Introduction

Lung cancer is the leading cause of cancer deaths (1). Among lung cancer cases, non-small cell lung cancer (NSCLC) is more common. It is reported that 65-90% of NSCLC express epidermal growth factor receptors (EGFR) and for this phenotype, monoclonal antibodies (mAbs) such as Panitumumab and Cetuximab that target EGFR are treatment options (2-4). We have shown an EGFR targeting nano-delivery system developed through modification of poly(ethylene oxide) poly (benzyl carboxylate–caprolactone) (PEO-PBCL) micelles with GE11 peptide, modestly increase the interaction of polymeric micelles with EGFR expressing colorectal cancer models when compared to polymeric micelles with a mock peptide (HW12) modification (5).

Methods

1. **Micelle Preparation**
 Maleimide-PEO-PBCL polymers were prepared and mixed with methoxy PEO-PBCL at 1:1 ratio.
 Both block copolymers or their mixture were self assembled to nanostructures by a co-solvent evaporation method. Micellar size and polydispersity index (PDI) were assessed.

2. **Panitumumab Attachment**
 Panitumumab was thiolated through reaction with 2-iminothiolane (Traut’s reagent). Then thiolated panitumumab was reacted with maleimide micelles. This was followed by reaction with 2-mercaptoethanol to neutralize remaining free thiol groups on the antibody.

3. **Purification**
 By using size exclusion chromatography, the obtained micelles were purified. Through elusion from Sepharose® CL-6B column by PBS and fraction were collected. The eluted fractions were characterized by dynamic light scattering and absorption spectroscopy at 280 nm.

Results

The conjugation efficiency of panitumumab to micelles is 8% based on antibody amount detected by UV absorbance.

Conclusion

The results show successful development of panitumumab attached micelles to targeted EGFR positive NSCLC.

Acknowledgment

- This research is funded by a grant from Canadian Institute of Health Research (CIHR).
- Nasim Sarrami acknowledges funding from NSERC CREATE grant to Polymer Nanoparticles for Drug Delivery (PoND) program and CIHR.

References