Contact the Faculty of Science

Jonathan G. C. Veinot





In 1959, Nobel Prize winning Physicist, Richard Feynman offered a glimpse, in his classic presentation There's Plenty of Room at the Bottom, of a new interdisciplinary field of research, which might tell us much of great interest about the strange phenomena that occur in complex systems and have enormous number of technological applications. Of late, the scientific community has witnessed an increasing number of interdisciplinary research activities mirroring Feynman's predictions from the mid-20th Century. When one considers the "toolbelt" of a chemist, it is increasingly evident that no professional is more capable of addressing the challenges of a "bottom-up" approach to material nano-design: We have an unprecedented appreciation for controlled manipulation and tailoring of material properties at molecular and atomic levels.

Research interests of the Veinot Group lie within the scope of two highly competitive, multidisciplinary, overlapping fields (Nanotechnology and Organic Optoelectronics), which benefit greatly from a molecular structure approach to the abovementioned "bottom-up" design.

Nanoparticle Synthesis and Derivatization

Two classes of nanoparticles (or quantum dots) remaining largely unexplored are metallic (i.e., Ni, Pt, Pd and lanthanide metals) and indirect gap atomic semiconductor (i.e., Si, Ge) systems. The minimal attention paid to the nanophases of these materials is not for lack of interesting properties, rather it is a function of their incompatibility with simple precipitation chemistry employed to prepare nanoscaled II-IV semiconductors. Hence, only limited examples of mondispersed nanoparticles of these materials have been reported. With this as our impetus, our research program is focused upon synthesis, characterization and application of small molecule precursors suitable for fabrication of monodispersed nanoparticles via solution borne chemistry. Our materials are suitable for a wide scope of applications including: DNA testing, organic light-emitting diodes (OLEDs), lasers, catalysis, nanoelectronics, and optoelectronics.

Polymer-Based Organic Light-Emitting Diodes

Organic Light-Emitting Diodes (OLEDs), currently the focus of significant scientific and technological interest, are predicted to offer global profits approaching one billion US dollars annually by 2005. Their potential applications include: portable electronics, display manufacture, digital cameras and camcorders, lighting, consumer goods, automotive, and communication systems. Two distinct "camps" exist within OLED research: multilayer vapour deposited small molecule- and spincoated polymer-based systems. Both device configurations exhibit their own advantages and disadvantages, yet only limited examples of small molecule/polymer hybrid devices have been reported. Our OLED team is focused upon rational design, synthesis, and characterization of hybrid materials with polymeric matrices of tailored physical and electronic characteristics bearing covalently tethered tuneable emissive centers.

Members of the Veinot Research Teams are exposed to all areas of inorganic, organic, organometallic, and polymer chemistry while gaining expertise in the techniques and principles of physics, engineering, materials science, and biology. In addition, team members will have significant opportunity to participate in international collaborations, use facilities of the Canadian National Institute of Nanotechnology and The Canadian Light Source.