The following Motions and Documents were considered by the GFC Academic Planning Committee and the GFC Facilities Development Committee at their Wednesday, November 15, 2023 meeting:

Agenda Title: Integrated Asset Management Strategy Refresh (IAMS)
IT IS RESOLVED THAT the Revised IAMS proceed to be considered by the APC without recommendations by the FDC.

The following motion was moved and seconded for consideration by the Facilities Development Committee.
WHEREAS, among other things, the Facilities Development Committee (the “FDC”) is responsible for making recommendations to the Academic Planning Committee (the “APC”) concerning policy matters with respect to:
1. comprehensive facilities development planning;
2. planning and use of physical facilities including parking facilities and transportation; and
3. use of land owned or leased by the university,
AND WHEREAS the General Faculties Council, on recommendation by both the FDC and the APC, recommended that the Board of Governors approve “Taking Care of our Campuses for the Future: An Integrated Asset Management Strategy (2019 – 2035)” (“IAMS”),
AND WHEREAS the FDC has reviewed certain revisions to the IAMS as prepared by the Office of the Vice-President, Facilities & Operations (the “Revised IAMS”),
IT WAS RESOLVED:

CARRIED MOTION
THAT the Revised IAMS proceed to be considered by the APC without recommendations by the FDC.

The following motion was moved and seconded for consideration by the Academic Planning Committee.
WHEREAS, among other things, the Academic Planning Committee (the “APC”) is responsible for considering institution wide implications to the university’s longer term facilities development, including making recommendations to the Board of Governors (the “Board”) on policy matters regarding:
1. the planning and use of physical facilities;
2. the use of land owned or leased by the university; and
3. standards, systems and procedures for planning and designing physical facilities, in each such instance informed by advice from the Facilities Development Committee (the “FDC”),
AND WHEREAS the APC is also responsible to make recommendations to the Board on matters regarding planning and use of physical facilities where these facilities are deemed to have significant academic or research implications, or financial impact on the university, likewise informed by advice from the FDC,
AND WHEREAS the General Faculties Council, on recommendation by both the FDC and the APC, recommended that the Board of Governors approve "Taking Care of our Campuses for the Future: An Integrated Asset Management Strategy (2019 – 2035)" ("IAMS"),

IT WAS RESOLVED:

CARRIED MOTION
THAT the Revised IAMS proceed to be considered by the Board without recommendations by the APC.

FINAL Item 5.
Decision ☒ Discussion ☐ Information ☐

ITEM OBJECTIVE: To review and approve a refreshed Integrated Asset Management Strategy.

DATE November 15th, 2023
TO Facilities Development Committee
AND TO Academic Planning Committee
RESPONSIBLE PORTFOLIO Andrew Sharman, Vice-President (Facilities and Operations)

MOTIONS:

Motion No. 1, which is to be considered and voted on by the Facilities Development Committee meeting in joint session with the Academic Planning Committee

“WHEREAS, among other things, the Facilities Development Committee (the “FDC”) is responsible for making recommendations to the Academic Planning Committee (the “APC”) concerning policy matters with respect to:

1. comprehensive facilities development planning;
2. planning and use of physical facilities including parking facilities and transportation; and
3. use of land owned or leased by the university,

AND WHEREAS the General Faculties Council, on recommendation by both the FDC and the APC, recommended that the Board of Governors approve “Taking Care of our Campuses for the Future: An Integrated Asset Management Strategy (2019 – 2035)” (“IAMS”),

AND WHEREAS the FDC has reviewed certain revisions to the IAMS as prepared by the Office of the Vice-President, Facilities & Operations (the “Revised IAMS”),

IT IS RESOLVED THAT the Revised IAMS proceed to be considered by the APC without recommendations by the FDC.”

Motion No. 2, which is to be considered and voted on immediately following Motion No. 1 by the Academic Planning Committee meeting in joint session with the Facilities Development Committee

“WHEREAS, among other things, the Academic Planning Committee (the “APC”) is responsible for considering institution wide implications to the university’s longer term facilities development, including making recommendations to the Board of Governors (the “Board”) on policy matters regarding:

1. the planning and use of physical facilities;
2. the use of land owned or leased by the university; and
3. standards, systems and procedures for planning and designing physical facilities,”
in each such instance informed by advice from the Facilities Development Committee (the "FDC"),

AND WHEREAS the APC is also responsible to make recommendations to the Board on matters regarding planning and use of physical facilities where these facilities are deemed to have significant academic or research implications, or financial impact on the university, likewise informed by advice from the FDC,

AND WHEREAS the General Faculties Council, on recommendation by both the FDC and the APC, recommended that the Board of Governors approve “Taking Care of our Campuses for the Future: An Integrated Asset Management Strategy (2019 – 2035)” (“IAMS”),

IT IS RESOLVED THAT the Revised IAMS proceed to be considered by the Board without recommendations by the APC.”

EXECUTIVE SUMMARY:

Background

Approved by the General Faculties Council and the Board of Governors in June 2019, the university’s Integrated Asset Management Strategy (IAMS) ensures that decisions related to the stewardship of its infrastructure across the five campuses are made holistically and with the university’s long-term objectives in mind. IAMS outlines related principles, goals, and actions. Although not contemplated when IAMS was developed, work is now underway to develop an accompanying Asset Management Master Plan (AMMP), which will become the university’s single master plan for asset utilization (including undeveloped lands), space optimization, and investment prioritization. The AMMP will draw a clear connection between the university’s broad-based strategic objectives and paint a picture of what the university’s infrastructure could look like over the next 20 years (if investment is available).

Much has changed in the university landscape since June 2019, not the least of which is the release of Shape: The University Strategic Plan 2023-2033 and the ambitious plan to grow to 60,000 students within the decade. While the principles, goals, and actions of IAMS remain largely relevant, much of the contextual content of IAMS has become dated, necessitating a refresh.

Analysis / Discussion

In general, updates to IAMS better reflect the objectives articulated in Shape. Additionally, content has been lifted from IAMS to be incorporated into the AMMP.

- Front sections were edited substantially, primarily to remove content more appropriately reflected in AMMP and strengthen strategic focus.
- Minor edits were made to the principles, goals, and actions to reflect Shape, including content on space optimization, and remove content more applicable to the AMMP.
≥ Minor language and grammar edits were made to the entire document.

Specific revisions can be reviewed in the redline document that compares the 2019 IAMS with the refreshed IAMS.

Risk Discussion / Mitigation of the Risk

The following risks are mitigated by refreshing IAMS:

≥ Leadership - Infrastructure decisions must align with the university's long-term strategic objectives. With the release of Shape, it is necessary to clearly articulate these linkages and connections in the refreshed IAMS.

≥ Funding/resource management - The AMMP will ensure infrastructure investments transparently consider the greatest return to the institution and improve overall sustainability of the university's infrastructure. The refreshed IAMS provides overarching, strategic guidance to asset management, and ultimately, to related decision-making.

Where applicable, list the legislation/policy that is being relied upon

≥ Academic Planning Committee Terms of Reference
≥ Facilities Development Committee Terms of Reference

Next Steps

The refreshed IAMS document is being presented to the university’s governance committees in November 2023 and will require Board of Governors approval.

≥ Academic Planning Committee and Facilities Development Committee - November 15
≥ General Faculties Council - November 20
≥ Board Finance and Properties Committee - November 28
≥ Board of Governors - December 8

Supporting Materials:

1. Integrated Asset Management Strategy - Refeshed October 2023
2. Integrated Asset Management Strategy - 2019 vs 2023 Redline
Taking Care of our Campuses
Integrated Asset Management Strategy

Refresh October 2023

The University of Alberta, its buildings, labs and research stations are primarily located on the territory of the Néhiyaw (Cree), Niitsitapi (Blackfoot), Métis, Nakoda (Stoney), Dene, Haudenosaunee (Iroquois) and Anishinaabe (Ojibway/Saulteaux), lands that are now known as part of Treaties 6, 7 and 8 and homeland of the Métis. The University of Alberta respects the sovereignty, lands, histories, languages, knowledge systems and cultures of all First Nations, Métis and Inuit nations.

Vice-President Facilities and Operations Message

UNDER DEVELOPMENT

Andrew Sharman
Vice-President Facilities and Operations

Strategic Context

Over the next 10 years, the university is sharply focused on delivering innovative, flexible learning and student experiences; reinforcing and enhancing our research, innovation and creative activities; and fulfilling our responsibility as a leader and convenor to help shape and positively impact communities in Alberta, in Canada and worldwide.

This includes developing campus environments to give our students rich, memorable and meaningful experiences, ensuring our high-impact researchers benefit from quality research spaces and supports, and delivering transformational opportunities where students can flourish through experiential learning, residence communities, athletics and recreation, creative activity, and volunteer opportunities. It also means creating more opportunities for students to experience education at Campus Saint-Jean and Augustana Campus and continuing to support access to our facilities, events and activities for the public.

The university remains committed to incorporating Indigenous identities, languages, cultures and worldviews and achieving a more diverse, equitable, accessible and inclusive environment for all who work, learn and live within our community. This also includes providing safe and healthy work and study environments that enable high-quality education and research; leading through the prudent stewardship of resources; embracing opportunities to innovate to make
things better; and working together, within and beyond the university and across traditional boundaries.

Within this context, campus infrastructure must be capable of supporting growth and providing 21st century learning environments and accessible spaces. This strategy identifies the direction and actions to be taken to achieve that. An important focus is that all students, faculty, staff, visitors, and members of the community are stewards of the University of Alberta's buildings and grounds and how each uses the institution today directly impacts its future state.

Most importantly, this strategy sets out principles, goals, and actions to guide decisions that support the infrastructure needs of learners, researchers, faculty, staff, and the community at large, while balancing the financial and reputational risks, opportunities, and fiscal environment in which the institution operates.

The university manages almost 1.63 million square metres in 411 buildings across its campuses and research facilities. This is one of the largest volumes of buildings across the greatest land base of Canadian universities and over 60 percent of these buildings are over 40 years old.

The lifespan and ongoing functionality of infrastructure is affected by how it was constructed, how it was maintained, and how it has been treated by its users. Impacts from sudden weather or temperature changes also impact buildings and grounds. Because limited funding needs to be stretched as far as possible, it is important to ensure evidence drives all infrastructure decision-making. For too many years necessary maintenance and renewal activities have been delayed due to insufficient funding and, if this trajectory is not altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support its academic and research objectives.

Tackling deferred maintenance, future-proofing infrastructure, and continuing sound fiscal stewardship in times of fiscal constraint will require new ways of thinking and decision-making. Even though better data and strategic analytics will inform decisions and improved coordination across campuses and with other partners will reduce concern, optimizing campus infrastructure will require some difficult choices to be made.

The priority across all campuses is on the renewal and refurbishment of existing buildings with very limited consideration for facility expansion or new construction. As facilities are considered for disposal or removed from our infrastructure inventory, the associated operating resources will be retained and directed towards maintaining, renewing, and operating the remaining assets.

By prioritizing our building inventory, a natural process for determining the allocation of available investment can be developed. In practice this means that a building that is nearing end-of-life and not capable of being reasonably renewed to meet teaching and research expectations will be identified for decommissioning and, as such, will receive only critical maintenance investments. For those buildings, efforts to increase awareness of these decisions are needed. Repurposing and/or removing any infrastructure from an institution with over a 100-year history
will require discussion to understand concerns and areas of potential resistance. These collaborative discussions and ultimate choices embody sound asset management practices grounded in principles.

The University of Alberta is not unique in facing a challenge of growing costs for managing infrastructure that exceed available resources, while balancing on-going and changing space needs, changing expectations of users, and increased innovation in building design and delivery. This is a challenge of many post-secondary institutions and public organizations world-wide. What will be unique is how the university is strategic in its use of analytics, the disciplined choices it will make to meet the growing needs and expectations for space, and its decisions in managing these costs. Simply stated, decisions related to identifying buildings for renewal, repurposing, closure, disposal, and even demolition will be driven by the evidence of today with projections of tomorrow. They will also look at partnerships and collaborative opportunities in infrastructure design, operations, maintenance, and funding.

While this strategy provides an overarching direction, an accompanying Asset Management Master Plan (AMMP) is the university’s single master plan for infrastructure utilization (including undeveloped lands), space optimization, and investment prioritization. The plan presents a long-term view of our campus infrastructure and the path to get there and highlights evidence-based decision-making to optimize the university’s infrastructure portfolio. By using a robust framework for assessing where infrastructure investments return the greatest value to the institution, we will be better able to manage risk and legislative/code compliance; effectively engage and communicate decisions to stakeholders; lower building lifecycle costs; and improve financial and environmental sustainability. The AMMP makes a clear connection between the university’s broad-based strategic objectives and a picture of what the university’s infrastructure could look like over the next 20 years if investment is available.

Infrastructure Planning and Reporting at the U of A

The University of Alberta is renowned for its leadership, achievements, and public service, ranking among the top universities in Canada. The institution also ranks amongst the highest in Canada for its volume and value of infrastructure assets. This large volume of infrastructure assets, while supportive of space needs for all faculty and students, is increasingly difficult to support, and requires the university to strategically consider the life cycle of all buildings and grounds. Accordingly, university infrastructure assets are managed in four life-cycle stages, which are highly interdependent: planning; creating and acquiring; operating and maintaining; and renewing or disposing.

The below visual is a simplified representation of the numerous interdependent plans that the University of Alberta uses to prioritize its decision-making with respect to infrastructure investments. At its core is the University of Alberta's strategic plan, Shape as seen through the lenses of our commitments to diversity, equity, inclusion, and reconciliation outlined in *Braiding, Past, Present and Future*, University of Alberta’s *Indigenous Strategic Plan* and in the Strategic...
Plan for Equity, Diversity, and Inclusivity. There is also direction established in Forward with Purpose: A Strategic Plan for Research and Innovation which strategically guides the creation, operation, and financial sustainability of core and shared research infrastructure.

Subsequent infrastructure planning is guided by this Integrated Asset Management Strategy (IAMS) that reflects academic and research priorities as defined by the university's colleges and stand-alone faculties. The AMMP brings IAMS to life and is instrumental in developing implementation plans such as the university's annual capital plan, which, as legislated by the Government of Alberta, outlines requests for capital investment for the next three years.

Robust planning serves many needs, including: ensuring accessible space for learners, faculty, and staff; supporting utility needs of campuses; monitoring and maintaining capital assets; designing, renewing, building, and removing capital assets; ensuring ancillary supports and services are available and financially sustainable; and maintaining legislated long-range development plans. Regular reporting ensures progress and accountability.
Principles, Goals, and Actions

Principles set a foundation for a system of decision-making and actions. The subsequent goals guide all infrastructure decisions with corresponding actions to enable implementation. They have been validated by faculty leadership and students and reviewed and supported by both the General Faculties Council and the Board of Governors. The following principles, goals, and actions have a long-term lens in their application.

Principles

Student Success, Life Experience, Research, and Scholarship

1. Campus spaces foster positive student learning and living experiences.
2. Building assets contribute positively to teaching, research, service, and community impact.
3. Building environments, including staff space, reflect today's pedagogies.
4. Facilities are capable of supporting world-class research across multiple disciplines.

Asset Management

5. Buildings are continually evaluated to optimize space utilization and prioritize investments in life-cycle renewal and in maintenance.
6. Recognize the inherent uniqueness in an institution of higher learning, while maximizing system-wide functionality.
7. Social, economic, and environmental sustainability is advanced and achieved by:
 - Incorporating inclusive design principles into campus infrastructure (e.g. all-gender, barrier-free).
 - Reducing our ecological footprint.
 - Reducing operational costs.

Campus Character

8. Every building has a unique role and its strategic value in the institutional inventory is more than a mathematical computation.
9. Prioritizing the active transportation experience on all campuses.
10. Campus buildings and grounds are aesthetically coherent and maintained in a way that considers the community in which it resides.
11. Considerations for removing building inventory include a meaningful assessment of its historic value and placement in the university’s architectural mosaic.
Decision-Making

12. Adhere to all government-mandated long range development plans, sector plans, urban planning principles, and building codes and regulations.
13. Spending adheres to funding parameters and institutional priorities.
14. Decisions are evidence-based and supported by openly available data related to building occupancy, functionality, performance, environmental considerations, and deferred maintenance.

Goals and Actions

Planning and Programming

1. Campus planning processes and outputs consider future events, innovation and risks.

Campus planning processes are the convergence of many collaborative planning events to understand, anticipate, and design the campus and identify priorities of tomorrow including alignment with the academic mission; research priorities and needs; supporting students’ academic, social and wellness aspects; community engagement; broader community impact; and considering the emergent future risks to a post-secondary institution.

 a. Maintain current Long Range Development Plans and Sector Plans to ensure they act as frameworks to support academic visions and student experiences.

 b. Demonstrate consistency in direction and decisions for campus planning that exemplifies best practices in smart growth, healthy community, and sustainable and inclusive design.

 c. Create more innovative approaches to the development of flexible and adaptable space to meet changing needs of users.

2. The University’s infrastructure meets end-users’ space needs while enabling a positive experience.

Sound planning and implementation inspires excellence, contributes to a positive educational experience, overall productivity, researcher retention, and satisfaction of end users. Aligning programming, planning, and functional design principles within an academic and research delivery framework is crucial to the success of the user experience. Planning inputs and cycles
consider functional elements spanning the institution, including: academic and research plans, facility imperatives such as maintenance, and risk building profiles.

a. Advance a consistent approach in optimizing space that aligns with space standards, and provides guidance on how space connects to the overall academic mission, contributes to the student experience, accessibility of key user groups, and unit cost impacts.

b. Collaborate with colleges and faculties to ensure infrastructure decisions are best able to reflect academic planning outcomes in priority areas.

3. Stakeholders are appropriately informed and engaged when there are significant changes to buildings and spaces.

Based on the resource allocations in the planning and programming phase, ensure that stakeholder engagement, principle-based outcomes and alignment to effective stewardship principles are effectively considered and executed. This will occur in a transparent and responsible manner. Excellence in planning and execution are the cornerstones to both asset management and space utilization.

a. Develop a consistent approach to communications and engagement prior to any significant change to infrastructure.

b. Seek input from key stakeholders throughout key design implementation phases to ensure the multitude of institutional perspectives are acknowledged and decisions are founded in a common understanding of approved requirements, limitations, and/or compromises.

c. Ensure compliance to institutional design and space standards as defined in university policy.

Creating and Acquiring

4. Space aspirations are aligned within a framework of established criteria.

At any given time, students, faculty, and staff will express a desire for new, expanded, or repurposed space. These requests will increasingly undergo a multitude of assessments to understand need, evaluate if stated requirements fall within a framework of established criteria, and seek assurance from leaders of the relevance and value of desired space needs.

a. Provide guidance and direction to academic and business entities regarding space needs and seek endorsement of appropriate levels of leadership.
b. Include an evaluation framework, capital and operating budget analysis, operational impact assessment, and consideration of alternatives in planning and design processes.

c. Prioritize and validate projects requiring government financial support or involving additional funding partners.

Operating and Maintaining

5. Funding is strategically invested in maintenance programs and capital renewal efforts to better manage the university’s deferred maintenance liability.

Operating and maintaining infrastructure can account for up to 90 per cent of the total cost of building ownership. As investments in university infrastructure provide incremental savings or instances of cost avoidance, those funds will be diverted to supporting other buildings. Members of the University of Alberta community individually and collectively contribute to how infrastructure is used and cared for.

 a. Enhance predictive and preventative maintenance programming to support improved efficiencies.

 b. Establish campus service standards and levels and actively manage and measure across all campuses.

 c. Develop marketing and awareness campaigns that emphasize the role each member of the university has in stewarding and maintaining its assets.

 d. Advance sustainable operations’ practices to support sustainability and environmental targets.

Renewing or Disposing

6. The renewal, repurposing, and end-stage of assets or their components will inform decisions as part of an integrated process.

Optimizing capital and other infrastructure investments to improve their use with centralized asset management and tracking is fundamental. This integrated process reduces excess inventory with a clear understanding of actual needs; enables better decisions in renewal, repurposing, or replacement to avoid unnecessary expenditures; and facilitates the decommissioning and/or disposal of assets.

 a. Undergo a regular review of aligning all assets to the academic and research mission, considering prioritization criteria and guiding principles.
b. Utilize financial, space, and academic modeling as part of the analytic framework to support choices of which buildings will (or will not) undergo change.

Strategic Enablers

7. A strong information and analytics platform supports evidence-based decision-making.

Robust, consistent, and transparent decisions can only be made when the information they are based on is complete, accurate, and integrated. In order to support improved management of infrastructure, potential investment decisions, or monitoring of performance against service levels, a strong data inventory and analytics framework is needed.

a. Strengthen front line processes and information gathering to instill higher confidence in facilities’ data.

b. Complete technology and business needs assessments to identify integrated solutions that support business requirements.

c. Build predictive modeling of key assets that consider multiple factors to the longevity and operational costs of assets.

8. Enhanced monitoring and reporting of progress ensures transparency and accountability.

This strategy provides a framework for the effective and efficient management of the institutions' assets. This is a living document which is relevant and integral to the daily asset management activities across the campuses.

a. Refresh the strategy as necessary to reflect changing university imperatives.

b. Conduct quality assurance audits to ensure the integrity and cost effectiveness of data collected.

c. Use reporting mechanisms to report on progress and performance.
Infrastructure for Tomorrow

In many tangible ways, a university campus replicates a small city. In the case of the University of Alberta’s North Campus, 160 buildings of varying use, age, and complexity are connected by a network of streets, sidewalks, and tunnels. While comprising fewer buildings, Campus Saint-Jean, Augustana, Enterprise Square, and South Campus also each form key elements of the university’s rich infrastructure mosaic.

All decisions related to investing in campus infrastructure are naturally very long-term in nature and, in a world with limited resources, must be made prudently and with an eye clearly focused on the future. The future of world-class teaching and research. The future of memorable student experiences. A sustainable future.

Shape, A Strategic Plan of Impact, reminds us of the imperative for us to be at the forefront of educating a growing province with global ambitions. Key to this is having and maintaining university infrastructure - classrooms, labs, libraries, study spaces, and other spaces to enhance the student experience - that meet today’s expectations without constraining tomorrow’s ambitions. With the necessary support of willing partners, the University of Alberta’s Integrated Asset Management Strategy will get us there.
University of Alberta - Integrated Asset Management Strategy (IAMS) REDLINE

<table>
<thead>
<tr>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taking Care of our Campuses
Integrated Asset Management Strategy</td>
<td>Taking Care of our Campuses
Integrated Asset Management Strategy</td>
<td>No change</td>
</tr>
<tr>
<td>Territorial Acknowledgement
The University of Alberta respectfully acknowledges that we are situated on Treaty 6 territory, traditional lands of First Nations and Métis people.</td>
<td>Territorial Acknowledgement
The University of Alberta, its buildings, labs and research stations are primarily located on the territory of the Nêhiyaw (Cree), Nitsitapi (Blackfoot), Métis, Nakoda (Stoney), Dene, Haudenosaunee (Iroquois) and Anishinaabe (Ojibway/Saulteaux), lands that are now known as part of Treaties 6, 7 and 8 and homeland of the Métis. The University of Alberta respects the sovereignty, lands, histories, languages, knowledge systems and cultures of all First Nations, Métis and Inuit nations.</td>
<td>Revised to match Shape.</td>
</tr>
<tr>
<td>Vice-President Facilities and Operations Message
The University of Alberta’s Strategic Plan (2016-26), For the Public Good, defines the vision, goals, and specific targets that guide the institution’s focus and resources. For the Public Good sets the conditions to inspire the human spirit through outstanding achievements in learning, discovery, and citizenship in a creative community. A key objective is the importance of ensuring our campuses, facilities, and utilities meet the institution’s needs and goals. Facilities and Operations leads this work and is proud of what’s been accomplished to-date and of how its future planning will support decisions that align to learners’ and researchers’ needs.</td>
<td>Vice-President Facilities and Operations Message
UNDER DEVELOPMENT
Andrew Sharman
Vice-President Facilities and Operations</td>
<td>Moved some text to other sections.
Message will be redrafted by Communications to: Add reference to Shape. Remove content more applicable to the Asset Management Master Plan (AMMP).</td>
</tr>
</tbody>
</table>
The condition of buildings and physical support assets are assessed on a regular basis to ensure they will deliver the optimal value over every building’s lifespan and ensure the life, health, and safety of users.

While some deferred maintenance may not present an immediate challenge, as the maintenance backlog grows, the risk of building failures (mechanical, electrical, building envelope) grows exponentially. This means the cost of maintenance continues to grow (including inflationary pressures and market escalation as the age of a facility increases and needed maintenance is not completed. With the aging facilities and the growing uncertainty of provincial operating and maintenance funding, the university’s deferred maintenance liability will continue to grow until a "tipping point" is reached. This may necessitate directing available funding to emergency or break down situations, versus maintaining the facilities.

This Integrated Asset Management Strategy will look at better utilizing owned space, reducing reliance on leased space, appropriately renewing or disposing of buildings, and prioritizing where the university needs to invest its limited resources to address deferred maintenance liabilities. This all must occur while increasing a focus on preventive maintenance. Publicly funded infrastructure will be increasingly scrutinized to ensure renewal, repurposing, and optimization occurs in advance of any new construction. This continues to put pressure on all public organizations to better use and maintain their assets.

This strategy is, simply put, a guide to ensure all aspects of managing the physical assets of the university are considered. This means optimizing the inventory of facilities that are key to the institution’s mandate and prioritizing that inventory based on critical, to necessary, to non-necessary.

As the University of Alberta continues to change and evolve to continue meeting users' needs, its infrastructure must be positioned to support these changing needs and demands, now and into the future. The Facilities and Operations team looks forward to meeting these needs and collaborating across the University of Alberta and with others to take care of our campuses.

Andrew Sharman
Vice-President Facilities and Operations
Why a Strategy

The impact of the growing operational and maintenance challenges has created a perfect storm—increased demand and expectations coupled with aging inventory, limited funding, and uncertainty of funding in the future. Facilities and Operations has therefore engaged in a review of how the university manages its inventory, what funding can reasonably be expected versus what is needed, and how best to move forward while maintaining the desire to be a leading academic institution.

This strategy sets the direction for the University of Alberta’s infrastructure assets, while defining a long-term roadmap. It describes the current state and the conditions that created some of the challenges currently being faced, while also identifying the future direction and actions to be taken. An important focus of this strategy is that all students, staff, faculty, visitors, and members of the community are stewards of the University of Alberta’s buildings and grounds and how each uses the institution today has a direct impact on its future state.

This strategy also sets a collective mission, vision, principles, goals, and actions for future-proofing the University of Alberta’s infrastructure. It will help guide decisions to support the infrastructure needs of learners, faculty, staff, and community, while balancing the risks, opportunities, and fiscal environment in which the institution operates. This strategy is a living document that will be reviewed as part of annual planning processes.

The development of the strategy occurred amongst Facilities and Operations staff with communication and feedback incorporated from stakeholders across the campuses. This strategy was approved by the University of Alberta’s Board of Governors and General Faculties Council in spring 2019 to ensure that collective feedback was considered and there was awareness of the actions that will lay ahead.

Strategic Context

The university manages almost 1.73 million square metres in nearly 500 buildings across its five campuses. This is one of the largest volumes of buildings across the greatest land base of Canadian universities and over 60 percent of these buildings are over 40 years old. The widely recognized maintenance investment for post-secondary institutions is typically two per cent of the buildings’ replacement value and, when investments fall short of that target, maintenance is

<table>
<thead>
<tr>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why a Strategy</td>
<td>n/a</td>
<td>Removed content more applicable to AMMP. Amalgamated into a new Strategic Context section.</td>
</tr>
<tr>
<td>Strategic Context</td>
<td>Combined with Why a Strategy and Environmental Analysis section. Removed content more applicable to the AMMP.</td>
<td></td>
</tr>
</tbody>
</table>
The lifespan and ongoing functionality of infrastructure is affected by how it’s used, looked after, the ways in which services and repairs are carried out, the prioritization for renewal, the current and future needs and expectations of users, and available funding. Impacts from sudden weather or temperature changes also impact buildings and grounds. All of these impacts make it important to ensure evidence drives decisions of how best to support continued infrastructure renewal and plan for long-term needs. For many years necessary maintenance work has been delayed indefinitely due to insufficient funding and, if this trajectory is not altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.

Tackling maintenance backlogs, future-proofing infrastructure, and continuing good fiscal stewardship in times of economic constraint will require new ways of thinking and making decisions. This will mean difficult choices, optimizing existing infrastructure, improved coordination across campuses and with other partners, and better data and strategic analytics.

The collective challenge is to balance expectations with the best use of limited resources while considering growth of assets versus ongoing maintenance. While there have been remarkable additions to the University’s building inventory in the last decade, the priority across all campuses is now on the renewal and refurbishment of existing buildings with very limited consideration for facility expansion or new construction. A critical assumption is that, as facilities are altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.

Tackling maintenance backlogs, future-proofing infrastructure, and continuing good fiscal stewardship in times of economic constraint will require new ways of thinking and making decisions. This will mean difficult choices, optimizing existing infrastructure, improved coordination across campuses and with other partners, and better data and strategic analytics.

The collective challenge is to balance expectations with the best use of limited resources while considering growth of assets versus ongoing maintenance. While there have been remarkable additions to the University’s building inventory in the last decade, the priority across all campuses is now on the renewal and refurbishment of existing buildings with very limited consideration for facility expansion or new construction. A critical assumption is that, as facilities are altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.

<table>
<thead>
<tr>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>deferred. Deferred maintenance is essentially the difference between the optimal investment and the actual investment in maintenance and, in its simplest definition, is the maintenance that should have been done, but wasn’t.</td>
<td>This includes developing campus environments to give our students rich, memorable and meaningful experiences, ensuring our high-impact researchers benefit from quality research spaces and supports, and delivering transformational opportunities where students can flourish through experiential learning, residence communities, athletics and recreation, creative activity, and volunteer opportunities. It also means creating more opportunities for students to experience education at Campus Saint-Jean and Augustana Campus and continuing to support access to our facilities, events and activities for the public.</td>
<td>Added content from Shape.</td>
</tr>
<tr>
<td>There are a number of factors that contribute to the growth in deferred maintenance liability. One of the greatest factors was insufficient funding for preventive and deferred maintenance from government and the institution over the past many years. A second factor is the accelerated depreciation of some buildings and roadways, which is largely due to unsustainable construction practices in the 1950s that did not consider long-term maintenance needs, nor the impact of extreme changes in weather patterns. The DNA of all buildings going forward needs to be future-proofed against extreme and expensive maintenance and long-term renewal costs. Lastly, there has been an absence of data and analytics that identified current and forecasted future state of buildings to enable pro-active planning and strategic allocation of maintenance funding.</td>
<td>The university remains committed to incorporating Indigenous identities, languages, cultures and worldviews and achieving a more diverse, equitable, accessible and inclusive environment for all who work, learn and live within our community. This also includes providing safe and healthy work and study environments that enable high-quality education and research, leading through the prudent stewardship of resources, embracing opportunities to innovate to make things better; and working together, within and beyond the university and across traditional boundaries.</td>
<td>Added reference to an AMMP.</td>
</tr>
<tr>
<td>The lifespan and ongoing functionality of infrastructure is affected by how it’s used, looked after, the ways in which services and repairs are carried out, the prioritization for renewal, the current and future needs and expectations of users, and available funding. Impacts from sudden weather or temperature changes also impact buildings and grounds. All of these impacts make it important to ensure evidence drives decisions of how best to support continued infrastructure renewal and plan for long-term needs. For many years necessary maintenance work has been delayed indefinitely due to insufficient funding and, if this trajectory is not altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.</td>
<td>Within this context, campus infrastructure must be capable of supporting growth and providing 21st century learning environments and accessible spaces. This strategy identifies the direction and actions to be taken to achieve that. An important focus is that all students, faculty, staff, visitors, and members of the community are stewards of the University of Alberta’s buildings and grounds and how each uses the institution today directly impacts its future state.</td>
<td>Added some text from Vice-President’s message and Environmental Analysis sections.</td>
</tr>
<tr>
<td>Tackling maintenance backlogs, future-proofing infrastructure, and continuing good fiscal stewardship in times of economic constraint will require new ways of thinking and making decisions. This will mean difficult choices, optimizing existing infrastructure, improved coordination across campuses and with other partners, and better data and strategic analytics.</td>
<td>Most importantly, this strategy sets out principles, goals, and actions to guide decisions that support the infrastructure needs of learners, researchers, faculty, staff, and the community at large, while balancing the financial and reputational risks, opportunities, and fiscal environment in which the institution operates.</td>
<td>Language and wording updates.</td>
</tr>
<tr>
<td>The collective challenge is to balance expectations with the best use of limited resources while considering growth of assets versus ongoing maintenance. While there have been remarkable additions to the University’s building inventory in the last decade, the priority across all campuses is now on the renewal and refurbishment of existing buildings with very limited consideration for facility expansion or new construction. A critical assumption is that, as facilities are altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.</td>
<td>The university manages almost 1.63 million square metres in 411 buildings across its campuses and research facilities. This is one of the largest volumes of buildings across the greatest land base of Canadian universities and over 60 percent of these buildings are over 40 years old.</td>
<td></td>
</tr>
<tr>
<td>The lifespan and ongoing functionality of infrastructure is affected by how it’s used, looked after, the ways in which services and repairs are carried out, the prioritization for renewal, the current and future needs and expectations of users, and available funding. Impacts from sudden weather or temperature changes also impact buildings and grounds. All of these impacts make it important to ensure evidence drives decisions of how best to support continued infrastructure renewal and plan for long-term needs. For many years necessary maintenance work has been delayed indefinitely due to insufficient funding and, if this trajectory is not altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.</td>
<td>The university remains committed to incorporating Indigenous identities, languages, cultures and worldviews and achieving a more diverse, equitable, accessible and inclusive environment for all who work, learn and live within our community. This also includes providing safe and healthy work and study environments that enable high-quality education and research, leading through the prudent stewardship of resources, embracing opportunities to innovate to make things better; and working together, within and beyond the university and across traditional boundaries.</td>
<td></td>
</tr>
<tr>
<td>Tackling maintenance backlogs, future-proofing infrastructure, and continuing good fiscal stewardship in times of economic constraint will require new ways of thinking and making decisions. This will mean difficult choices, optimizing existing infrastructure, improved coordination across campuses and with other partners, and better data and strategic analytics.</td>
<td>Most importantly, this strategy sets out principles, goals, and actions to guide decisions that support the infrastructure needs of learners, researchers, faculty, staff, and the community at large, while balancing the financial and reputational risks, opportunities, and fiscal environment in which the institution operates.</td>
<td></td>
</tr>
<tr>
<td>The collective challenge is to balance expectations with the best use of limited resources while considering growth of assets versus ongoing maintenance. While there have been remarkable additions to the University’s building inventory in the last decade, the priority across all campuses is now on the renewal and refurbishment of existing buildings with very limited consideration for facility expansion or new construction. A critical assumption is that, as facilities are altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.</td>
<td>The university manages almost 1.63 million square metres in 411 buildings across its campuses and research facilities. This is one of the largest volumes of buildings across the greatest land base of Canadian universities and over 60 percent of these buildings are over 40 years old.</td>
<td></td>
</tr>
<tr>
<td>The lifespan and ongoing functionality of infrastructure is affected by how it’s used, looked after, the ways in which services and repairs are carried out, the prioritization for renewal, the current and future needs and expectations of users, and available funding. Impacts from sudden weather or temperature changes also impact buildings and grounds. All of these impacts make it important to ensure evidence drives decisions of how best to support continued infrastructure renewal and plan for long-term needs. For many years necessary maintenance work has been delayed indefinitely due to insufficient funding and, if this trajectory is not altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.</td>
<td>The university remains committed to incorporating Indigenous identities, languages, cultures and worldviews and achieving a more diverse, equitable, accessible and inclusive environment for all who work, learn and live within our community. This also includes providing safe and healthy work and study environments that enable high-quality education and research, leading through the prudent stewardship of resources, embracing opportunities to innovate to make things better; and working together, within and beyond the university and across traditional boundaries.</td>
<td></td>
</tr>
<tr>
<td>Tackling maintenance backlogs, future-proofing infrastructure, and continuing good fiscal stewardship in times of economic constraint will require new ways of thinking and making decisions. This will mean difficult choices, optimizing existing infrastructure, improved coordination across campuses and with other partners, and better data and strategic analytics.</td>
<td>Most importantly, this strategy sets out principles, goals, and actions to guide decisions that support the infrastructure needs of learners, researchers, faculty, staff, and the community at large, while balancing the financial and reputational risks, opportunities, and fiscal environment in which the institution operates.</td>
<td></td>
</tr>
<tr>
<td>The collective challenge is to balance expectations with the best use of limited resources while considering growth of assets versus ongoing maintenance. While there have been remarkable additions to the University’s building inventory in the last decade, the priority across all campuses is now on the renewal and refurbishment of existing buildings with very limited consideration for facility expansion or new construction. A critical assumption is that, as facilities are altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.</td>
<td>The university manages almost 1.63 million square metres in 411 buildings across its campuses and research facilities. This is one of the largest volumes of buildings across the greatest land base of Canadian universities and over 60 percent of these buildings are over 40 years old.</td>
<td></td>
</tr>
<tr>
<td>The lifespan and ongoing functionality of infrastructure is affected by how it’s used, looked after, the ways in which services and repairs are carried out, the prioritization for renewal, the current and future needs and expectations of users, and available funding. Impacts from sudden weather or temperature changes also impact buildings and grounds. All of these impacts make it important to ensure evidence drives decisions of how best to support continued infrastructure renewal and plan for long-term needs. For many years necessary maintenance work has been delayed indefinitely due to insufficient funding and, if this trajectory is not altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support the academic and research objectives.</td>
<td>The university remains committed to incorporating Indigenous identities, languages, cultures and worldviews and achieving a more diverse, equitable, accessible and inclusive environment for all who work, learn and live within our community. This also includes providing safe and healthy work and study environments that enable high-quality education and research, leading through the prudent stewardship of resources, embracing opportunities to innovate to make things better; and working together, within and beyond the university and across traditional boundaries.</td>
<td></td>
</tr>
</tbody>
</table>
considered for disposal or removed from the infrastructure inventory, the associated funding is retained and directed towards maintaining, upgrading, and operating the remaining key assets.

By prioritizing the inventory, a natural process for determining the allocation of available funding can be developed. This means that some facilities will receive more funding (to get them up to the desired standard); some may receive the same (given their condition and usage); some may receive less (due to lower priority/end of life cycle); and some may not receive funding at all. For those facilities identified as needing less or no funding, additional work is necessary to increase awareness of these decisions to relevant stakeholders/users. In some instances, this leads to consideration for the disposition of those facilities and the impact on programs. Where the university’s facility assets cannot meet the criteria necessary to justify retention and/or upgrading, then alternatives need to be considered.

was constructed, how it was maintained, and how it has been treated by its users. Impacts from sudden weather or temperature changes also impact buildings and grounds. Because limited funding needs to be stretched as far as possible, it is important to ensure evidence drives all infrastructure decision-making. For too many years necessary maintenance and renewal activities have been delayed due to insufficient funding and, if this trajectory is not altered, the institution will face an increasing magnitude of disruptions to facilities and, consequently, the ability to support its academic and research objectives.

Tackling deferred maintenance, future-proofing infrastructure, and continuing sound fiscal stewardship in times of fiscal constraint will require new ways of thinking and decision-making. Even though better data and strategic analytics will inform decisions and improved coordination across campuses and with other partners will reduce concern, optimizing campus infrastructure will require some difficult choices to be made.

The priority across all campuses is on the renewal and refurbishment of existing buildings with very limited consideration for facility expansion or new construction. As facilities are considered for disposal or removed from our infrastructure inventory, the associated operating resources will be retained and directed towards maintaining, renewing, and operating the remaining assets.

By prioritizing our building inventory, a natural process for determining the allocation of available investment can be developed. In practice this means that a building that is nearing end-of-life and not capable of being reasonably renewed to meet teaching and research expectations will be identified for decommissioning and, as such, will receive only critical maintenance investments. For those buildings, efforts to increase awareness of these decisions are needed. Repurposing and/or removing any infrastructure from an institution with over a 100-year history will require discussion to understand concerns and areas of potential resistance. These collaborative discussions and ultimate choices embody sound asset management practices grounded in principles.

The University of Alberta is not unique in facing a challenge of growing costs for managing infrastructure that exceed available resources, while balancing on-going and changing space needs, changing expectations of users, and
increased innovation in building design and delivery. This is a challenge of many post-secondary institutions and public organizations world-wide. What will be unique is how the university is strategic in its use of analytics, the disciplined choices it will make to meet the growing needs and expectations for space, and its decisions in managing these costs. Simply stated, decisions related to identifying buildings for renewal, repurposing, closure, disposal, and even demolition will be driven by the evidence of today with projections of tomorrow. They will also look at partnerships and collaborative opportunities in infrastructure design, operations, maintenance, and funding.

While this strategy provides an overarching direction, an accompanying Asset Management Master Plan (AMMP) is the university’s single master plan for infrastructure utilization (including undeveloped lands), space optimization, and investment prioritization. The plan presents a long-term view of our campus infrastructure and the path to get there and highlights evidence-based decision-making to optimize the university’s infrastructure portfolio. By using a robust framework for assessing where infrastructure investments return the greatest value to the institution, we will be better able to manage risk and legislative/code compliance; effectively engage and communicate decisions to stakeholders; lower building lifecycle costs; and improve financial and environmental sustainability. The AMMP makes a clear connection between the university’s broad-based strategic objectives and a picture of what the university’s infrastructure could look like over the next 20 years if investment is available.

<table>
<thead>
<tr>
<th>Vision</th>
<th>Vision</th>
<th>Redundant to university vision.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide the foundation that enables the university community to excel.</td>
<td>Provide the foundation that enables the university community to excel.</td>
<td></td>
</tr>
<tr>
<td>Mission</td>
<td>Mission</td>
<td>Redundant to university mission.</td>
</tr>
<tr>
<td>That the University of Alberta has superior stewardship of all its infrastructure across the five campuses, while cultivating the best possible environment for learning, teaching and research now and into the future.</td>
<td>That the University of Alberta has superior stewardship of all its infrastructure across the five campuses, while cultivating the best possible environment for learning, teaching and research now and into the future.</td>
<td></td>
</tr>
<tr>
<td>Planning Cycle</td>
<td>Infrastructure Planning and Reporting at the U of A</td>
<td>Removed content more applicable to the AMMP.</td>
</tr>
<tr>
<td>The below visual (Figure 1) is a simplified representation of the numerous</td>
<td>The University of Alberta is renowned for its leadership, achievements, and</td>
<td></td>
</tr>
</tbody>
</table>
University of Alberta - Integrated Asset Management Strategy (IAMS)

<table>
<thead>
<tr>
<th>Environmental Analysis</th>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>interdependent plans that the University of Alberta uses to achieve its vision, mission, and outcomes, while shaping and stewarding its direction. Embedded as the core, is the University of Alberta’s overarching Strategic Plan, For the Public Good. The cascade of planning then starts with academic and research plans through to administrative business plans such as the university’s Capital Plan, which is a legislated document required by the Government of Alberta, through to the annual Comprehensive Institutional Plan and department plans. The Capital Plan is informed by other Facilities and Operations’ related information, such as: consultation across campuses, long range development plans, resource plans, space utilization data, and prioritization processes. This work aligns and works together to serve many needs, including: ensuring accessible space for learners, faculty, and staff; supporting utility needs of campuses; monitoring and maintaining assets; designing, renewing, building, and removing capital assets; ensuring ancillary supports and services are available; and maintaining legislated long-range development plans. The Capital Plan is informed by other Facilities and Operations’ related information, such as: consultation across campuses, long range development plans, resource plans, space utilization data, and prioritization processes. This work aligns and works together to serve many needs, including: ensuring accessible space for learners, faculty, and staff; supporting utility needs of campuses; monitoring and maintaining assets; designing, renewing, building, and removing capital assets; ensuring ancillary supports and services are available; and maintaining legislated long-range development plans. This strategy supports and guides the annual Capital Plan. It helps build and strengthen the right foundations to strategically respond to the academic and research missions, while considering the needs of users and the fiscal realities.</td>
<td>public service, ranking among the top universities in Canada. The institution also ranks amongst the highest in Canada for its volume and value of infrastructure assets. This large volume of infrastructure assets, while supportive of space needs for all faculty and students, is increasingly difficult to support, and requires the university to strategically consider the life cycle of all buildings and grounds. Accordingly, university infrastructure assets are managed in four life-cycle stages, which are highly interdependent: planning; creating and acquiring; operating and maintaining; and renewing or disposing. The below visual is a simplified representation of the numerous interdependent plans that the University of Alberta uses to prioritize its decision-making with respect to infrastructure investments. At its core is the University of Alberta’s strategic plan, Shape as seen through the lenses of our commitments to diversity, equity, inclusion, and reconciliation outlined in Braiding, Past, Present and Future, University of Alberta’s Indigenous Strategic Plan and in the Strategic Plan for Equity, Diversity, and Inclusivity. There is also direction established in Forward with Purpose: A Strategic Plan for Research and Innovation which strategically guides the creation, operation, and financial sustainability of core and shared research infrastructure. Subsequent infrastructure planning is guided by this Integrated Asset Management Strategy (IAMS) that reflects academic and research priorities as defined by the university’s colleges and stand-alone faculties. The AMMP brings IAMS to life and is instrumental in developing implementation plans such as the university’s annual capital plan, which, as legislated by the Government of Alberta, outlines requests for capital investment for the next three years. Robust planning serves many needs, including: ensuring accessible space for learners, faculty, and staff; supporting utility needs of campuses; monitoring and maintaining capital assets; designing, renewing, building, and removing capital assets; ensuring ancillary supports and services are available financially sustainable; and maintaining legislated long-range development plans. Regular reporting ensures progress and accountability.</td>
<td>Added reference to Shape. Added reference to an AMMP. Added some text from Vice-President’s message. Added an updated infrastructure planning and reporting graphic. Language and wording updates.</td>
<td>Combined with Strategic</td>
</tr>
</tbody>
</table>

Figure 1: Planning landscape at the University of Alberta
The University of Alberta is not unique in facing a challenge of growing costs for infrastructure maintenance that exceed available resources, while balancing ongoing and changing space needs, changing expectations of users, and increased innovation in building design and delivery. This is a challenge of many post-secondary institutions and public organizations world-wide. What will be unique is how the University is strategic in its use of analytics, the disciplined choices it will make to meet the growing needs and expectations for space, and its decisions in managing these costs. The on-going choices will include: identifying assets for renewal, repurposing, closure, disposal, and even demolition. The choices will be driven by evidence of today with projections of tomorrow. They will also look at partnerships and collaborative opportunities in infrastructure design, operations, maintenance, and funding.

Maintenance is considered any activity that seeks to maintain the desired operating condition of an asset. Keeping up with maintenance ensures reliable and safe building occupancy for users. There are five types of maintenance, including: 1) emergency and reactive maintenance that is typically unplanned and urgent; 2) supportive maintenance that supports program and research equipment; 3) corrective maintenance that seeks to resolve chronic failures through performing major repairs or replacement of assets; 4) preventive and predictive maintenance that seeks to resolve maintenance issues before they arise as well as regular maintenance requirements; and 5) deferred maintenance that is required but deferred to future years. The accrual of deferred maintenance increases the risk and liability to the institution and is a large focus of this strategy.

The current asset replacement value of the supported and unsupported buildings is nearly $7.25 billion. As of 2018, the University of Alberta’s deferred maintenance liability for these buildings was nearly $353 million, with only $34.9 million currently provided as an annual Infrastructure Maintenance Program (IMP) grant for the supported buildings by the Government of Alberta. The University’s buildings, roadways and grounds, whether for learning and research, student services, offices or storage, incur significant capital and recurring operating and maintenance costs and are amongst the highest of the direct operating costs of the institution. If this current rate of growth of on-going maintenance and deferred maintenance liability continues, deferred maintenance liability could reach $1 billion by 2027 (See Figure 2).

In order to effectively manage risks associated with this liability, it is critical to
strategically invest funding. Extensive research across North America suggests that the annual average maintenance investment in facilities should represent approximately two per cent of the replacement value. This can vary from less than two per cent to around five per cent for complex and/or sophisticated buildings (laboratories, research, and other specialized facilities). This would typically have meant a minimum of $145 million per year (two per cent of $7.25 billion of the current replacement value) dedicated to maintenance to avoid an accumulation of deferred maintenance for all buildings and roadways. The impact of not having an appropriate threshold of maintenance funding for infrastructure has resulted in the current deferred maintenance liability and its rapid upward trend.

Facility maintenance is a continuum made up operational (day to day), major maintenance (building systems and components), and major upgrade/modernization. The University is funded by the Government of Alberta through a variety of sources: operational through lights-on funding (allocated as part of our base funding allocation), major maintenance through capital maintenance and renewal (IMP) funding, and major upgrade/modernization funding which is provided on a project-by-project approval basis. Other sources of maintenance funding can be directed from internal sources such as partner funding from faculties or centrally by the university. The University contributed its first funding of $1 million in 2019-20 to address deferred maintenance with an aspiration for that amount to increase over time.

Difficult choices lie ahead and repurposing and/or removing any infrastructure from such a monumental institution with over a 100-year history will require debate and discussion to understand concerns and areas of potential resistance. These collaborative discussions and ultimate choices are good asset management practices grounded in principles.

The principles have been discussed in early 2019 with the Board of Governors, the General Faculties Council, the university’s executive and faculty leadership, and students. The principles emphasize: 1) student life experience, research and scholarship; 2) asset management; 3) campus character; and 4) decision-making.

Figure 2 provides examples of the types of choices that will be informed by an asset management strategy. This figure forecasts six scenarios based on varying levels of financial commitment from the Government of Alberta and the University of Alberta to mitigate the deferred maintenance liability coupled with removing building assets that have either exceeded their life expectancy, their cost to
maintain is larger than the value of the buildings, and/or they no longer meet users' needs in design or operation. While these are only examples, they illustrate the disciplined choices necessary over the years ahead requiring deep engagement across the institution and tight alignment to the institution’s academic and research needs.

Figure 2: Deferred maintenance liability scenarios for supported, unsupported and mixed buildings

The data presented in Figure 2 are the best available at this time, but do not include the maintenance needs of the newer and more complex buildings on campus. It is likely that when this information becomes available and integrated into our information systems, the forecasted liabilities will be significantly higher.

Greater than 50% of the University of Alberta’s individual buildings were built in the post-war (1951-75) or modern (1976-90) eras. These eras were known to have unsustainable construction processes with an original intent that lesser construction quality would be offset by sufficient maintenance funding that would mitigate deficiencies. These buildings have a 50–60 year life cycle, ending now (Figure 3). Many of the critical systems in these buildings are at or near the end of their life and their failures would impair the delivery of the institution’s academic mission if preservation funding or increased maintenance dollars are not available.

The choices the University makes will need to bend the trend of expenditure growth in our deferred maintenance liability. While the adjacent visuals display the number and volume of buildings at different ages and areas, the impact of the more modern and complex buildings will be significant (Figure 4). This second wave of impact of maintenance needs requires the planning and financial policies to be established now in order to best mitigate the future consequences.

Figure 3: Building Distribution Based on Age
Figure 4: Bow Wave of Deferred Maintenance Liability

<table>
<thead>
<tr>
<th>Principles</th>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles set a foundation for a system of decision-making and actions. The below principles are guiding the asset management decisions that will be made in the short and long term. They have been reviewed and supported by both the General Faculties Council and Board of Governors, as well as leadership tables</td>
<td></td>
<td></td>
<td>Combined with Goals and Actions section. Removed content more appropriately included in the AMMP.</td>
</tr>
<tr>
<td>Principles set a foundation for a system of decision-making and actions. The subsequent goals guide all infrastructure decisions with corresponding actions to enable implementation. Below principles are guiding the asset management decisions that will be made in the short and long term. They have been</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
such as President’s Executive Committee. The fourteen principles are intended to have a long term lens in their application.

Student Success, Life Experience, Research and Scholarship

1. Campus spaces foster positive student learning and living experiences.
2. Building assets that positively contribute to teaching, research and service.
3. We endeavour to provide modern environments, including staff space, reflective of today’s pedagogies.
4. Facilities are capable of supporting world-class research across multiple disciplines.

Asset Management

5. Buildings are continually evaluated to prioritize investments in capital (renewal, expansion, new construction); in maintenance (preventative, current and deferred); and obsolescence.
6. Recognizing the inherent uniqueness in an institution of higher learning, while maximizing system-wide functionality.
7. Social, economic and environmental sustainability is achieved by:
 - Incorporating inclusive design principles into campus infrastructure (e.g. all-gender, barrier-free).
 - Reducing our ecological footprint.
 - Reducing operational costs.
 - Continually advancing the three pillars of sustainability: social, economic and environmental.

Campus Character

Table:

<table>
<thead>
<tr>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>such as President’s Executive Committee. The fourteen principles are intended to have a long term lens in their application.</td>
<td>validated by faculty leadership and students and reviewed and supported by both the General Faculties Council and the Board of Governors, as well as leadership tables such as President’s Executive Committee. The following fourteen principles, goals, and actions are intended to have a long term lens in their application.</td>
<td>Language/grammar edits.</td>
</tr>
<tr>
<td>Student Success, Life Experience, Research and Scholarship</td>
<td></td>
<td>Added link to content in Shape.</td>
</tr>
<tr>
<td>1. Campus spaces foster positive student learning and living experiences.</td>
<td>1. Campus spaces foster positive student learning and living experiences.</td>
<td></td>
</tr>
<tr>
<td>2. Building assets that positively contribute to teaching, research and service.</td>
<td>2. Building assets that positively contribute to teaching, research, service, and community impact.</td>
<td></td>
</tr>
<tr>
<td>3. We endeavour to provide modern environments, including staff space, reflective of today’s pedagogies.</td>
<td>3. We endeavour to provide modern Building environments, including staff space, reflective of today’s pedagogies.</td>
<td></td>
</tr>
<tr>
<td>4. Facilities are capable of supporting world-class research across multiple disciplines.</td>
<td>4. Facilities are capable of supporting world-class research across multiple disciplines.</td>
<td></td>
</tr>
<tr>
<td>Asset Management</td>
<td>5. Buildings are continually evaluated to optimize space utilization and prioritize investments in life-cycle renewal and in maintenance, capital (renewal, expansion, new construction); in maintenance (preventative, current and deferred); and obsolescence.</td>
<td>Added reference to space optimization.</td>
</tr>
<tr>
<td>5. Buildings are continually evaluated to prioritize investments in capital (renewal, expansion, new construction); in maintenance (preventative, current and deferred); and obsolescence.</td>
<td>6. Recognizing the inherent uniqueness in an institution of higher learning, while maximizing system-wide functionality.</td>
<td>Language/grammar edits.</td>
</tr>
<tr>
<td>6. Recognizing the inherent uniqueness in an institution of higher learning, while maximizing system-wide functionality.</td>
<td>7. Social, economic and environmental sustainability is advanced and achieved by:</td>
<td></td>
</tr>
<tr>
<td>7. Social, economic and environmental sustainability is advanced and achieved by:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Incorporating inclusive design principles into campus infrastructure (e.g. all-gender, barrier-free).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Reducing our ecological footprint.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Reducing operational costs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Continually advancing the three pillars of sustainability: social, economic and environmental.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus Character</td>
<td>Campus Character</td>
<td>Language/grammar edits.</td>
</tr>
</tbody>
</table>
8. Every building has a unique role and its strategic value in the institutional inventory is more than a mathematical computation.

9. Fostering the active transportation experience is seen to be a priority on all campuses.

10. Campus buildings and grounds will be aesthetically coherent and maintained in a way that considers the community in which it resides.

11. Considerations for removing building inventory will include a meaningful assessment of its historic value and placement in the university’s architectural mosaic.

Decision-Making

12. Adhere to all government-mandated long range development plans, sector plans, urban planning principles, and building codes and regulations.

13. Spending must adhere to government guided parameters:
 - “Lights-on” (Base) funding: the portion of the Campus Alberta Grant that is used to cover building operating costs (e.g., utilities, janitorial, maintenance, insurance, etc.).
 - Infrastructure Maintenance Program (IMP): a variable annual allocation intended to address deferred maintenance on base building systems.
 - Capital grants: funds received in order to achieve a specific building project.

14. Decisions are evidence-based and supported by openly available data related to building occupancy, functionality, performance, environmental considerations, and deferred maintenance.
 - Supported by the CIP, we strive to have a “data-driven approach to maintaining, renovating and repurposing existing spaces on campus.”
 - In order to support modern learning environments we need to have the ability to sustain building infrastructure.

Language/grammar edits.

Combined with Principles
Planning and Programming

1. Strengthen campus planning processes and outputs to consider future events, innovation and risks.

 - Campus long range development planning processes are the convergence of many collaborative planning events to understand, anticipate, and design the campus and identify priorities of tomorrow including alignment with the academic mission; research priorities and needs; supporting students’ academic, social and wellness aspects; and considering the emergent future risks to a post-secondary institution.
 - **A.** Maintain current Long Range Development Plans and Sector Plans to ensure they act as frameworks to support academic visions and student experiences.
 - **B.** Demonstrate consistency in direction and decisions for campus planning that exemplifies best practices in smart growth, healthy community, and sustainable design.
 - **C.** Create more innovative approaches to the development of flexible and adaptable space to meet changing needs of users.

2. The University’s infrastructure will meet end-users’ space needs while enabling a positive experience.

 - Planning inputs and cycles are interdependent with many functional inputs across the institution, including academic, research, operational, risk, equipment maintenance, deferred maintenance, and capital disposal. Sound planning and implementation inspires excellence, significantly impacts educational progress, and contributes to a positive educational experience, overall productivity, researcher retention, and satisfaction of end users. Aligned programming, planning, and functional.

<table>
<thead>
<tr>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are four stages, illustrated below, of the life cycle of assets (Figure 5). They are highly interdependent, suggesting the rigour and quality of each stage impacts the subsequent stages. These align with the aforementioned principles and each has specific goals and actions that will be monitored and reported as part of regular operations within Facilities and Operations. This regular reporting will include performance indicators, best practice targets, and on-going review and risk analyses.</td>
<td>There are four stages, illustrated below, of the life cycle of assets (Figure 5). They are highly interdependent, suggesting the rigour and quality of each stage impacts the subsequent stages. These align with the aforementioned principles and each has specific goals and actions that will be monitored and reported as part of regular operations within Facilities and Operations. This regular reporting will include performance indicators, best practice targets, and on-going review and risk analyses.</td>
<td>Figure 5 moved to new Infrastructure Planning and Reporting at the U of A section.</td>
</tr>
<tr>
<td>Figure 5: Asset Management Life Cycle</td>
<td>Figure 5: Asset Management Life Cycle</td>
<td>Language/grammar edits.</td>
</tr>
</tbody>
</table>
IAMS 2019

Overall productivity, researcher retention, and satisfaction of end users. Aligning programming, planning, and functional design principles within an academic and research delivery framework is crucial to the success of the user experience. It is a pathway that is deliberate and guided by many tangible and intangible factors and phases. The formalization from idea to a hard asset is founded in life cycle and deeply connected to a strong stewardship mandate. Over the course of a normal life cycle span, approximately only one tenth of an asset’s cost is related to its initial capitalization phase and, as such, the relevance of life cycle assessments is fundamentally important in determining and making decisions to construct, lease, or acquire new assets.

A. Advance a consistent approach in optimizing space that aligns with space standards, and provides guidance on how space connects to the overall academic mission, accessibility of key user groups, and unit cost impacts.

B. Collaborate with faculties to ensure completion of General Space Programming (GSP) and Functional Programming (FP) to affect academic planning outcomes in priority areas.

IAMS 2023

Design principles within an academic and research delivery framework is crucial to the success of the user experience. Planning inputs and cycles consider are interdependent with many functional elements spanning inputs across the institution, including: academic and research plans, research, facility imperatives such as maintenance, and building risk profiles. Operational, risk, equipment maintenance, deferred maintenance, and capital disposal. Sound planning and implementation inspires excellence, significantly impacts educational progress, overall productivity, researcher retention, and satisfaction of end users. Aligning programming, planning, and functional design principles within an academic and research delivery framework is crucial to the success of the user experience. It is a pathway that is deliberate and guided by many tangible and intangible factors and phases. The formalization from idea to a hard asset is founded in life cycle and deeply connected to a strong stewardship mandate. Over the course of a normal life cycle span, approximately only one tenth of an asset’s cost is related to its initial capitalization phase and, as such, the relevance of life cycle assessments is fundamentally important in determining and making decisions to construct, lease, or acquire new assets.

A. Advance a consistent approach in optimizing space that aligns with space standards, and provides guidance on how space connects to the overall academic mission, contributes to the student experience, accessibility of key user groups, and unit cost impacts.

B. Collaborate with colleges and faculties to ensure infrastructure decisions are best able to reflect completion of General Space Programming (GSP) and Functional Programming (FP) to affect academic planning outcomes in priority areas.

Comments

3. Stakeholders are appropriately informed and engaged when there are significant changes to assets.

Based on the resource allocations in the planning and programming phase, ensure that stakeholder engagement, principle-based outcomes and alignment to effective stewardship principles are effectively considered and executed. This will occur in a transparent and responsible manner. Excellence in planning and execution are the cornerstones to both asset management and space utilization.

A. Develop a consistent approach to communications and engagement prior to any significant change to infrastructure.

B. Throughout key design implementation phases, input is sought from stakeholders to ensure the multitude of institutional perspectives are acknowledged and decisions are founded in a common understanding of approved requirements, limitations, and/or compromises.

C. Ensure compliance to institutional design and operational standards as part of the Board of Governors space policy.
A. Develop a consistent approach to communications and engagement prior to any significant change to infrastructure.

B. Seek input from key stakeholders throughout key design implementation phases. Input is sought from stakeholders to ensure the multitude of institutional perspectives are acknowledged and decisions are founded on a common understanding of approved requirements, limitations, and/or compromises.

C. Ensure compliance to institutional design and space operational standards as defined in University part of the Board of Governors space policy.

Creating and Acquiring

4. Evaluate space aspirations to align within a framework of established criteria.

At any given time, students, faculty, and staff will express a desire for new, expanded, or repurposed space. These requests will increasingly undergo a multitude of assessments to understand need, evaluate if stated requirements fall within a framework of established criteria, and seek assurance from leaders of the relevance and value of desired space needs.

A. Facilities and Operations will provide guidance and direction to academic and business entities regarding space needs and seek endorsement of appropriate levels of leadership.

B. Formal planning and design will include an evaluation framework; capital and operating budget analysis; operational impact assessment; and consideration of alternatives (renewal, lease, rebuild). Space need options will be formalized and submitted to appropriate levels of leadership for input and decision.

C. Projects requiring government financial support will be prioritized, benchmarked, and submitted for consideration within the BLIMS and/or federal government submission processes.

Operating and Maintaining

5. Optimize operations to strategically re-invest funding to maintenance programs

- Funding is now more strategically re-invested to maintenance programs.
and/or capital renewal efforts to better manage the growing deferred maintenance liability.

Operating and maintaining assets can account for up to 90 per cent of the total cost of building ownership and is comprised: support and maintenance such as administration costs (insurance, security, etc.); routine maintenance and minor repairs; custodial services; fire protection services; pest control; snow removal; grounds care; environmental operations; and utility charges (electric, gas, water).

All members of the University of Alberta community can individually and collectively help meet and potentially extend the life cycle of infrastructure through understanding and adapting behaviours in how assets are used and cared for.

A. Enhance preventive and predictive maintenance programming to support improved efficiencies.
B. Establish campus service standards and levels and actively manage and measure across all campuses.
C. Develop marketing and awareness campaigns that emphasize the role each member of the university has in stewarding and maintaining its assets.
D. Advance sustainable operations’ practices to support sustainability and environmental targets.

Renewing and Disposing

6. The renewal, repurposing and end-stage of assets or their components will inform decisions as part of an integrated process.

Facilities and Operations will lead the optimization of capital and other asset investments to improve their use with centralized asset management and tracking. This integrated process reduces excess inventory with a clear understanding of actual needs; enables better decisions in renewal, repurposing, or replacement to avoid unnecessary expenditures; and facilitates the decommissioning and/or disposal of assets.

A. Undergo a regular review of aligning all assets to the academic and

<table>
<thead>
<tr>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>and/or capital renewal efforts to better manage the growing deferred maintenance liability. Operating and maintaining assets can account for up to 90 per cent of the total cost of building ownership and is comprised: support and maintenance such as administration costs (insurance, security, etc.); routine maintenance and minor repairs; custodial services; fire protection services; pest control; snow removal; grounds care; environmental operations; and utility charges (electric, gas, water).</td>
<td>to maintenance programs and/or capital renewal efforts to better manage the growing university’s deferred maintenance liability. Operating and maintaining infrastructure assets can account for up to 90 per cent of the total cost of building ownership, and is comprised: support and maintenance such as administration costs (insurance, security, etc.); routine maintenance and minor repairs; custodial services; fire protection services; pest control; snow removal; grounds care; environmental operations; and utility charges (electric, gas, water).</td>
<td>Language/grammar edits.</td>
</tr>
</tbody>
</table>

A. Enhance predictive and preventive maintenance programming to support improved efficiencies.
B. Establish campus service standards and levels and actively manage and measure across all campuses.
C. Develop marketing and awareness campaigns that emphasize the role each member of the university has in stewarding and maintaining its assets.
D. Advance sustainable operations’ practices to support sustainability and environmental targets.
<table>
<thead>
<tr>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>research mission, considering prioritization criteria and guiding principles.</td>
<td>research mission, considering prioritization criteria and guiding principles.</td>
<td></td>
</tr>
<tr>
<td>B. Financial, space, and academic modeling will be implemented as part of the analytic framework to support choices of which buildings will undergo change.</td>
<td>B. Utilize Financial, space, and academic modeling will be implemented as part of the analytic framework to support choices of which buildings will (or will not) undergo change.</td>
<td></td>
</tr>
<tr>
<td>Strategic Enablers</td>
<td>Strategic Enablers</td>
<td></td>
</tr>
<tr>
<td>7. Establish a strong information and analytics platform to support evidence-based decision-making.</td>
<td>7. Establish a strong information and analytics platform to support evidence-based decision-making.</td>
<td></td>
</tr>
<tr>
<td>Robust, consistent, and transparent decisions can be more effectively made when the information they are based on is complete, accurate, and integrated. In order to support improved management of assets, potential investment decisions, or monitoring of performance against service levels, a strong data inventory and analytics framework is needed.</td>
<td>Robust, consistent, and transparent decisions can only be more effectively made when the information they are based on is complete, accurate, and integrated. In order to support improved management of infrastructure assets, potential investment decisions, or monitoring of performance against service levels, a strong data inventory and analytics framework is needed.</td>
<td></td>
</tr>
<tr>
<td>A. Strengthen front line processes and information gathering to instill higher confidence in facilities’ data.</td>
<td>A. Strengthen front line processes and information gathering to instill higher confidence in facilities’ data.</td>
<td></td>
</tr>
<tr>
<td>B. Complete technology and business needs assessments to identify integrated solutions that support business requirements.</td>
<td>B. Complete technology and business needs assessments to identify integrated solutions that support business requirements.</td>
<td></td>
</tr>
<tr>
<td>C. Build predictive modeling of key assets that consider multiple factors to the longevity and operational costs of assets.</td>
<td>C. Build predictive modeling of key assets that consider multiple factors to the longevity and operational costs of assets.</td>
<td></td>
</tr>
<tr>
<td>8. Enhanced monitoring and reporting of progress will be embedded into the Facilities and Operations portfolio processes.</td>
<td>8. Enhanced monitoring and reporting of progress ensures transparency and accountability will be embedded into the Facilities and Operations portfolio processes.</td>
<td></td>
</tr>
<tr>
<td>This strategy provides Facilities and Operations a framework for the effective and efficient management of the institutions’ assets. This is a living document which is relevant and integral to the daily asset management activities across the campuses. To ensure the strategy remains relevant and responsive, the following actions will be undertaken.</td>
<td>This strategy provides Facilities and Operations a framework for the effective and efficient management of the institutions’ assets. This is a living document which is relevant and integral to the daily asset management activities across the campuses. To ensure the strategy remains relevant and responsive, the following actions will be undertaken.</td>
<td></td>
</tr>
<tr>
<td>A. Refresh the strategy as part of the annual planning cycles in place across Facilities and Operations.</td>
<td>A. Refresh the strategy as necessary to reflect changing university imperatives, part of the annual planning cycles in place across Facilities and Operations.</td>
<td></td>
</tr>
<tr>
<td>B. Implement quality assurance audits to ensure the integrity and cost effectiveness of data collected.</td>
<td>B. Conduct quality assurance audits to ensure the integrity and cost effectiveness of data collected.</td>
<td></td>
</tr>
<tr>
<td>C. Develop a reporting dashboard aligned with each phase of an asset’s lifecycle and report on progress and actions quarterly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAMS 2019</td>
<td>IAMS 2023</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>C. Develop a Use reporting mechanisms to dashboard aligned with each phase of an asset’s life cycle and report on progress and performance, and actions quarterly.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next Steps

Taking care of our campuses today, will provide a stronger tomorrow. This requires strategic choices of how to manage and future-proof the full life-cycle of current and future infrastructure assets. This requires support from across the university faculties, schools, departments, faculty, researchers and staff, key stakeholders, as well as with different orders of government. All stakeholders are stewards of these assets and have a direct influence on the state and care of all of them.

One to Two Years

In the next year, Facilities and Operations will be more evidence-driven and seek opportunities to harness innovation in how it maintains, monitors, and operates infrastructure. This includes predicting trends that will improve capital-planning decisions based on expected performance of existing infrastructure. It will also see remote sensors reporting on performance of equipment and productivity of these assets to enhance maintenance cycles and reduce overall operating costs.

Space will be optimized in ways that will align with the academic and research mission while minimizing the quantity of leased space to reduce the overall operating and maintenance costs while allowing more focused and targeted investments. All new or enhanced capital infrastructure will be evaluated to establish the full life cycle costs. There will be renewal of targeted buildings where learners’ needs, efficiency gains, and space optimization are evident, such as renovations of the Dentistry/Pharmacy building and Lister Hall.

Land and infrastructure not core to the academic and research missions or not aligned with students’ needs or support may be disposed or exchanged for other assets or developed to realize revenues for the institution. And lastly, buildings that have met the end of their life cycle, do not align with the academic and research missions, do not meet student needs’ or supports, or are prohibitive to operate or maintain will be decommissioned and, in select instances, demolished.

Three to Five Years

Removed - content more applicable to the AMMP.
Over the next three to five years, Facilities and Operations will use predictive analytics to better understand performance, utilization, ecological impacts, and operating costs of assets including the impact of external events such as changing weather patterns and advances in innovation. As increasing amounts of building data is gathered by sensors and sources across all networks, assets that are 'over-maintained' and too cost intensive will be identified leading to a consideration of where alternatives may be more appropriate. There will also be a better understanding of space utilization and, where appropriate, changes to how space is used will need to be made. This will range from reductions to overall space, new configurations, or alternative lay-out and design.

There will also be an increased emphasis on customer service in planning and delivery of infrastructure, including opportunities for continual feedback and satisfaction evaluations from users. This feedback will support continuous improvement throughout the full life cycle.

Lastly, buildings that have reached the end of their life cycle, have increased operating and maintenance costs, and the return on investment to academia through to the financial analysis is unsustainable, will be decommissioned. And, in some instances, these buildings will be demolished if adequate and appropriate space is available elsewhere.

Five to Fifteen Years

In the next five to fifteen years, there will be changes in how students learn, how academia educates and trains, and there will likely be a substantive growth in the number of students attending post-secondary education. Innovation, technology, and environmental considerations will also increasingly influence asset needs and how infrastructure will be used. These changes over the years ahead will require adaptive and flexible space that more easily changes to the needs of users. Creativity will be needed now in order to accommodate for changes in the future.

There are numerous impacts that will influence infrastructure decisions. One impact relates to autonomous vehicles and increased public transit potentially resulting in how the institution addresses parking and road infrastructure. This may require more sensors and cameras across the institution to support vehicle and passenger safety. Similarly, advances in alternative energy systems may result in changes to the utility grid and power systems, water collection and

<table>
<thead>
<tr>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over the next three to five years, Facilities and Operations will use predictive analytics to better understand performance, utilization, ecological impacts, and operating costs of assets including the impact of external events such as changing weather patterns and advances in innovation. As increasing amounts of building data is gathered by sensors and sources across all networks, assets that are 'over-maintained' and too cost intensive will be identified leading to a consideration of where alternatives may be more appropriate. There will also be a better understanding of space utilization and, where appropriate, changes to how space is used will need to be made. This will range from reductions to overall space, new configurations, or alternative lay-out and design.</td>
<td></td>
<td>applicable to the AMMP.</td>
</tr>
<tr>
<td>There will also be an increased emphasis on customer service in planning and delivery of infrastructure, including opportunities for continual feedback and satisfaction evaluations from users. This feedback will support continuous improvement throughout the full life cycle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lastly, buildings that have reached the end of their life cycle, have increased operating and maintenance costs, and the return on investment to academia through to the financial analysis is unsustainable, will be decommissioned. And, in some instances, these buildings will be demolished if adequate and appropriate space is available elsewhere.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Five to Fifteen Years</td>
<td></td>
<td>Removed - content more applicable to the AMMP.</td>
</tr>
<tr>
<td>In the next five to fifteen years, there will be changes in how students learn, how academia educates and trains, and there will likely be a substantive growth in the number of students attending post-secondary education. Innovation, technology, and environmental considerations will also increasingly influence asset needs and how infrastructure will be used. These changes over the years ahead will require adaptive and flexible space that more easily changes to the needs of users. Creativity will be needed now in order to accommodate for changes in the future.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are numerous impacts that will influence infrastructure decisions. One impact relates to autonomous vehicles and increased public transit potentially resulting in how the institution addresses parking and road infrastructure. This may require more sensors and cameras across the institution to support vehicle and passenger safety. Similarly, advances in alternative energy systems may result in changes to the utility grid and power systems, water collection and</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
storage, and even energy storage. This could have a direct impact to the adjacent partners that use the University of Alberta’s utility systems. Student learning spaces may shift from a ‘sage on the stage’ to a ‘guide on the side’ suggesting a greater need for more collaboration and collision space for students to work together in ways that better enable collaboration and inter-disciplinary learning. Lastly, there may be mergers or acquisitions in post-secondary that expand the volume of assets that the University of Alberta is responsible for, thereby requiring even greater discipline in space optimization and efficient use and maintenance of infrastructure. These are only a handful of the impacts that changes in the environment, the fiscal context and advancements in technology could potentially influence our infrastructure. Facilities and Operations will increasingly undergo environmental scanning, strategic foresight and risk analysis, appropriate adoption of technology, and acceleration of analytics to understand the impact of potential decisions.

Summary

The current situation is not sustainable and action is needed now. This strategy will strengthen how we care for our campuses to ensure long term resilience and sustainability.

Infrastructure is an enormous collective investment and a tremendous resource for a community, society, and the economy. All members of the University of Alberta community are stewards of its buildings and grounds. The majority of assets are increasingly vulnerable to outliving their life cycle, bringing safety, student and research programming, financial enterprise risks, and escalating overall operations and maintenance costs. The current situation is not sustainable and action is needed now, therefore this Integrated Asset Management Strategy requires extensive thought, input, and action. These challenges are not insurmountable but will require dedicated resources, behaviour change, concerted focus, and purposeful collaboration.

This strategy and the actions within it will strengthen how the institution cares for its assets and work toward bending the trend of growth in operations and maintenance expenditures to ensure that the institution is resilient and sustainable for the long-term. Strategic asset management will underpin all activities and investment decisions related to managing our physical infrastructure assets in order to ensure optimal outcomes that underpin the core mission.

Infrastructure for Tomorrow

In many tangible ways, a university campus replicates a small city. In the case of the University of Alberta’s North Campus, 160 buildings of varying use, age, and complexity are connected by a network of streets, sidewalks, and tunnels. While comprising fewer buildings, Campus Saint-Jean, Augustana, Enterprise Square, and South Campus also each form key elements of the university’s rich infrastructure mosaic.

All decisions related to investing in campus infrastructure are naturally very long-term in nature and, in a world with limited resources, must be made prudently and with an eye clearly focused on the future. The future of world-class teaching and research. The future of memorable student experiences. A sustainable future.

Shape, A Strategic Plan of Impact, reminds us of the imperative for us to be at the forefront of educating a growing province with global ambitions. Key to this is having and maintaining university infrastructure - classrooms, labs, libraries, study spaces, and other spaces to enhance the student experience - that meet today’s expectations without constraining tomorrow’s ambitions. With the necessary support of willing partners, the University of Alberta’s Integrated Asset Management Strategy will get us there.

<table>
<thead>
<tr>
<th>IAMS 2019</th>
<th>IAMS 2023</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>storage, and even energy storage. This could have a direct impact to the adjacent partners that use the University of Alberta’s utility systems. Student learning spaces may shift from a ‘sage on the stage’ to a ‘guide on the side’ suggesting a greater need for more collaboration and collision space for students to work together in ways that better enable collaboration and inter-disciplinary learning. Lastly, there may be mergers or acquisitions in post-secondary that expand the volume of assets that the University of Alberta is responsible for, thereby requiring even greater discipline in space optimization and efficient use and maintenance of infrastructure. These are only a handful of the impacts that changes in the environment, the fiscal context and advancements in technology could potentially influence our infrastructure. Facilities and Operations will increasingly undergo environmental scanning, strategic foresight and risk analysis, appropriate adoption of technology, and acceleration of analytics to understand the impact of potential decisions.</td>
<td></td>
<td>Updated language.</td>
</tr>
</tbody>
</table>