19 should be 

considered when the signal    measured in time is to be assigned to the heat flow rate by which 

it is created. The time constant ( ) and thermal resistance (R) must be measured by calibration. 

The following equation can be used for the overall heat of reaction or transition (Qr) which are 

produced or consumed in the sample. 

    ∫        
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Where t1 and t2 are the beginning and end of the peak, respectively. Inserting Equation 3-19 

into 3-20, we have: 

     
 

 
[∫          ∫            

  

  

  

  

]   ∫  
 

 
 
   

  
   

  

  

 
3-21 

For the partial integration of the peak between t1 and t
*
: 

     
 

 
[∫          ∫            
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The partial integration of peaks is important for kinetic evaluation and to specify the purity of 

a sample [63]. 

3.1.3    Application 

Differential Scanning Calorimetry is the most widely applied thermal technique which can be 

used in the study of oxidative stability, liquid crystals, food science, drug analysis, polymers, etc. 

With the use of DSC output signals, the heat flow rate as a function of temperature and any other 

derived quantity, such as the heat of reaction or transformation, or changes in heat capacity of a 

sample can be studied to figure out the properties of a substance.   

Different types of DSC and thermal analysis instrumentation are offered by different 

instrument manufactures, such as Setaram Instrumentation, Netzsch Instruments, TA 
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Instruments, PerkinElmer Instruments and Mettler Toledo, depending on the research to be 

conducted. The DSC utilized in this study is Setaram TG – DSC 111, which is a heat-flux DSC 

[67 – 71].   

3.2      Setaram TG-DSC 111 Description  

 

The TG – DSC 111 thermo-analyzer from Setaram is made up of the CS 32 processing unit 

and the assembly coupling the B111 microbalance to the DSC 111 calorimeter as seen in Figure 

3-1.  

The CS 32 controller mainly includes a power supply card, a CPU card, an amplification card 

for calorimetric signal, a balance card, and a temperature acquisition card for temperature 

regulation, a temperature acquisition card for temperature measurement.   

The B111 electronic microbalance is a beam balance connected to a torsion band located 

between two springs under load. Variation in mass is measured by current variation which has a 

proportional relationship to the force of electromagnetic equilibrium. A potential difference 

proportional to the equilibrium current is magnified and is ready for digital use in the CS 32 

controller. 
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a)   Calorimeter                b) Electronic Microbalance            c) Processing unit  

 

 

Figure 3-1: TG-DSC 11 apparatus 

 

The DSC 111 calorimeter includes a junction box, a calorimetric transducer, and pre 

amplification and amplification cards for the DSC signal. The calorimetric transducer has two 

sintered alumina tubes with the inner diameter of 7 mm parallel to each other. The tubes are open 

from both sides and only the centre has sensitive elements. On the front panel of the working 

chamber, there are two pipes (inlet and outlet) for the refrigerant cooling the calorimeter. A 

schematic view of the DSC instrument is shown in Figure 3-2. 
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Figure 3-2: Schematic view of the experimental set-up: TG-DSC 111 Setaram [69]. 

 

The central area in each tube is a sensitive part of the calorimeter. The center of the 

calorimetric block includes two cavities in which thermocouple-carrying heat-flux transducers 

are positioned around the central part of the tubes. The heat exchange between the furnace and 

the cell takes place only through the thermocouple-carrying heat-flux transducers and, as a result, 

can be monitored precisely. The close-to-symmetrical arrangement of the transducer almost 

cancels the signal coming from the two heat-flux transducers being located in oppositions, when 

the two samples are themselves alike irrespective of the thermal state of the calorimeter. Thus, 

the working signal includes the passive component in the properties of an active sample set in 

one of the tubes and of a “reference” placed in the other tubes plus a small asymmetry correction 

determined by proper calibration.  
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3.3      Calibration  

 

In contrast to adiabatic calorimetry, DSC/DTA instruments are not absolute measuring 

instruments; heat and heat flow rate are measured dynamically and always yield relative values 

that must be turned to the absolute values. The setting of the instrument parameter and the 

sample studied have a strong influence in DSC measurements. It is essential to examine all 

experimental parameter and to calibrate the device before conducting experiments. The 

definition of calibration is the measuring of a quantitatively defined relationship between a value 

of a quantity indicated by the measuring device and the actual value. In DSC the quantities of 

interest are temperature and heat flow rate. Two calibrations must be carefully conducted: one is 

the calibration verified by the manufacture and the other is necessary to check the 

reproducibility, accuracy and precision of the measurement and conducted before each single 

experiment. Device asymmetry and any other non-linearities should be fixed by this calibration 

[73]. 

The group “Calibration of Scanning Calorimeters” of the German Society of Thermal 

Analysis (GEFTA) [71-73] suggested several types of calibration for a DSC calorimeter. 

According to their recommendation, the temperature calibration to ITS 90 was conducted using 

indium (NIST standard reference material 2232), tin (NIST SRM 2220), lead (NIST standard 

reference material 1059c) and aluminum (NIST standard reference material 854). Energy 

calibration was carried out in the factory applying the Joule effect method and examined by 

measuring the heat of fusion of naphthalene, which was a basic reference material for the heat of 

fusion measurements suggested by International Confederation for Thermal Analysis and 

Calorimetry ICTAC [75]. The accuracy was within 2% if compared with the literature value 

[74,76,77]. Heat capacity Cp (heat flux) calibration was conducted using synthetic sapphire, 
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which was a basic reference material according to NIST (SRM 720) and ICTAC, and 

naphthalene, a secondary reference material for Cp measurements suggested by ICTAC [75]. 

The uncertainty of Cp measurements was obtained to be less than 2 % (0.02 J/g/K) in the 

temperature range from 300 K to 560 K.   

Another calibration, different from the general calibration mentioned above, was performed 

before each experiment for checking the consistency and accuracy of the measured data and for 

correcting it by adding an offset value. For this calibration, two different masses of synthetic 

sapphire were used; one as a reference material and one as a sample, and the final heat capacity 

of the second sample was compared to the literature values [78].  

 

3.4      Heat Capacity Calculation  

 

The three-step procedure was applied for DSC measurements to measure heat capacity values. 

The measuring cell was empty in the first run (run 1), then filled with the reference material (run 

2) (synthetic sapphire) and the measured sample (run 3) in the second and third runs, 

respectively. The reference cell was empty during all runs and each runs was repeated three 

times for the higher accuracy. As mentioned above, run 2 was divided into two sub-runs with 

sapphire of two different masses to ensure the accuracy of the measurements. 

The heat capacity of a sample is calculated using the procedure utilizing the following output 

results from DSC: heat flow in J/s, temperature in Kelvin, and time in seconds. The equation can 

be expressed as [79]: 

)(**)( TCp
Mass

Mass

HFHF

HFHF
TCp Sapphire

Sample

Sapphire

BlankSapphire

Blanksample

Sample



  

3-23 
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Where HFblank is the heat flow from run 1 (empty sample cell), HFsapphire is the heat flow from 

run 2 (sample cell with sapphire of MassSapphire), and HFsample is the heat flow from run 3 (sample 

cell with a sample to be studied with MassSample). The value for Cpsapphire is obtained from 

Equation 3-24 named the Archer equation [78]:  

gTfTeTdcTTbTaCpsapphire  23456  3-24 

For temperatures higher than 20  , the Archer values are listed in Table 3-1.  

Table 3-1: Coefficient for the Archer equation at temperatures higher than 20   

Coefficient Value 

  1.197441280319*10
-17

 

  -2.5923466515291*10
-14

 

  1.3104884522373*10
-11

 

  1.1963323706663*10
-8

 

  -1.8121828407681*10
-5

 

  9.2237456478216*10
-3

 

g -0.73178005598711 
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4   On Transferring New Constant Pressure Heat Capacity Computation 

Methods to Engineering Practice 

4.1      Introduction 

Constant pressure heat capacity was measured experimentally for a number of model 

hydrocarbon mixtures and then compared with the estimated liquid heat capacity predicted by 

Dadgostar-Shaw correlation [7], Lee-Kesler correlation [6], and ideal gas heat capacity based 

correlations plus equation of state based departure function [11]. 

4.2      Experimental Procedure and Set up Condition 

Experimental isobaric liquid heat capacity data were measured using a differential scanning 

calorimeter, TG-DSC 111. The measurements were carried out with a heating rate of 20 K/min, 

appeared to be the best scanning rate with smaller noises at the final signal. The isothermal 

period was 60 minutes at the beginning and the end of each experiment as presented in Figure 4-

1. It was proven that for liquids the difference between isobaric heat capacity and saturation heat 

capacity is negligible as long as the upper temperature limit of the measurements is less than 

boiling point of the mixture (about 0.9 Tb) [79]. Thus, the temperature range in this work was 

from 293 K to 0.9 Tb in order to avoid artifacts introduced by sample vaporization. The sample 

material was enclosed in a recyclable crucible made of stainless steel with volume of 100 mm
3
. 

The crucible was sealed with a nickel ring and a stainless steel lid. This sealed crucible 

withstands an internal pressure up to 20 bar.   
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Figure 4-1: Experimental step example 

 

A possible impact of sample vaporization was further reduced by performing a trial 

experiment with water to find the volume of the crucible which should be filled with the sample. 

The result, illustrated in Figure 4-2, showed that depending on the sample density, just 10 mm
3
 

of total volume should be left empty and filling less or more than that might cause error in the 

measurement. Crucibles were weighed prior to and after each experiment. No mass loss of the 

samples occurred. Another trial experiment with the reference material was performed to see if 

there is a need of having constant flow of inert gas during an experiment or not. The result 

showed that having purge gas flow causes more error in the final results as it is shown in Figure 

4-3. Accordingly, although it is suggested to have a constant flow of purge gas during an 

experiment in Setaram TG – DSC 111, it is better not to have any inert gas flow through the 

calorimeter tubes during the experiment.  

According to the DSC device instruction manual, the systematic error with DSC measurement 

is around +/- 0.05 J.K
-1

.g
-1

, so that this amount of error with the experimental result is 

anticipated. 

 

20 °C 

60 min 

60 min 

0.9 Tb 

20 °C/min 
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Figure  4-2: Water isobaric liquid heat capacity: ▲, Data from literature [46]; ∆, Experimental 

data for the sample mass of 89.30 mg; □, Experimental data for the sample mass of 54 mg; with 

0.05 J.K
-1

.g
-1

 experimental error 
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Figure 4-3: Water isobaric liquid heat capacity:  ▄ , data from literature [46];   ●  , experimental 

data for the sample mass 89.30 mg with inert gas;  ∆  ,experimental data for the sample mass 

89.30 mg without inert gas; with 0.05 J.K
-1

.g
-1

 experimental error 

 

4.3      Sample Preparation  

Four liquid mixtures were prepared: n-alkanes only (Mixture 1), a mixture of aromatic and n-

alkane constituents (Mixture 2), a mixture of naphthenic and n-alkane constituents (Mixture 3), 

and a mixture of naphthenic and aromatic constituents (Mixture 4). The compositions of these 

mixtures are listed in Table 4-1. SARTORIUS CP225D balance with an accuracy of 0.01 mg 

was utilized to prepare the samples. Some properties of the mixtures are listed in Table 4-2. 

Table  shows the mass and the temperature range of DSC experiments for each studied sample.   
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 Table 4-1: The composition of model hydrocarbon mixtures 

 
Mixture 1   Mixture 2  Mixture 3  Mixture 4  

Composition Weight1    Purity Composition Weight Purity Composition Weight Purity Composition Weight Purity 

Nonane 2.430 99%  1,2,4-

TMB2 

2.646  98% Trans-decalin 2.602 99% Trans-decalin 3.498 99% 

Decane 2.431   99%  Decane 2.615  99% Decane 2.617 99% Durene 1.749 98.5% 

Undecane 2.434  99%  Undecane 2.610  99% Undecane 2.609 99% 1,2,4-TMB 3.499 98% 

1- Units are in gram 

2- 1,2,4-Trimethylbenzene  

Table 4-2: Some properties of the model mixtures  

   Sample 

 Density
1
 at 15    

 

 

 

at  15 

  Tb
1
  

MW 

Similarity 

variable  kg.m
-3

   K  

Mixture 1  734.05      440-445  141.35 0.2252 

Mixture 2  775.31       450-455  137.95 0.1874 

Mixture 3  779.64        455-460  145.21 0.2173 

Mixture 4  880.20        450-455  129.67 0.1868 

1. Values obtained by simulating the mixtures using the mixing rulls method in 

VMGSim[46].  

Table 4-3: The temperature range and the mass of sample for each mixture 

used in DSC experiments 

   Sample 

 Sample mass   Temperatures range   

         mg                   

 Mixture 1  71.40                    20 – 150  

 Mixture 2  73.39                    20 – 150  

 Mixture 3  70.97                    20 - 160      

 Mixture 4  79.31                    20 - 160      
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4.4      Available Methods to Predict Similarity Variable 

Both the liquid and ideal gas element base correlations [7, 10] are simple and predictive, and, 

hence, suitable for inclusion in process simulators. Implementation was expected to be 

straightforward. For compounds or mixtures comprising constituents defined on a molecular 

basis, elemental compositions of streams are readily calculated. For mixtures defined on other 

bases, the API method [15] described in Section 2.3 can be applied to obtain elemental 

composition, or elemental analysis can be conducted experimentally and included in the input 

data set. In practice, Virtual Material Group took an approach based on the API method to 

estimate similarity variable (α) [47] The experimental α data for the broad range of compounds 

comprising n-alkenes, n-alkynes, naphthenics, aromatics, and C10H10 isomers, shown in Table 4-

4, are compared to the API-based calculated alpha in this work, and the results are shown in 

Figure 4-4. It is obvious that the deviation of the API method is large and positive leading to Cp 

values predicted by the elemental based correlations to be overestimated.  

Table 4-4 : The compounds used for calculating the API method deviation in α estimation 

Compound 

Chemical 

Formula Density(kg.m
-3

) MW 

Actual α 

(mol.g
-1

) 
API method 

α(mol.g
-1

)  
1-heptene C7H14 701.3 98.187 0.2141 0.2300 

1-octene C8H16 719.1 112.2 0.2141 0.2280 

1-nonene C9C18 733.3 126.2 0.2141 0.2264 

1-decene C10H20 744.4 140.3 0.2141 0.2252 

1-undecene C11H22 753.7 154.3 0.2141 0.2242 

1-dodecene C12H24 762.5 168.3 0.2141 0.2234 

1-tridecene C13H26 769.4 182.3 0.2141 0.2227 

1-tetradecene C14H28 774.4 196.4 0.2141 0.2220 

1-pentadecene C15H30 779.7 210.4 0.2141 0.2215 

1-ethylcyclopentene C7H12 802.2 96.17 0.1977 0.2300 

1,2-

dimethylcyclohexene C8H14 829.1 110.2 0.1998 0.2280 

1-butylcyclopentene C9H16 811.1 124.2 0.2014 0.2264 

1-butylcyclohexene C10H18 828.2 138.2 0.2027 0.2252 

1-hexylcyclopentene C11H20 819.5 152.3 0.2037 0.2242 
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Compound Chemical 

Formula Density(kg.m
-3

) MW 

Actual α 

(mol.g
-1

) 

API method 

α(mol.g
-1

) 
1-heptylcyclopentene C12H22 822.8 166.3 0.2046 0.2234 

1-heptylcyclohexene C13H24 884.7 180.3 0.2054 0.1970 

1-nonylcyclopentene C14H26 827.7 194.4 0.2060 0.2221 

1-decylcyclopentene C15H28 829.7 208.4 0.2065 0.2215 

1-heptyne C7H12 736.2 96.17 0.1977 0.2299 

1-octyne C8H14 750.9 110.2 0.1998 0.2280 

1-nonyne C9H16 759.9 124.2 0.2014 0.2264 

1-decyne C10H18 768.8 138.2 0.2027 0.2252 

1-undecyne C11H20 775.9 152.3 0.2037 0.2242 

1-dodecyne C12H22 781.9 166.3 0.2046 0.2233 

1-tridecyne C13H24 787.6 180.3 0.2054 0.2227 

1-tetradecyne C14H26 793.8 194.4 0.2060 0.2221 

1-pentadecyne C15H28 795.9 208.4 0.2065 0.2215 

ethylcyclopentane C7H14 770.9 98.19 0.2141 0.2300 

ethylcyclohexane C8H16 791.8 112.2 0.2141 0.2280 

butylcyclopentane C9H18 788.2 126.2 0.2141 0.2264 

cyclodecane C10H20 860.4 140.3 0.2141 0.2022 

cycloundecane C11H22 865.3 154.3 0.2141 0.2013 

cyclododecane C12H24 866.5 168.3 0.2141 0.2013 

cyclotridecane C13H26 864.8 182.3 0.2141 0.2013 

cyclotetradecane C14H28 863.6 196.4 0.2141 0.2013 

cyclopentadecane C15H30 870.0 210.4 0.2141 0.2003 

cyclodecane C10H20 860.4 140.3 0.2141 0.2252 

1-cyclopentylpentane C10H20 794.8 140.3 0.2141 0.2252 

2-methyl-2-nonene C10H20 748.5 140.3 0.2141 0.2252 

isobutylcyclohexane C10H20 798.8 140.3 0.2141 0.2252 

cis-1,2-

diethylcyclohexane C10H20 814.8 140.3 0.2141 0.2252 

2-octene,2,6-dimethyl C10H20 756.3 140.3 0.2141 0.2252 

ethylcyclooctane C10H20 841.6 140.3 0.2141 0.2252 

2,3,4,4-tetramethyl-1-

hexene C10H20 800.4 140.3 0.2141 0.2252 
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Figure 4-4: The deviation of the API procedure in estimating α for different families: ■ , n-

alkyne; ▲ , C10H20 isomers;  ∆ , Aromatic; □ , n-alkene; ○ , Naphthenic  

4.5      Experimental Heat Capacity for the Model Mixtures 

The data from the second type of calibration with sapphire described in Section 3.3 were used 

to calculate the offset values using “fminunc” syntax in Matlab R2012 [80] to obtain the 

optimized heat capacity value. Fminunc finds a minimum of a problem specified by         . 

Equation 4-1 is the optimization equation which should be solved to find the offset value.  

       ∑[                  ]

 

   

 
4-1 

where       is the actual value,      is the experimental value, i is the number of data points, 

and x is the offset value. By using “fminunc”, the x value can be calculated which will be further 

used to optimized the experimental data obtained for heat capacity of the hydrocarbon mixtures. 
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The calibration results for each mixture are shown in                                      (a)                                                                        

(b) 

 

                                    (c)                                                                        (d) 

Figure . Corrected experimental data for heat capacity of each studied mixture are illustrated 

in Figure 4-6 to 4-9 along with ideal mixture heat capacity calculated by Equation 2-2 utilizing 

compound’s liquid heat capacity obtained from literature [82]. Consequently, since there is a 

systematic error with DSC measurement around +/- 0.05 J.K
-1

.g
-1

, the experimental data for the 

mixture has high compatibility with ideal mixture heat capacity in which the liquid Cp for the 

single component obtained from literature. In the Figure 4-9 the data for the ideal mixture 

obtained from the literature is illustrated above 350 K, since under this temperature, durene is 

solid. 
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                                     (a)                                                                        (b) 

 

                                    (c)                                                                        (d) 

Figure 4-5: Sapphire heat capacity obtained from:  —  , literature data using the Archer 

equation;  − −   , Experimental data without offset ; . . . , Optimized data using offset for 

a) Mixture 1, b) Mixture 2, c) Mixture 3, and d) Mixture 4. 
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Figure 4-6: Liquid heat capacity for Mixture 1: — , …, Literature data calculated for ideal 

mixture (component liquid Cp obtained from NIST [82]) 
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Figure 4-7: Liquid heat capacity for Mixture 2: — , …, Literature data calculated for ideal 

mixture (component liquid Cp obtained from NIST [82]) 
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Figure 4-8: Liquid heat capacity for Mixture 3: — , Optimized experimental data…, 

Literature data calculated for ideal mixture (component liquid Cp obtained from NIST [82]) 
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Figure 4-9: Liquid heat capacity for Mixture 4: — , …, Literature data calculated for ideal 

mixture (component liquid Cp values were obtained from NIST [82]) 

 

4.6      Comparisons Among Available Methods for Predicting Isobaric Liquid Heat 

Capacity 

The diversity of methods to calculate isobaric liquid heat capacity is challenging as shown 

in Chapter 2. To identify the hierarchies and the best niches for the combination of these 

methods, a comparision with experimental data has been done for the prepared mixtures.  
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Hydrocarbon fluids can be characterized on a molecular or refinery basis, so-called “known 

compound” and “petroleum cut” terms in simulator software, i.e. VMGSim. “Known 

compounds” are those known in terms of thermophysical properties, i.e critical properties and 

structures. In this work their ideal gas heat capacity value is predicted by means of a group 

contribution method [32]. “Petroleum cuts” are those which are not known and should be defined 

by their boiling temperature range, density, or other easy-to-measure properties and their ideal 

gas heat capacity value is estimated by Lee-Kesler [6] correlation.  

With these two methods of composition identification, the element based correlations 

described in Chapter 2.2.4 add two direct calculation options and four indirect calculation 

options for liquid phase Cp calculation per equation of state. Each of these approaches along 

with the conventional approaches for predicting liquid heat capacity described in Chapter 2 has 

advantages and disadvantages, and possesses different input data requirements as illustrated in 

Figure 4-10, where D-S is the Dadgostar-Shaw correlation [7], L-S IG Cp is the Lastovka-Shaw 

ideal gas heat capacity correlation [10], IG is the ideal gas, and EOS is any equation of state. 
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Figure 4-10: Computational matrix for the possible direct and indirect approaches for 

calculating isobaric liquid heat capacity of liquids 

 

The widely used methods chosen to be compared are described as follows: 

1) IGCp +APR based departure function (known compounds) 

According to the corresponding state theory [25],  the difference between ideal gas heat 

capacity and liquid heat capacity can be calculated by a departure function based on an equation 

of state (EOS). In this work, ideal gas heat capacity (IGCp) is estimated by means of the group 

contribution method [32] developed for structurally known compounds. The Advanced Peng-
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Robinson (APR), Equation 4-2, is chosen to derive the departure function defined in Equation 4-

5. 
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4-5 

where R is the universal gas constant, κ is a term related to the acentric factor and Tc and Pc 

are the critical temperature and pressure respectively.  

2) IGCp +APR based departure function (Petroleum cut) 

As it is mentioned above, petroleum cut refers to those compounds which are not known in 

terms of either structure or critical properties. The correlation used to estimate the ideal gas heat 

capacity is based on the method developed by Lee-Kesler [28]. The sample is considered as an 

unknown compound, and the critical properties used to calculate the APR departure function are 

also estimated from the correlations. 

3) L-S + APR based departure function (Known compound and actual α) 
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In this method, the IGCp is estimated by Lastovka-Shaw correlation (L-S) [10] and the sample 

is treated as a known compound, similarly to method 1. 

4) L-S  + APR based departure function (Petroleum cut) 

It is the same as method 3, but the sample is treated as an unknown compound similarly to 

method 2. 

5) D-S (Actual α) 

In this method, the heat capacity of a sample is estimated by Dadgostar-Shaw (D-S) 

correlation [7] and the actual value is used for α. 

6) D-S (API base α) 

This is the same as method 5, but the α is estimated by the API approach [15]. 

7) L-S  +APR based departure function (Known compound and API base α) 

This is the same as method 3, but the α is estimated by the API approach [15]. 

8) L-K Cp 

In this method, the liquid heat capacity is predicted by Lee-Kesler (L-K) correlation [6]. 

The experimental and computed results are reported in Figures 4-11 to 4-14 for all the 

prepared samples. The mean absolute percentage error (MAPE) between the experimental and 

computed values is shown in Table 4-5. 
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Figure 4-11: Isobaric liquid heat capacity of Mixture 1 calculated by various methods: —, 

Experimental data with the error of 0.02 J.K
-1

.g
-1

 shown as a shaded area; - - , IGCp+APR base 

departure function (known compound);  ▲ , IGCp+APR base departure function (petroleum cut); 

□, Lastovka-Shaw IGCp+APR base departure function (known compound); ▬, Lastovka-Shaw 

IGCp+APR base departure function (petroleum cut);  ∆, Dadgostar-Shaw Cp (Actual α); . . ., 

Dadgostar_Shaw Cp (API base α);  ○  , Lastovka-Shaw IGCp (API base alpha)+APR base 

departure function; _ . _ , Lee-Kesler Cp     
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Figure 4-12: Isobaric liquid heat capacity of Mixture 2 calculated by various methods: —, 

Experimental data with the error of 0.02 J.K
-1

.g
-1

 shown as a shaded area; - - , IGCp+APR base 

departure function (known compound);  ▲ , IGCp+APR base departure function (petroleum cut); 

□, Lastovka-Shaw IGCp+APR base departure function (known compound); ▬, Lastovka-Shaw 

IGCp+APR base departure function (petroleum cut);  ∆, Dadgostar-Shaw Cp (Actual α); . . ., 

Dadgostar_Shaw Cp (API base alpha);  ○  , Lastovka-Shaw IGCp (API base α) +APR base 

departure function; _ . _ , Lee-Kesler Cp     
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Figure 4-13: Isobaric liquid heat capacity of Mixture 3 calculated by various methods: —, 

Experimental data with the error of 0.02 J.K
-1

.g
-1

 shown as a shaded area; - - , IGCp+APR base 

departure function (known compound);  ▲ , IGCp+APR base departure function (petroleum cut); 

□, Lastovka-Shaw IGCp+APR base departure function (known compound); ▬, Lastovka-Shaw 

IGCp+APR base departure function (petroleum cut);  ∆, Dadgostar-Shaw Cp (Actual α); . . ., 

Dadgostar_Shaw Cp (API base alpha);  ○  , Lastovka-Shaw IGCp (API base α) +APR base 

departure function; _ . _ , Lee-Kesler Cp     
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Figure 4-14: Isobaric liquid heat capacity of Mixture 4 calculated by various methods: —, 

Experimental data with the error of 0.02 J.K
-1

.g
-1

 shown as a shaded area; - - , IGCp+APR base 

departure function (known compound);  ▲ , IGCp+APR base departure function (petroleum cut); 

□, Lastovka-Shaw IGCp+APR base departure function (known compound); ▬, Lastovka-Shaw 

IGCp+APR base departure function (petroleum cut);  ∆, Dadgostar-Shaw Cp (Actual α); . . ., 

Dadgostar_Shaw Cp (API base alpha);  ○  , Lastovka-Shaw IGCp (API base α) +APR base 

departure function; _ . _ , Lee-Kesler Cp     
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Table 4-5: Deviation of liquid phase constant pressure heat capacity computational approaches 

from experimental data for mixtures 1-4 

 

 

 

    MAPE    

L–S IG Cp 

(API based 

)+APR 

based DF 

(known 

compounds) 

D–S Cp 

(API 

based ) 

L-K Cp       IG Cp + 

APR based 

DF (known 

compounds) 

L-S IG Cp 

+APR based 

DF (petroleum 

cut) 

L-S IG Cp 

+APR based 

DF (known 

compounds) 

IG Cp + 

APR based 

DF 

(petroleum 

cut) 

D-S 

Cp 

(know

n α) 

Mixture 1 1.91 0.43 3.67 0.50 2.46 1.91 1.49 0.43 

Mixture 2 8.57 6.31 3.35 0.49 1.25 0.76 2.07 2.69 

Mixture 3 4.47 3.71 10.89 3.35 2.62 2.89 2.53 4.10 

Mixture 4 7.86 16.89 20.1 0.92 2.22 2.24 1.27 13.24 

 

4.7      Conclusion and Recommendation  

The element base correlations add four indirect computational options for liquid phase Cp 

calculation per equation of state, and two direct calculation options. Each of these computational 

variants has advantages and disadvantages and different input data requirements. Figure 4-11to 

4-14 confirms that selecting a wrong method for predicting liquid heat capacity can lead to 0.2 

J.K
-1

g
-1

 or higher deviations from the actual values, so, defining a potential application for each 

method is a necessity. For known compounds with known critical properties, estimated ideal gas 

heat capacity by correlation (group contribution method), and APR based departure functions 

shows the most precise and accurate result in predicting constant-pressure heat capacity for 

liquids as it is illustrated for four prepared mixtures; however, for ill-defined material the 
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Dadgostar-Shaw correlation has the highest accuracy and precision compared to existing 

correlations.  

Estimated Cp by the Dadgostar-Shaw correlation is sensitive to similarity variable, since 

having a deviation of 0.001 in estimating similarity variable would cause a deviation of 0.004 

(J.K
-1

.g
-1

) in predicted Cp value. It is shown in Figure 4-4 that the deviation in estimated values 

of α by the API procedure is large; consequently, element based heat capacity computational 

approaches must currently have the experimental elemental analysis as a required input and 

developing a precise and accurate correlation for estimating similarity variable is in the scope of 

the next chapter. 
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5   Development of a Predictive Correlation for the Composition Similarity 

Variable for Organic Compounds 

5.1      Introduction  

In the previous chapters it was mentioned that in order to implement the element based heat 

capacity correlations in commercial chemical engineering process simulator software, similarity 

variables must be either computed from experimental elemental analysis measurements, or 

estimated from available property data with little deviation. Elemental compositions of ill-

defined hydrocarbons are frequently estimated using the API approach [15]. It was shown in 

Chapter 4 that this approach systematically overestimates the values of the similarity variable 

and hence overestimates heat capacity values irrespective of the phase state; the deviation can 

exceed 0.2 J/g/K or 20 % for representative cases.  

The sensitivity of the Dadgostar-Shaw correlation to α values is shown in Figure 5.1 (a-c) for 

the range of anticipated α values. For large n-alkanes, with the empirical formula CH2, α = 0.215 

molg
-1

, for large aromatic compounds, the empirical formula approaches C, and α = 0.085 

molg
-1

. So, based on the heat capacity of midpoint in this range, α = 0.15 molg
-1

, relative and 

absolute deviations for Cp values at fixed temperature range from +25 to -35% and +0.4 to -0.6 

JK
-1

g
-1 

 respectively. This range approximates the maximum uncertainty for this correlation.  
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                                                                             (a) 

 

                                      (b)                                                                         (c)  

Figure 5-1: a) Cp predicted by the D-S correlation for: — , alpha=0.15 molg
-1

;- - -, 

alpha=0.085 molg
-1

; ▬  , alpha= 0.215 molg
-1

. Absolute (b) and relative (c) deviations from Cp 

values predicted using alpha = 0.15 molg
-1

:  - - -, for alpha=0.085 molg
-1

 and ▬ alpha=0.215 

molg
-1

.  

 



63 

 

The objective in this chapter is to reduce the uncertainty of heat capacity calculations for 

compounds or mixtures where the elemental analysis is not available, by correlating other known 

or calculated thermophysical properties to α.  

5.2      Correlation Development to Predict Similarity Variable  

5.2.1      Dependence of Similarity Variable on Physical Properties 

As a starting point for the development of a correlation for α, as a function of physical 

properties, the relationships between α and physical properties [density at 25  , molar mass and 

boiling temperature at 1.01 bar] are shown in Figure 5-2 (a-c) respectively for 154 organic liquid 

compounds, shown in Table 5-1, comprising n-alkane, n-alkene, n-alkyne, naphthenic, aromatic, 

and heteroatom containing compounds. Data are obtained from the NIST chemistry web-book 

[81]. Density, molar mass and boiling temperature are selected among other physical properties, 

since they are the most available characterization factors for the oil cuts and other ill-defined 

hydrocarbon compounds. 
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Table 5-1: Property database used for similarity variable correlation 
1
  

Compound Formula Data Base  Molar 

mass
1
, 

g/mol 

α, molg
-

1
 

Tb 
1
at  

1 atm / 

K 

Density
1 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

Indene C9H8 Training Set  116.2 0.1464 454.0 991.8 Aromatic 1 

Indane C9H10 Training Set  118.2 0.1609 450.0 958.2 Aromatic 2 

1,2,3-Trimethylbenzene C9H12 Training Set  120.2 0.1749 449.2 890.5 Aromatic 3 

1,2,3,4-

Tetramethylbenzene 

C10H14 Training Set  134.2 0.1790 478.1 900.9 Aromatic 4 

1-Methylnaphthalene C11H10 Training Set  142.2 0.1478 515.0 1016.4 Aromatic 5 

Ethylene, 1,1-diphenyl- C14H12 Training Set  180.2 0.1443 543.7 1019.5 Aromatic 6 

1,2-Dihydroanthracene C14H12 Training Set  180.2 0.1443 606.0 1138 Aromatic 7 

1,2,3,5-Tetraethylbenzene C14H22 Training Set  190.3 0.1893 521.7 876.5 Aromatic 8 

Cyclohexene, 1-octyl- C14H26 Training Set  194.3 0.2060 530.5 838.6 Aromatic 9 

1-ethylcyclopentene C7H12 Training Set  96.17 0.1978 379.3 793.24 Aromatic 10 

1,2-dimethylcyclohexene C8H14 Training Set  110.2 0.1998 409.7 820.1 Aromatic 11 

dihydro-1,6-dimethyl-4-

(1-

methylethyl)naphthalene 

C15H20 Training Set  200.3 0.1749 562.0 936.8 Aromatic 12 

cyclopentene, 4-butyl- C9H16 Training Set  124.2 0.2015 427.0 836.0 Aromatic 13 

Cyclohexene, 3-methyl-6-

(1-methylethyl)- 

C10H18 Training Set  138.2 0.2027 438.0 820.4 Aromatic 14 

1-butylcyclohexene C10H18 Training Set  138.2 0.2027 453.7 820.1 Aromatic 15 

Benzene, (1-

methylundecyl)- 

C18H30 Training Set  246.4 0.1950 576.7 851.6 Aromatic 16 

1-hexylcyclopentene C11H20 Training Set  152.3 0.2038 478.0 808.4 Aromatic 17 

Benzene, (1-pentylhexyl)- C17H28 Training Set  232.4 0.1938 580.0 962.0 Aromatic 18 

Benzene, m-bis(1-

methylbutyl) 

C16H26 Training Set  218.4 0.1925 553.0 945.0 Aromatic 19 

n-decylbenzene C16H26 Training Set  218.4 0.1925 571.0 852.1 Aromatic 20 

Phenanthrene, 2-dodecyl- C26H34 Training Set  346.6 0.1733 746.7 962.0 Aromatic 21 

Benzene, (3-

octylundecyl)- 

C25H44 Training Set  344.6 0.2004 671.6 852.6 Aromatic 22 

1H-Indene, 2-hexadecyl-

2,3-dihydro- 

C25H42 Training Set  342.6 0.1958 674.0 879.7 Aromatic 23 

1,1-Diphenyldodecane C24H34 Training Set  322.5 0.1800 672.0 924.6 Aromatic 24 

Phenanthrene, 9-nonyl- C23H28 Training Set  304.5 0.1676 708.0 1109 Aromatic 25 

Pentadecane, 2-methyl-2-

phenyl- 

C22H38 Training Set  302.5 0.1985 638.0 858.4 Aromatic 26 

Naphthalene, 2-butyl-3-

hexyl- 

C20H28 Training Set  268.4 0.1790 642.1 930.0 Aromatic 27 

2-dodecylnaphthalene C22H32 Training Set  296.5 0.1823 706.0 912.4 Aromatic 28 

Naphthalene, 1,2,3,4-

tetrahydro-1-nonyl- 

C19H30 Training Set  258.5 0.1898 633.0 991.0 Aromatic 29 

          

1H-Indene, 2-butyl-1-

hexyl-2,3-dihydro- 

C19H30 Training Set  258.5 0.1898 610.7 893.0 Aromatic 30 

1-heptylcyclopentene C12H22 Training Set  166.3 0.2047 491.9 816.4 Aromatic 31 

1-heptylcyclohexene C13H24 Training Set  180.3 0.2054 507.0 875.0 Aromatic 32 

1-decylcyclopentene C15H28 Training Set  2084 0.2066 536.0 825.9 Aromatic 33 

1,2-diphenyl-1-butene C16H16 Training Set  208.3 0.1537 590.0 1008 Aromatic 34 

2,6-

Diisopropylnaphthalene 

C16H20 Training Set  212.3 0.1697 597.0 1048 Aromatic 

 

 

35 
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Compound Formula Data Base  Molar 

mass, 

g/mol 

α, molg
-

1
 

Tb at 1 

atm / K 

Density 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

Benzene, 1,1'-

pentylidenebis- 

C17H20 Training Set  224.3 0.1650 597.0 1048 Aromatic 36 

Naphthalene, 1,2,3,4-

tetrahydro-1-octyl- 

C18H28 Training Set  244.4 0.1884 580.9 962.7 Aromatic 37 

Benzene, (1-hexylheptyl)-  C19H32 Training Set  260.5 0.1960 621.0 911.8 Aromatic 38 

Naphthalene, 1,4-

dimethyl-5-octyl- 

C20H28 Training Set  268.4 0.1790 594.8 850.5 Aromatic 39 

1,6-Heptadiene C7H12 Training Set  96.17 0.1978 362.6 705.4 n-alkene 40 

1,5-Hexadiene, 2-methyl- C7H12 Training Set  96.17 0.1978 361.2 716.9 n-alkene 41 

2,3-Pentadiene, 2,4-

dimethyl- 

C7H12 Training Set  110.2 0.1978 356.1 701.3 n-alkene 42 

1,3-Pentadiene, 2,4-

dimethyl- 

C7H12 Training Set  96.17 0.1978 366.7 732.5 n-alkene 43 

1-heptene C7H14 Training Set  98.19 0.2141 366.8 692.8 n-alkene 44 

1,4-Heptadiene, 3-methyl- C8H14 Training Set  182.3 0.1998 378.2 725.1 n-alkene 45 

2,4-Hexadiene, 2,5-

dimethyl- 

C8H14 Training Set  110.2 0.1998 408.4 757.8 n-alkene 46 

1-octene C8H16 Training Set  112.2 0.2141 394.4 710.9 n-alkene 47 

1-nonene C9H18 Training Set  126.2 0.2141 420.0 725.4 n-alkene 48 

1,9-Decadiene C10H18 Training Set  138.2 0.2027 437.6 749.8 n-alkene 49 

1-decene C10H20 Training Set  140.3 0.2141 443.7 737.0 n-alkene 50 

1-undecene C11H22 Training Set  154.3 0.2141 465.8 746.6 n-alkene 51 

1-dodecene C12H24 Training Set  168.3 0.2141 486.5 754.8 n-alkene 52 

1-tridecene C13H26 Training Set  182.3 0.2141 505.9 761.9 n-alkene 53 

2-methyl-2-tridecene C14H28 Training Set  196.4 0.2141 513.0 769.4 n-alkene 54 

1-tetradecene C14H28 Training Set  196.4 0.2141 524.3 768.2 n-alkene 55 

3-methyl-1-tetradecene C15H30 Training Set  210.4 0.2141 529.0 770.4 n-alkene 56 

1-Pentadecene C15H30 Training Set  210.4 0.2141 541.6 772.7 n-alkene 57 

1-Pentadecene, 2-methyl- C16H32 Training Set  224.4 0.2141 545.0 780.9 n-alkene 58 

2-Methyl-1-octadecene C19H38 Training Set  266.5 0.2141 602.0 908.0 n-alkene 59 

2-methyl-2-nonadecene C20H40 Training Set  280.5 0.2141 619.5 796.1 n-alkene 60 

7-hexyl-7-pentadecene C21H42 Training Set  294.6 0.2141 639.0 937.0 n-alkene 61 

8-heptyl-7-pentadecene C22H44 Training Set  308.6 0.2141 639.0 801.0 n-alkene 62 

9-octyl-8-heptadecene C25H50 Training Set  350.7 0.2141 649.0 805.6 n-alkene 63 

1-hexacosene C26H52 Training Set  364.7 0.2141 671.0 982.0 n-alkene 64 

          

10-nonyl-7-nonadecene  C28H56 Training Set  392.8 0.2141 722.5 975.0 n-alkene 65 

1-Undecene, 2-methyl- C12H24 Training Set  168.3 0.2141 478.0 758.5 n-alkene 66 

1-Nonene, 2,4,6,8-

tetramethyl 

C13H26 Training Set  168.3 0.2141 470.0 764.0 n-alkene 67 

1-Decene, 2-methyl- C11H22 Training Set  96.17 0.2141 458.0 750.7 n-alkene 68 

1-heptyne C7H12 Training Set  96.17 0.1978 372.9 728.7 n-alkyne 69 

1-octyne C8H14 Training Set  110.2 0.1910 399.4 742.0 n-alkyne 70 

1-nonyne C9H16 Training Set  124.2 0.2015 424.0 753.3 n-alkyne 71 

1-decyne C10H18 Training Set  138.2 0.2027 446.8 764.6 n-alkyne 72 

1-undecyne C11H20 Training Set  152.3 0.2038 477.0 770.3 n-alkyne 73 

2,9-Dimethyl-5-decyne C12H21 Training Set  166.3 0.2047 482.0 778.2 n-alkyne 74 

1-dodecyne C12H22 Training Set  166.3 0.2047 505.0 777.3 n-alkyne 75 

1-tetradecyne C14H26 Training Set  194.4 0.2060 525.6 849.0 n-alkyne 76 

1-pentadecyne C15H28 Training Set  208.4 0.20662 553.1 828.0 n-alkyne 77 

2,6,6-trimethyl-3,3-

diisopropyl-4-heptyne 

C16H30 Training Set  222.4 0.2070 489.8 818.3 n-alkyne 78 

3-heptadecyne C17H32 Training Set  236.4 0.2075 573.0 881.0 n-alkyne 79 



66 

 

Compound Formula Data Base  Molar 

mass, 

g/mol 

α, molg
-

1
 

Tb at 1 

atm / K 

Density 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

3-octadecyne C18H34 Training Set  250.5 0.2078 599.2 801.6 n-alkyne 80 

1-nonadecyne C19H36 Training Set  264.5 0.2082 605.4 909.0 n-alkyne 81 

Heptane C7H16 Training Set  100.2 0.2298 371.5 679.6 n-alkane 82 

Hexane, 2-methyl- C7H16 Training Set  100.2 0.2298 363.1 674.5 n-alkane 83 

n-Decane C10H22 Training Set  142.3 0.2251 447.3 726.6 n-alkane 84 

Octane, 2,6-dimethyl- C10H22 Training Set  142.3 0.2252 431.5 725.3 n-alkane 85 

n-Undecane C11H24 Training Set  156.3 0.2242 469.0 736.8 n-alkane 86 

Nonane, 3,7-dimethyl- C11H24 Training Set  156.3 0.2233 449.4 769.0 n-alkane 87 

Tridecane C13H28 Training Set  184.4 0.2215 508.6 752.9 n-alkane 88 

2,4-dimethyl-4-(1,1-

dimethylethyl)heptane 

C13H28 Training Set  184.4 0.2227 479.9 793.1 n-alkane 89 

Pentadecane C15H32 Training Set  212.4 0.2215 543.8 765.1 n-alkane 90 

Dodecane, 2,6,11-

trimethyl- 

C15H32 Training Set  212.4 0.2215 520.6 826.0 n-alkane 91 

5,5-Dibutylnonane C17H36 Training Set  240.5 0.2207 535.0 777.7 n-alkane 92 

Octadecane, 2,6-dimethyl- C20H42 Training Set  282.6 0.2110 598.2 909.0 n-alkane 93 

Eicosane, 2,4-dimethyl- C22H46 Training Set  310.6 0.2192 605.3 789.8 n-alkane 94 

Decane, 2,4-dimethyl- C12H26 Training Set  170.3 0.2233 473.2 744.6 n-alkane 95 

ethylcyclopentane C7H14 Training Set  98.19 0.2141 376.6 762.3 naphthenic 96 

ethylcyclohexane C8H16 Training Set  112.2 0.2141 404.9 784.3 naphthenic 97 

butylcyclopentane C9H18 Training Set  126.2 0.2141 429.3 780.9 naphthenic 98 

1,1'-Bicyclopentyl C10H18 Training Set  138.2 0.2027 463.6 861.0 naphthenic 99 

Naphthalene, decahydro-2-

methyl- 

C11H20 Training Set  152.3 0.2038 475.0 886.0 naphthenic 100 

cycloundecane C11H22 Training Set  154.3 0.2141 456.8 804.0 naphthenic 101 

1,1,3-

Tricyclohexylpropane 

C21H38 Training Set  290.5 0.2033 656.0 935.0 naphthenic 102 

Cyclopentane, 1,1'-[4-(3-

cyclopentylpropyl)-1,7-

heptanediyl]bis-  

C25H46 Training Set   346.6 0.2050 684.9 885.4 naphthenic 103 

1-butyl-2,2,6-

trimethylcyclohexane 

C13H26 Training Set  182.3 0.2141 491.0 846.0 naphthenic 104 

Butyldecalin C14H26 Training Set  194.4 0.2060 537.1 872.7 naphthenic 105 

Cyclohexane, (3-

cyclopentylpropyl)- 

C14H26 Training Set  194.4 0.2060 543.6 864.3 naphthenic 106 

Octane, 2-cyclohexyl- C14H28 Training Set  196.4 0.2141 528.6 820.1 naphthenic 

 

107 

2-Isopropylbicyclohexyl C15H28 Training Set  208.4 0.2066 553.3 894.5 naphthenic 108 

Cyclohexane, 1,1'-(1-

methylethylidene)bis- 

C15H28 Training Set  208.4 0.2066 559.4 903.8 naphthenic 109 

2,6,6,9-

tetramethylcycloundecane 

C15H30 Training Set  210.4 0.2141 514.0 820.0 naphthenic 110 

1,1'-Bicyclohexyl, 2-butyl- C16H30 Training Set  222.4 0.2070 568.5 882.1 naphthenic 111 

1,1-dicyclohexylbutane C16H30 Training Set  222.4 0.2070 566.0 885.9 naphthenic 112 

1,5-dicyclohexylpentane C17H32 Training Set  236.4 0.2075 598.0 866.3 naphthenic 113 

Cyclohexane, 1,1'-(1,2-

ethanediyl)bis- 

C14H26 Training Set  194.4 0.2060 545.8 872.4 naphthenic 114 

1,1-dicyclohexylheptane C19H36 Training Set  264.5 0.2082 620.9 885.5 naphthenic 115 

Naphthalene, decahydro-

2,6-dimethyl-3-octyl-  

C20H38 Training Set  278.5 0.2085 624.8 866.0 naphthenic 116 

Heptane, 1,1-

dicyclohexyl- 

C19H36 Training Set  264.5 0.2082 620.9 885.5 naphthenic 117 
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Compound Formula Data Base  Molar 

mass, 

g/mol 

α, molg
-

1
 

Tb at 1 

atm / K 

Density 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

1H-Indene, 5-butyl-6-

hexyloctahydro- 

C19H36 Training Set  264.5 0.2082 606.5 866.0 naphthenic 118 

Chrysene, octadecahydro- C18H30 Training Set  246.45 0.1950 645.4 977.7 naphthenic 119 

Cyclohexane, (1,2-

dimethylbutyl)- 

C12H24 Training Set  168.35 0.2141 479.7 831.1 naphthenic 120 

Cyclohexane, (1-

octylnonyl)-  

C23H46 Training Set  322.65 0.2141 645.3 830.9 naphthenic 121 

1-Fluoronaphthalene C10H7F Training Set  146.2 0.1232 484.5 1131.5 heteroatom 122 

1,3-butanedione, 4,4,4-

trifluoro-1-phenyl- 

C10H7F3

O2 

Training Set  216.2 0.1018 517.0 1540 heteroatom 123 

4-Phenyl-3-butyn-2-one C10H8O Training Set  144.2 0.1319 522.0 1023.3 heteroatom 124 

Dibenzothiophene, 

1,2,3,4-tetrahydro- 

C12H12S Training Set  188.3 0.1329 594.7 1143 heteroatom 125 

pyridine C5H5N Training Set  79.10 0.1391 388.4 978.2 heteroatom 126 

2-methyl-6-phenylpyridine C12H11N Training Set  169.2 0.1419 548.3 1085 heteroatom 127 

(1-

methylethylidene)cyclohex

ane 

C9H16 Training Set  124.2 0.2015 434.1 832 heteroatom 128 

Styrene C8H8 Test/Comp. 

Set 

 104.1 0.1537 418.4 901.7 Aromatic 129 

1,2-dimethylbenzene C8H10 Test/Comp. 

Set 

 106.2 0.1697 417.5 875.7 Aromatic 130 

3,3'-Dimethylbiphenyl C14H14 Test/Comp. 

Set 

 182.3 0.1537 562.7 994.9 Aromatic 131 

Naphthalene, 1-butyl- C14H16 Test/Comp. 

Set 

 184.3 0.1629 560.7 971.5 Aromatic 132 

Naphthalene, 1,6-

dimethyl-4-(1-

methylethyl)- 

C15H18 Test/Comp. 

Set 

 198.3 0.1665 575.0 974.2 Aromatic 133 

1,2-diphenyl-1-butene C16H16 Test/Comp. 

Set 

 208.3 0.1537 590.0 1008 Aromatic 134 

          

2-Heptene, 4-methyl-, (E)- C8H16 Test/Comp. 

Set 

 112.2 0.2141 398.2 740 n-alkene 135 

1-Pentene, 2,3-dimethyl- C7H14 Test/Comp. 

Set 

 98.19 0.2141 357.4 700.7 n-alkene 136 

1-Hexene, 3,5,5-trimethyl- C9H18 Test/Comp. 

Set 

 126.2 0.2141 394.5 719.6 n-alkene 137 

2,3-Dimethyl-2-octene C10H20 Test/Comp. 

Set 

 140.3 0.2141 442.0 757.3 n-alkene 138 

1-Decene, 2-methyl- C11H22 Test/Comp. 

Set 

 154.3 0.2141 458.0 750.7 n-alkene 139 

4-Octyne C8H14 Test/Comp. 

Set 

 110.2 0.1998 406.6 747.3 n-alkyne 140 

2,7-dimethyl-4-octyne C10H18 Test/Comp. 

Set 

 138.2 0.2027 432.0 758.3 n-alkyne 141 

3,3-dimethyl-4-nonyne C11H20 Test/Comp. 

Set 

 152.3 0.2038 451.0 762.5 n-alkyne 142 

3,3-dimethyl-4-decyne C12H22 Test/Comp. 

Set 

 166.3 0.2047 474.6 769.9 n-alkyne 143 

Hexane, 2,5-dimethyl- C8H18 Test/Comp. 

Set 

 114.2 0.2280 382.2 690.01 n-alkane 144 
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Compound Formula Data Base  Molar 

mass, 

g/mol 

α, molg
-

1
 

Tb at 1 

atm / K 

Density 

at 25 , 

kg.m
-3

 

Family Sam

ple 

No. 

Hexane, 2,3,5-trimethyl- C9H20 Test/Comp. 

Set 

 128.3 0.2264 404.0 718.0 n-alkane 145 

Octane, 3,3-dimethyl- C10H22 Test/Comp. 

Set 

 142.3 0.2252 433.5 735.2 n-alkane 146 

Nonane, 2,7-dimethyl C11H24 Test/Comp. 

Set 

 156.3 0.2242 449.5 774 n-alkane 147 

Cyclopentane, propyl- C8H16 Test/Comp. 

Set 

 112.2 0.2141 404.0 772.4 naphthenic 148 

1,1,4-

Trimethylcyclohexane    

C9H18 Test/Comp. 

Set 

 126.2 0.2141 407.6 767.6 naphthenic 149 

Cyclooctane, ethyl- C10H20 Test/Comp. 

Set 

 140.3 0.2141 463.1 833.5 naphthenic 150 

1-butyl-1-methyl-

cyclohexane 

C11H22 Test/Comp. 

Set 

 154.3 0.2141 464.7 809.9 naphthenic 151 

quinoline C9H7N Test/Comp. 

Set 

 129.2 0.1317 510.2 1090 heteroatom 

 

152 

nicotine C10H14N2 Test/Comp. 

Set 

 162.2 0.1604 523.2 1005 heteroatom 153 

chroman C9H10O Test/Comp. 

Set 

 134.2 0.1492 488.7 1060 heteroatom 154 

1 The property values are taken from the NIST Webbook [82] 
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               (a)                                                                             (b)  

 

(c) 

Figure 5-2: Dependence of α on: a) Tb, b) MW, c) density . 

 

Figure 5-2 confirms that α has more specific trend with density compared to boiling 

temperature and molecular weight. Consequently, density appears to be a robust basis for the 

development of a correlation but not adequate, since α does not have a well understood relation 
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to the density. Molecular weight and boiling temperature showed the same trend, so having both 

as independent variables is not necessary. Least square method is needed to be applied in order 

to find a linear correlation as a function of density and either molecular weight or boiling 

temperature.  

5.2.2      Similarity Variable Prediction by Correlation 

As it is mentioned before, one of the categories for the least square method is multiple linear 

regressions (MLR). It can be applied to develop a correlation when independent variables are 

few in the number, are not collinear, and have a well understood relationship to the dependent 

variable; otherwise, partial least square can be a better method to develop a model. 

It is illustrated in Figure 5-2 that   does not have any specific trend with molecular weight 

and boiling temperature, while the trend between   and density is obvious; however, the scatter 

is large. In order to find any collinearity between density and either molecular weight or boiling 

temperature, the r value [82], linear correlation coefficient, is calculated using Equation 5-1 and 

the results are 0.5311, 0.3436, 0.9389; for {Density at 25  and MW}, {Density at 25  and Tb}, 

and {MW and Tb}, respectively.   

   
 ∑     ∑   ∑  

√  ∑     ∑   √  ∑     ∑   
 

5-1 

where x and y are two variables and n is the number of available data. The range of values for 

r is between -1 and +1 which relates to negative and positive linear correlation, respectively [82]. 

The r value for the independent variable shows how close these variables are collinear. 

Independent variables are called collinear when the r value is higher than 0.05 [83]. 
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The trend of changes for density, MW, and Tb values for 154 organic liquid compounds, 

Table 5-1, is illustrated in Figure 5-3 versus sample number which is 1 to 154: 

 

Figure 5-3: Changes of MW, Tb, and density versus sample number 

It can be seen from Figure 5-3 and the r value that MW and Tb are strongly collinear, and 

there is a collinearity between density and MW/Tb. Accordingly, PLS would be the best method 

to develop a linear model to estimate similarity variable as a function of density at 25 C and 

either MW or Tb.  
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5.2.3      Similarity Variable Database  

Liquids from Table 5-1 used to develop the similarity variable correlation were distributed 

into three data sets: a training data set comprising 128 organic liquid compounds (including 

paraffins, naphthenes, aromatics, sulphur/oxygen/nitrogen derivatives) used to regress correlation 

coefficients, a test data set comprising 26 organic compounds (including paraffins, naphthenes, 

aromatics, sulphur/oxygen/nitrogen derivatives) used to evaluate the predictive character of the 

correlation, and a comparison data set comprises 4 similarity variable values for four prepared 

mixtures in chapter 4, used to evaluate the relative performance of the correlation vis-à-vis the 

API procedure. In total, 154 compound with density ranging from 670 to 1200 kg.m
-3

 and molar 

mass ranging from 79 to 400 g/mol were used to cover the wide range of properties. The training 

data set density range was from 701 to 1134 kg.m
-3

 and the molar mass was from 97 to 393 

g/mol. The test data set density range was from 690 to 1090 kg.m
-3

 and the molar mass was from 

98 to 209 g/mol. 

5.2.4      Results   

To obtain the correlation, the MATLAB R2012a [80] was used for programing a PLS method 

to find the linear predictive correlation over the training data set presented in Table 5-1. The 

possible combinations of inputs were {Density and MW}, {Density and Tb}, and {Density and 

Tb and MW}. All the combinations were examined and the root mean square error (RMSE) and 

the bias of the models are shown in Table 5-2. 
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Table 5-2: The RMSE for different combinations of inputs 

 RMSE                     Bias 

MW and Density 0.011               3.77*10
-17

 

MW and Tb 0.020               1.73*10
-17

 

Density and Tb 0.012               1.14*10
-16

 

MW, Tb, and Density 0.011               4.37*10
-17

 

 

Among two-variable correlations, the combination of {Density and MW} was shown to work 

better than {Density and Tb}. Although the same deviation occurred for {Density, MW, and Tb} 

and {Density and MW } as the inputs, having the input as just {Density and MW} makes the 

model less complicated. Moreover, since there is not much difference between {Density and 

MW} and {Density and Tb} as the inputs, both models have been developed so that if the MW is 

not available one can estimate the α value by having Tb. The correlation with different input 

required are as follows: 

                 5-2 

                 5-3 

Where   is similarity variable,   is density at 25   (kg.m-
3
), MW is the molecular weight, Tb 

is boling temperature for the single compound and average boling temperature for the mixture 

(K),    and    are the universal coefficients with values shown in Table 5-3: 
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Table 5-3: Universal coefficient for the Equation 5-2 and 5-3 

   0.3412    0.3192 

   -1.8586*10
-4

    -1.9645*10
-4

 

   1.2283*10
-4

    9.0678*10
-5

 

 

The quality of models is illustrated in Figure 5-4 to 5-7 using training and test data sets. In 

this way, the uncertainty of the estimated heat capacities is reduced from the maximum noted in 

section 5.1 (+20 to 
–
35 %; +0.4 to -0.6 J.K

-1.
g

-1
). to +0.025 to -0.025 J.K

-1.
g

-1
 using a simple and 

simple to implement correlation.  

 

 

Figure 5-4: The quality of the model (Equation 5-2) over the training data set 
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Figure 5-5: The quality of the model (Equation 5-2) over the test data set 

 

Figure 5-6: The absolute residual of the model (Equation 5-2) over the training data set 
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Figure 5-7: The absolute residual of the model (Equation 5-2) over the test data set 

 

Figure 5-8: The quality of the model (Equation 5-3) over the test data set 
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Figure 5-9: The absolute residual of the model (Equation 5-3) over the test data set 

 

5.3    Artificial Neural Network Model 

5.3.1    Network design 

Another possible method to develop a model to predict α is Artificial Neural Network, since 

there is no well-defined relationship between α and the properties mentioned above. The ANN is 

applied to see if a model can be developed with higher precision and accuracy. The possible 

input variables are molecular weight, average boiling temperature, and density at 25  . 

According to the complexity of the problem, the back propagation learning algorithm has been 

used in a network with one hidden layer and feed forward algorithm. Variants of the algorithm, 

which should be specified, are the required inputs, number of nodes in the hidden layer, training 
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(learning) function and the transfer function. In order to train a neural network the data set, Table 

5-1, comprising 154 organic liquid compounds are used, where 70, 15, and 15 % of the data are 

used as the training, test, and validation data sets by the network, respectively. The error is 

calculated as the mean square error (MSE): 

    
 

 
∑        

 

 

   

 
5-4 

 

Where ti is the target value, and    is the desired output value.  

For studying required inputs to train the neural network, five configurations of inputs were 

considered and the results are compared. Levenberg-Marquardt back propagation (trainlm) 

[84,85] is used as the training algorithm, and Verhulst logistic sigmoid [86] (logsig) is used as 

the transfer function, while the hidden layer size is selected to be 8. The results for MSE for each 

configuration are shown in Table 5-4. According to the results, having all three terms as the 

required inputs (Tb, MW, and density) yields the least error; however, there is not much 

difference between a and d. Since fewer required inputs make the process less complex, density 

and MW are taken into account as the inputs. 
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Table 5-4: Error evaluation for different input configurations 

                         Inputs                               MSE                 Bias               

                a) Density and MW            9.07E-05          -4.2E-05 

                b) Density and Tb                   9.52E-05           -5.9E10-4 

                c) MW and Tb                    2.66E-04           3.6E-04 

                d) Density, MW and Tb          7.35E-05           -6.4E-05 

 

                e) Density                                1.91e-04            1.9E04  

 

The size of hidden layer is defined by the number of nodes used in that layer. For finding an 

optimum size of the hidden layer, a neural network is performed for four different sizes and the 

performance is evaluated. Levenberg-Marquardt back propagation (trainlm) and logistic sigmoid 

(logsig) are used as the training algorithm and the transfer function, respectively. The inputs of 

the ANN are density and MW. The results for MSE for each size are presented in Table 5-5. 
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Table 5-5: Error evaluation for different hidden layer sizes 

           size                          MSE                    Bias 

          a) 4                    1.2526e-04         -5.9E-05 

          b) 5                    8.3918e-05        -1.7E-05 

          c) 6                    7.9552e-05         2.3E-04 

          d) 7                     8.1637e-05        9.3E-05 

          e) 8                     8.3107e-05        1.0E-03 

           f) 9                     9.4921e-05        1.8E-04 

           g) 10                   8.9158e-05       -2.0E-03 

 

The number of hidden neurons can be selected as five. Increasing the number of neurons to 

more than five will result in an over trained network as it is shown in the Figure 5-10 and 5-11. 

Therefore, results of the predicted values from the neural network will deviate from the real 

values as it is shown in Figure 5-10 and 5-11 for the training, validation, test, and all data sets.  
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Figure 5-10: ANN regression graph with hidden layer size of 5  

 

Figure 5-11: ANN regression graph with a hidden layer size of 6 
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Variants of the training (learning) algorithms used in the study are scaled conjugate gradient 

(SCG) [87], Polak–Ribiere conjugate gradient (CGP)[88], and Levenberg–Marquardt (LM) [84]. 

The conjugate gradient is an iterative method for the numerical solution of specific systems of 

nonlinear equations; it can be used to sparse systems that are too large to be examined by direct 

methods. In mathematics and computing, the LM algorithm is a numerical solution to the 

minimization problems, mostly nonlinear, over the parameters of the function. Minimizing a 

function arises especially in the least squares curve fitting and nonlinear programming. The same 

procedure as above is performed for the evaluation of each algorithm and the results are 

compared. The best algorithm which has minimum errors is the LM algorithm, as it is noted in 

Table 5-6. 

Table 5-6: Error evaluation for trained ANN with different training algorithms  

                      algorithm                                    MSE                Bias 

                       a) SCG                                    1.27E-04          1.0E-03 

                       b) CGP                                    1.26E-04         -1.0E-03 

                        c) LM                                     8.37E-05          2.8E-5 

 

 

Variants of the transfer function used in the study are Linear transfer function (purelin) [89], 

Log-Sigmoid transfer function (logsig) [90], Radial basis function (radbas) [91], and Triangular 

basis function (tribas) [92]. Transfer functions compute a layer's output from its net input. The 

purelin has a linear form while the logsig function is a mathematical function having an "S" 

shape. The radbas is a real valued function whose value relates only on the distance from some 
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other point. The tribas is a function which has a triangular form. The minimum error is resulted 

from tribas transfer function, as it is presented in Table 5-7. 

 

 

Based on the above mentioned results, the following parameters of the ANN developed for 

estimating the similarity variable were selected. The ANN is trained based on the back 

propagation learning algorithm in feet-forward single hidden layer network. As it is mentioned, 

there are two (number of variant), five and one (number of output) neurons on input layer, 

hidden layer and output layer, respectively. One selected hidden layer, the corresponding nodes, 

Levenberg–Marquardt (LM) training algorithm and the Triangular basis (tribas) transfer function 

have been investigated through the trial and error mechanism. For all the procedures mentioned 

above a computer program has been performed under MATLAB and the associated code is 

presented in Appendix A. 

Table 5-7: Error evaluation for trained ANN with different transfer functions  

                    transfer function         MSE                 Bias 

                      a) purelin               1.27E-04          8.2E-05 

                      b) logsig                 8.94E-05         1.2E-05 

                      c) radbas                 8.82E-05        -4.4E-05 

                      d) tribas                   8.22E-05       -5.7E-05 
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The model evaluation is illustrated in Figure 5-12 which shows the performance of the 

trained ANN for the training, validation, test, and all data sets by plotting the predicted values 

(output) versus real values (target). As it is shown, the overall regression coefficient (R) is 

0.9315 which proves the accuracy of the ANN. 

 

Figure 5-12: The evaluation of the ANN developed to predict α 



85 

 

5.4     Comparison  

The Root Mean Square Deviation (RMSD) is a widely used method for measuring the 

difference between predicted values by a model and real values. The difference between real and 

predicted values are called residual when the RMSD is applied over the training data set that was 

used for developing a model, and are called prediction error when it is applied over the test data 

set. RMSD, Equation 5-5, is a good method for comparing predicting deviation of different 

models [93,94]. Also, to show the model tendency to over or under estimatetion the bias value is 

calculated based on Equation 5-6: 

      √
∑       ̂  
 
   

 
 

5-5 

     [∑      ̂ ]     
5-6 

 

Where  ̂  is the predicted value,and    is the real value for n different points from the training 

data set. Also, to show the model tendency to over or under estimatetion the bias value is 

calculated by Equation 5-6: 

The RMSD values for the model developed with the use of PLS and ANN are listed in Table 5-8. 

 

 

 

 

 

Table 5-8: RMSD and Bias value for Equation 5-2, 5-3 and 

ANN models over the training data set 

                     RMSD                        Bias 

Equation 5-2                     0.011                3.77*10
-17

                 

Equation 5-3                     0.012                1.14*10
-16

                 

ANN                     0.011                5.84*10
-10
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The result for the test data set comprising 26 organic liquid compounds, Table 5-1, 

(including paraffins, naphthenes, aromatics, sulphur/oxygen/nitrogen derivatives) are compared 

and the RMSD value as the prediction error is shown in Table 5-9. 

 

 

 

 

 

The models developed by PLS, ANN and API are applied to predict the similarity variable 

of the sample mixtures (Table 4-1) prepared in Chapter 4 for the experiments. In this comparison 

the heat capacity values predicted by Dadgostar-Shaw equation by the similarity variable 

estimated by API, PLS and ANN are illustrated in Figure 5-13. 

 

                                                                          (a) 

Table 5-9: RMSD  and Bias value for PLS, ANN, 

and API models for the test data set 

                    RMSD          Bias 

Equation 5-2                    0.014      -0.0018 

Equation 5-3                    0.013      -0.0027 

ANN                    0.011         0.004 

API                    0.020        -0.016 
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                                                                                  (b) 

 

 

                                                                             (c) 
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                                                                (d) 

Figure 5-13: Experimental Cp,   , and Cp predicted by the Dadgostar-Shaw correlation with 

similarity variable estimated by; - -, API procedure; . . ., ANN;   ▬, PLS (Equation 5-2); ∆ , 

PLS( Equation 5-3) and  ― , actual α  for  mixtures  a) 1, b) 2, c) 3, d) 4 (see Table 4-1 for 

compositions).  

 

The mean absolute percentage error (MAPE) between the Dadgostar-Shaw correlation final 

results using experimental and computed values for α is shown in Table 5-8. 
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Table 5-8: The mean absolute percentage error (MAPE) between the predicted 

and experimental heat capacities based on different methods for calculating α 

 

 

 

Dadgostar-Shaw correlation 

API α Equation 

5-2 

Equation 

5-3       

     ANN      Actual α 

Mixture 1 0.43 0.51 1.28 1.24       0.43 

Mixture 2 6.31 3.25 1.88 2.19       2.69 

Mixture 3 3.71 2.26 1.11 1.36       4.10 

Mixture 4 16.89 12.12 14.75     12.89     13.24 

                 Lastovka-Shaw correlation + APR based departure function for 

petroleum cut 

Mixture 1 2.61                   2.43             3.49                  3.49         2.61 

Mixture 2                     3.75                      3.10             1.61                  3.21         4.11 

Mixture 3                     4.12                      4.00 1.79                  5.14         4.11  

Mixture 4                      10.00                  7.97 15.50                6.93         2.21 
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5.5 Conclusion  

Two approaches are developed for estimation of similarity variable. One is correlative and 

based on partial least square fits to functions of density and MW, and density and boiling point. 

The other approach is based on an Artificial Neural Net with density and MW as the required 

inputs. Both approaches provide better performance than the API based method described in 

Chapter 2 with respect to the absolute error and the bias of estimates.  The estimated heat 

capacity values of the mixtures based on various methods for estimating   illustrate that both 

ANN, and PLS approaches yield nearly equivalent outcomes. The advantage of a correlation 

over an ANN is, it is also practical for hand calculation. 

Since the difference between the performance of PLS and ANN with {density and Tb} and 

{density and MW} as the required inputs is not great, in cases where the MW value is not 

available, one can calculate the   value based on PLS and ANN with Tb and density as the 

required inputs. 
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6   Overall Conclusion and Future Work 

6.1    Conclusion and Recommendation 

The following conclusion can be drawn: 

1. There are many available methods for calculating isobaric liquid heat capacity, and each 

has some advantages and disadvantages and different required inputs. It was shown in 

this work that choosing a wrong method can result in a deviation of +/- 0.4 J.K
-1

.g
-1

 in 

estimated liquid Cp which can have both capital and operating cost consequences for 

processes designed using them.  

2. For known compounds and molecularly defined mixtures, the best method for calculating 

isobaric Cp of liquids is the ideal gas heat capacity plus an equation of state based 

departure function. For petroleum cuts with known critical properties, the ideal gas Cp 

estimation by Lastovka-Shaw correlation is more accurate than the Lee-Kesler 

correlation. These methods cannot be used for ill-defined fluids, since the critical 

properties are not known. For ill-defined fluids, two methods are available to estimate 

liquid Cp: the Lee-Kesler correlation and the Dadgostar-Shaw correlation. The 

Dadgostar-Shaw correlation is more accurate and precise, and substantially so in almost 

all cases.  

 

3. The similarity variable α must be estimated in order to implement the element based 

correlations (both the Dadgostar-Shaw and Lastovka-Shaw correlations) into process 

simulation software. The API based α estimation technique is shown to be poor. Large 

and biased errors arise, leading to significant over estimation of liquid phase heat 

capacities. 
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4. Two approaches were developed for estimating α value. One is a correlation based on 

partial least square and the other one is a trained neural network. Both methods show  

better  performance than the API based method, from a deaviation and a bias perspective. 

The outcomes from the PLS and ANN approaches are nearly equivalent. 

 

6.2    Future Work 

 

1. Modifying the code in VMGSIM to accommodate the correlations for α. 

 

2. providing a decision tree to users of the element based and other correlations for liquid 

phase heat capacity to ensure the best option is selected. 
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Appendix A: Matlab Code for the PLS based Correlation and trained ANN 

This Appendix presents the MATLAB code for all the programs developed in the partial least 

square based correlation and trained artificial neural net 

PLS based Correlation 

Datap = xlsread('sep data.xlsx','Sheet1','C2:F155'); 

  
alpha=Datap(:,4)'; 
Density=Datap(:,2)';  
MW=Datap(:,1)'; 
Tb=Datap(:,3)'; 

  
Xc=[Density']; 
yc=alpha'; 

  
comp=1; 

  
[XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(Xc,yc,comp); 
yfit = [ones(size(Xc,1),1) Xc]*beta; 

  

 
figure(2) 
plot(yc,yfit,'o') 

  
TSS = sum((yc-mean(yc)).^2); 
RSS = sum((yc-yfit).^2); 
Rsquared = 1 - RSS/TSS; 

  

 
figure(5) 
plot(yc) 
hold on 
plot(yfit,'r') 
legend('Real Output','Predicted Output') 

  
n=length(alpha); 
RMESP=sqrt(sumsqr(yfit-yc)/n) 
coe=corr(yfit,yc) 
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Trained ANN 

Datap = xlsread('API Elemental Analysis for Mixtures.xlsx','Training data 

set','AM5:AP158'); 
Datat= xlsread('API Elemental Analysis for Mixtures.xlsx','Sin fitet 

curve','D38:F41'); 
Datat1= xlsread('API Elemental Analysis for Mixtures.xlsx','Sin fitet 

curve','D10:E35'); 

  
Densityt=Datat(:,2)'; 
MWt=Datat(:,1)'; 
Tbt=Datat(:,3)'; 
Densityt1=Datat1(:,2)'; 
MWt1=Datat1(:,1)'; 
alpha=Datap(:,2)'; 
Density=Datap(:,3)';  
MW=Datap(:,1)'; 
Tb=Datap(:,4)'; 

  
Test1=[MWt;Densityt]; 
Test2=[MWt1;Densityt1]; 
inputs=[MW;Density]; 
targets=[alpha]; 

  

  
hiddenLayerSize = 5; 
net = fitnet(hiddenLayerSize); 

  
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 

  
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 

  
net.trainFcn = 'trainlm';   
net.layers{1}.transferFcn = 'tribas'; 

  
net.performFcn = 'mse';  % Mean squared error 

  
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
  'plotregression', 'tribas'}; 

  
 [net,tr]=train(net,inputs,targets);  

  
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
performance = perform(net,targets,outputs); 

  
trainTargets = targets .* tr.trainMask{1}; 
valTargets = targets  .* tr.valMask{1}; 
testTargets = targets  .* tr.testMask{1}; 
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trainPerformance = perform(net,trainTargets,outputs) 
valPerformance = perform(net,valTargets,outputs) 
testPerformance = perform(net,testTargets,outputs); 

  
view(net) 

  

  

  
i=[1:length(targets)]  
j=[1:length(MWt)] 

  
output=sim(net,inputs(:,i)) 
OPT=sim(net,Test1(:,j)) 
targets(:,i) 

  

  

  

  
MAE=sum(abs(targets-output))/length(targets) 
MSE=sum((targets-output).^2)/length(targets) 

  
TSS = sum((targets-mean(targets)).^2); 
RSS = sum((targets-output).^2); 
Rsquared = 1 - RSS/TSS; 

  
n=length(alpha); 
RMESP=sqrt(sumsqr(output-targets)/n) 

 

 

 


