The study of animal movement is important in ecology to understand biological processes such as behaviour and habitat preferences. Many statistical models have been developed over the last two decades to analyse animal movement data. Some focus on modelling small-scale movement dynamics (e.g. random walks), while others focus on the large-scale spatial distributions of animals (e.g. spatial point processes). Although it is natural to think of the long-term utilisation distribution as the consequence of short-term movement decisions, there are no established models to link the two scales. In this seminar, I will present a multi-scale model based on an analogy between animal movement and statistical sampling. A statistical sampler is an algorithm used to generate points from a distribution of interest, termed the target distribution. It explores its parameter space using local information about the target distribution (e.g. its gradient), similarly to an animal moving in response to its local habitat. Using this analogy, I will present a framework to jointly estimate the short-term habitat selection of an animal and its long-term utilisation distribution. I will illustrate the proposed model using simulations, and showcase its use with animal tracking data.