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ABSTRACT

A set of balance equations is derived that is appropriate for analysis of the three-dimensional anelastic system
and is based on expansions in Rossby and Froude number similar to those employed in the study of the shallow-
water equations by Spall and McWilliams. Terms that constitute the usual balance equations are formally retained
here in addition to non-Boussinesq terms of the same order arising from the vertical variation of the background
density field. The authors apply the derived set of equations diagnostically to the analysis of three-dimensional,
anclastic numerical simulations of a synoptic-scale baroclinic wave. Of particular interest in this analysis is the
degree to which and the time at which the flow becomes appreciably unbalanced, as well as the form of the
imbalance itself. Unbalanced motions are here defined as departures from solutions of the balance equations.
Application of this analysis procedure allows us to identify two classes of unbalanced motion, respectively: 1)
unbalanced motion that is slaved to the balanced motion and is therefore characterized by the same time and
length scales as the balanced motion (i.e., higher-order corrections on the **slow’” manifold) and 2 ) unbalanced
motion that is on a faster timescale than the large-scale balanced motion but is nevertheless forced by these same
balanced motions (e.g., forced internal gravity waves). It will be shown in the analysis that both forms of
imbalance arise in the frontal zones generated during the numerical simulation, but that the gravity wave gen-
eration is probably a numerical artifact of insufficient vertical resolution as the slope of the surface front decreases
below the threshold required for consistent horizontal and vertical resolution. The total unbalanced motion field
is dominated by the slower advective motion, but the numerically generated gravity waves nevertheless reach a
peak amplitude comparable to that of the slower unbalanced motion. ‘Whether internal wave radiation would
persist, or perhaps become more intense, with increased spatial resolution is an issue that is left unresolved in
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the present analysis.

1. Introduction

The observationally motivated fact that large-scale
atmospheric and oceanic motions approximately satisfy
the gradient wind balance equation or have a small
characteristic Rossby number R (=V/fL, where V and
L are typical velocity and length scales, respectively,
and fis the Coriolis parameter) eventually led to the
development of what are now known as the balance
equations (Charney 1962; Lorenz 1960; Gent and
McWilliams 1983 ). These equations are also formally
valid in the limit of small Froude number F (=V/NH,
where N and H are typical values of the buoyancy fre-
quency and height scale, respectively) and large R
(McWilliams 1985 ) as well as for flows including fron-
tal structures in which neither F nor R is small (Gent
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et al. 1993); therefore, we may reasonably expect the
balance equations to be accurate throughout a signifi-
cant area of the R— F plane. The balance equations re-
sult from a consistent truncation of the divergence and
vorticity equations, although the balance equations
themselves are not consistently derivable by taking the
divergence and curl of a particular set of momentum
equations. There are many other forms of intermediate
models in which the physics ranges in complexity be-
tween that characteristic of the quasigeostrophic equa-
tions and that embodied within the so-called primitive
equations, the most currently prevalent of which would
probably be the semigeostrophic system of Hoskins and
Bretherton (1972). The balance equations have, how-
ever, been shown to be the most accurate of the full
range of such intermediate models for the limited num-
ber of flows for which explicit comparisons have been
made (McWilliams and Gent 1980; Gent and Mc-
Williams 1982; Norton et al. 1986; Barth et al. 1990;
Allen et al. 1990; Snyder et al. 1991; Whitaker 1993 ).

Differences between a primitive equation solution
and an intermediate model solution are unambiguously
attributable to the terms neglected in the intermediate
model. Snyder et al. (1991) have demonstrated that a
prognostic integration of the semigeostrophic set of
equations leads to large differences in the structural
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characteristics of the predicted flows because of an ac-
cumulation over time of this error. An alternate method
of testing a set of intermediate equations is to apply
them diagnostically to the solutions delivered by a
more fundamental set of equations. In this way one can,
at any time, determine the degree to which the total
flow is balanced, with the definition of what constitutes
balance being provided by the intermediate model. This
is the approach we will follow in the present study.

Recently, there have been attempts to confute the
existence of a globally invariant slow manifold (where
“slow’” refers to those low-frequency motions that
evolve on advective timescales) for various sets of
equations (Warn and Menard 1986; Lorenz and Krish-
namurthy 1987; Lorenz 1992) by demonstrating the
existence of counterexamples wherein the solutions in-
variably develop a high-frequency gravity wave com-
ponent. The concept of a fuzzy manifold (Warn and
Menard 1986), in which the solution is imagined to
remain in a region ‘‘close’” to some hypothetical glob-
ally invariant slow manifold, may be a more appropri-
ate idea but one that is of limited utility because of its
fuzziness. If one is considering large-scale flows that
generate unbalanced motion whose feedback on the
large-scale flow is relatively insignificant, then bal-
anced models will describe the flow adequately. If, on
the other hand, the unbalanced flow can feed back sig-
nificantly on the dynamics of the large-scale flow then
balanced models will no longer be applicable. Given
the success of modeling large-scale motions using non-
linear normal-mode initialization (Baer and Tribbia
1977; Leith 1980), inherent in which is the assumption
of the existence of a slow manifold, it would appear
that any fuzziness of the manifold does not usually sig-
nificantly alter the large-scale motion. On the other
hand, it is now well known on the basis of general
circulation model experiments that the gravity wave
drag exerted on the large-scale flow by the breaking of
internal waves, especially above mountainous topog-
raphy (Peltier and Clark 1979), appears to play an im-
portant role; so the unimportance of gravity waves can-
not be universally true. ,

As well as this topographic source of unbalanced
motion, however, there is also the possibility that when
a synoptic-scale disturbance develops mesoscale fron-
tal zones, significant imbalance might develop along
the entire length of the frontal zone, particularly since
two-dimensional frontal studies have revealed substan-
tial frontal imbalance of advective origin (e.g., Keyser
and Pecnick 1985; Reeder and Keyser 1988). The pres-
ent analysis will explore the unbalanced motion in a
fully three-dimensional front. It remains unclear as to
what impact this frontal imbalance might have on fron-
tal evolution. Gravity wave generation during both vis-
cid and inviscid frontal collapse has been a focus of
considerable research (Ley and Peltier 1978; Gall et al.
1987; Garner 1989; Snyder et al. 1993). Mesoscale
pressure anomalies characteristic of internal gravity
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waves have been observationally associated with
weather fronts for some time [Herron et al. (1969);
Eckerman and Vincent ( 1993 ), who report unbalanced
vertical velocities attributable to gravity waves of mag-
nitude as large as 0.5 m s ~']. Numerical simulations
of frontal evolution, however, pose a technical prob-
lem. Models that employ a diffusive parameterization
of subgrid-scale processes and whose physics allow for
the existence of internal waves will inevitably predict
the collapse of the surface front to a diffusion limited
scale that subsequently provides a constant and perhaps
intense mechanism for internal wave generation. The
ad hoc nature of such diffusive parameterizations sug-
gests that internal waves excited in the model in this
circumstance may be numerical artifacts rather than the
product of a physically realistic spontaneous emission
process. Snyder et al. (1993) provide a careful study
of these issues.

It is the purpose of this present research to develop
a set of balance equations that are consistent with the
three-dimensional anelastic equations and that may be
employed to diagnostically determine the degree of bal-
ance in a particular class of atmospherically important
flows. The numerical simulation on which we have
chosen to focus is that of a midlatitude synoptic-scale
baroclinic wave life cycle, recently described in detail
by Bush and Peltier (1994 ). The scaling variables are
chosen in accordance with this large-scale flow. The
frontal zones that develop in the course of the evolution
will be shown to become a source of unbalanced mo-
tion on both fast and slow timescales as the nonlinear
wave begins to occlude.

As the motions that develop in the simulation have
neither small Rossby nor small Froude numbers, we do
not expect our scaling analysis to be formally valid over
an especially wide range of times during the evolution
of the wave. Similar analyses (e.g., Gent et al. 1993),
however, indicate that an expansion in Rossby or
Froude number works reasonably well, even if the ex-
pansion parameter is O(1). We do not, therefore, im-
plement an explicit frontal scaling in those mesoscale
frontal regions that eventually arise during the life cycle
of the parent wave.

The plan of the paper is as follows: in section 2 we
will present the scaling analysis and the derivation of
the set of balance equations to be employed thereafter;
in section 3 we provide a brief description of the evo-
lution of the baroclinic wave as predicted by the full
anelastic model; section 4 contains a full discussion of
the diagnostic analysis procedure that we will employ;
results are discussed in section 5; and our conclusions
are presented in section 6.

2. Scale analysis of the anelastic equations

Spall and McWilliams (1992, hereafter SM) have
recently developed a scale analysis technique to deter-
mine the degree of imbalance in the shallow-water
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equations for a wide range of Rossby and Froude num-
bers, and their methods will be extended here for ap-
plication to the anelastic equations. Their scaling pre-
dictions for the amplitude of the unbalanced motion
appear to agree well with the results from numerical
simulation in the regimes R < 1, F*< RandR > 1,
F =< 1. Our goal here will be to develop a similar meth-
odology for application to the three-dimensional an-
elastic primitive equations originally derived by Batch-
elor and more formally justified by Ogura and Philips.
The anelastic equations are similar to the Boussinesq
equations, but they retain additional, and often impor-
tant, effects associated with the existence of a vertical
density stratification in the background state. This sys-
tem may be written in quasi-flux form as

s
B g (P) — () (Po0) ;’i"‘ + kX P
= —p,Vap + p.pg (2.1ab,c)
Vi (pu) =0 (2.2)
1 Dp Dp
=L =L, 2.
Dbt Dt (2.3)

where the last equation has implicitly assumed adi-
abatic motion of an ideal gas whose adiabatic sound
speed is ¢,. The operator V,p is employed above and
in all that follows to represent the three-dimensional
(x, y, z) gradient operator. We denote by the operator
V the horizontal (x, y) form of the gradient operator.
Here p,(z) is an assumed adiabatic background density
stratification, and p is the total density field. The second
term on the left-hand side of the momentum equation
is a by-product of assimilating the background density
field under the material derivative. The numerical sim-
ulation we will analyze has a constant value for the
Coriolis parameter f= 10"*s~", so that Rossby wave
propagation effects associated with baroclinic wave de-
velopment will not be captured in the solution.

The anelastic approximation to the continuity equa-
tion (2.2) (which, although retaining the influence of
compressibility in the basic state, has filtered acoustic
waves by setting the local time derivative of density to
zero ), combined with the fact that most large-scale mo-
tions are dominated by horizontal flow, suggests the
use of a poloidal/toroidal decomposition of the sole-
noidal mass flux vector p,u, in the form:

[_Ja“ = V;D X k\I' it €V3D X (Vju) X kx). (24)

in which the toroidal and poloidal potentials (¥ and y,
respectively ) are analogous to the streamfunction and
velocity potential for incompressible flow. They will
be referred to here as the rotational and divergent com-
ponents of the mass flux, respectively; € is considered
to be a small parameter whose definition will become
precise after we have formed the balance equations.

BUSH ET AL.

1053

‘We nondimensionalize equations (2.1)—(2.3) with
the following parameters appropriate to synoptic-scale
motion:

(x, yy~L, z~H, (u,v)~YV,
w HYV J £
i .
i Vv

U~ poVL, x ~ epoHsVL. (2.5a)
Furthermore, we decompose the density and pressure
fields into nondimensional components as follows:

2
5

% N°H, _
p = popa(2) + po ps(2)

N’H,

R
+an[l.R] plx,y,z,1)

P = pogH.p.(2) + po(NH,)*p,(2)
+ pof VLI1, R]p(x, y,z,1). (2.5b)

The scaling for each component of these two fields has
been chosen to ensure hydrostatic balance between
them. Note that we use a common vertical scale H, for
the background stratification and its deviation, although
in other circumstances it might be more appropriate to
distinguish them. In the above expansions and through-
out this paper we use the notation [a, b] to denote the
larger of the arguments. The Burger number B is de-

fined as
2 2
- (3~ (2
F FL

For the synoptic-scale motions on which we intend
to focus here, the following values for the above-refer-
enced scales are selected: L ~ 3590 km (the wave-
length of the baroclinic wave, see below), V ~ 10
ms ', N~10"7%s"', H, ~9km, p, ~ 1 kg m™>. The
adiabatic density profile has a characteristic scale
height H, ~ 28 km, while stratification effects have a
characteristic height of H, ~ 9 km. We do not know
that the above scaling will remain apt when the baro-
clinic wave develops frontal zones. However, we an-
ticipate that the majority of the unbalanced motion will
occur in the mesoscale frontal zones (both surface and
upper level), and we employ a multiple timescale and
length-scale expansion to capture this behavior.

The dependent variables may then be decomposed
into what we will here refer to as balanced and unbal-
anced (primed) components; namely,

(2.6)

U=Uxyz1)+ wLR W' (vx, vy, vz, wt)

ex = ex(ox, éy, bz, 1) + £ x'(vx, vy, vz, wt)
v

p=p(x,y,z,t) + ullp'(vx, vy, vz, wt)
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(2.7)

where the relative amplitude for the unbalanced pres-
sure and density fluctuations is

_ wRB[1, v’]
T [L, R, B]

In employing the above expansions we have intro-
duced a time and length scale separation between the
unbalanced and the balanced components, whose rel-
ative scales are characterized by frequency w and wave-
number ». A relative wavenumber 6 has also been in-
troduced to distinguish between the length scales of the
balanced divergent flow and the balanced rotational

p=p(x,y,z,t) + pllp' (vx, vy, vz, wt),
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flow. We expect 6 to be of O(1) in the results to be
presented here, however, since the majority of the di-
vergent motion in a baroclinic wave is on the same
scale as the wave itself (at least before the fronts be-
come intense ). The factors multiplying the unbalanced
components have been chosen so as to be consistent
with the linear internal wave balances in the following
equations.

a. The vorticity equation

After substitution of (2.4), (2.5), and (2.7) into
(2.1), we construct the vorticity equation by forming
k-Vip X (2.1) to obtain

5.V, = 5,6° % Vi, — J(V2, ) —'eéz[V(VZ\II)-VX: — VAV, + VAU Viy, — VT,-V (V)

_ dipe

a

(VI -V (Vx) + vzxpvzx)] + 52[ — 8% (xees V2x) + 6°

d:p.

= JVZ,:)]
= (V. x

a

w? v?
= u[ *EaEVZ‘I'.' + ﬁ.,—szé] + O(p, pe, p*). (2.8)

The Jacobian operator is J(a, b) = d.adb — 0,ad.b.
In Eq. (2.8) and others to follow, we retain three sets
of terms: 1) those comprising the balance components
for this system (all terms up to and including O(e, R);
2) higher-order advective terms of O(e?, eR); and 3)
linear gravity wave contributions of O(p) that are
forced by the higher-order advective terms. Because
they are not germane to the arguments below, we do
not retain any nonlinear terms involving unbalanced
components.

The balanced vorticity equation for the anelastic sys-
tem [ which consists of those terms in (2.8) of O(1, ¢,
R)] is equivalent to that of the three-dimensional hy-
drostatic system employed by Norton et al. ( 1986) with
the addition of the two terms involving the effects of
background density variation in the form 9.p./p,.
From the O( u) terms, one may identify the linear grav-
ity wave terms multiplied by a factor of up,v’R;
namely,

~V2U! + Vix .

b. The divergence equation

The divergence equation is obtained by forming
Vip:(2.1a,b,c) and assuming hydrostatic balance to
eliminate the vertical pressure gradient. In this manner,
the continuity equation (2.2) may be used to eliminate
the time derivative of the three-dimensional mass flux
divergence. The result is

R

VP + [BVY + 2RI(T,, U,)]

o €R|i263-]('1’,n Xﬂ) ry 2(&1](@” x_v:)

d:Pa

+ 26°J(Y,, V%) + & I(Vix, W)

a

- a?dzﬁavzx.] + u[nu%‘a[l. RIV?p’

-
+ L2y — LR,V X ]
wR

+ O(u, pe, p*) = 0. (2.9)

The balanced form of this equation consists of those
terms of O(1, ¢, R) that describe a simple gradient wind
balance.
The linear gravity wave terms at O () may be iden-
tified as
VI[1, R] TN & e
WR RE” Y. 5, X

after factoring urwRp,. It is these terms that, forced
by the terms of O(eR), govern the evolution of forced
internal gravity waves in the system (see section 2e).

Vip' +

c. Energy equation

The internal energy equation (2.3) becomes, after
substitution of the above expansions,
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M 2
(o (2
M 2
+ (diﬁx - (v) gHSdzﬁs‘) ]EVZX - ﬁnpr

M 2
= J(p, V) + (;) (NH)p.p+ J(p, V)]

Bb6*
R[1, R]

- e[ Np-Vx, + 6°p.Vx + (M) (NH,)?

X [pap: + J(p, ¥) + 6°Vp-Vx, + 61sz2x]]

2
[(dz-ﬁu - (%,!) gHadzﬁa)

M 2
3 (d:r:‘. < (7) gHsdzﬁ,)]Vz " L 05

M 2
+ (7) (NHx)znwﬁap,'] =), {2:10)

& By
“l Rl R

in which M = V/c¢, is the Mach number.

This equation, although quite different from the mass
equation of the shallow-water system given in SM, nev-
ertheless has the same type of linear operator acting on
ex, appropriately modified to include vertical variations
of the background density. The Mach number terms,
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which are of nondimensional order 0.1 for ¢, = 337

m s~', express the weakly compressible nature of the

energy equation (2.3).
The linear gravity wave terms may be extracted from
the O(u) term in (2.10) after factoring pllwp,:
By

namely,
_ M\? _
i | (42~ () s
M 2
+ (d:ﬁa’ - (;) (NHs)zd:Ev)]vzxr
4 M : r
—pi + (v) gHp;.

d. The omega equation

To construct the omega equation for our scaled an-
elastic system, we use the (appropriately nondimen-
sionalized ) hydrostatic balance relation

p.+p=0, (2.11)

and then form a linear combination of Eqgs. (2.8)—
(2.11). In particular the operation

ll R]

a

V3(2.10) — [1, RIV?8,(2.11)

0 B2) 4 0(25)
Pa Pa

yields

B§® MY\? " - 2 € s
[~ =5 [(dp,, (V)gﬂadzpa)+(dzps—( )(NH) )]V +6a]Ré Vix

> [(M) 2R( O ¥ ).) ] Vi, ¥)
Eu ~ Pu - pa

L VIp, ¥)
o) o] v« SR

4 Eéz[vl(Vp'sz) + Ve VX)
Eo‘l ﬁu

1 (vwz-vwm)) 22

Pa \ Pa
_(d

'bl

aM

Pa vz

= g2 e
pu

)[b(w V(Vi0)), + (TUV).] + (’:f)

P
[ (J(\I’: sz)r) +533(J(q’ » Xyz )r) .
el ea(Es T e

2 = 2 2 2 2
(2 - (72 (s

) [6VT -V (V3x) + VXU V]

2

&H, (VX(Vp-Vyx.) + VZ(szpz)]]

2
(J(\I’a,Vx)) i 3( Pa 1(V2x ‘I'),)

a

( Pe j(y, xz))] +0(p). (212)
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It is through this rather onerous equation that we are
obliged to calculate the balanced divergent potential
after neglecting the terms of O(p, €?, eR). Note that
for brevity we have neglected a number of higher-order
terms retained in (2.8)—(2.10).

e. Amplitude estimates

Estimates for the amplitudes of the balanced diver-
gent field and the unbalanced fields may be obtained
based on the leading-order balances apparent in Eqgs.
(2.9) and (2.12).

Recall that the dynamical variables have been non-
dimensionalized in deriving equation (2.12) and are
therefore of O(1); the terms composing the leading-
order balance in (2.12) are then determined by the non-
dimensional coefficients R, B, 6, and e, which are not
necessarily of O(1). The leading-order balance in Eq.
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(2.12) results in an estimate for the scaling parameter
€; namely,

R[1, R]
© T §1,6°B) (Z13)
This is equivalent to the shallow-water multiscale es-
timate of SM [see their Eq. (22)], and it has the limits
of e ~ R/6*for R < 1 and € ~ F?/6* for F < 1 and
R=1.

We will now derive two estimates ( based on slow or
fast timescales ) of the unbalanced amplitude . An am-
plitude estimate for the higher-order advective motion,
which has inherently the same time and length scales
of the lower-order balanced motion, may be obtained
from the omega equation at O(eR, €, p) after setting
w = v = 1. From Eq. (2.12) the dominant balance at
this order is

B = M\? — = M\? = 2 Hs  ao2 4
I:Eu [(dzptr - (V) andzpa) + (dzpr = (V) gHrd:pr)]v . 6:::| R v’V X

~ ER[—Z&"BZ(M) + 6361(%)(—"2() = 5%.(%)

Pa Pa

d _a - dz_a
+ a‘az(i—" J(Vx, \1:),) - éla:(_—p vzx,,)]

a a

pu

2 —
v o] oo (10T g (L s )| e
P

from which a scaling estimate for the single-scale am-
plitude p, may be determined, by balancing the non-
dimensional coefficients, to be

_ €R[6%, R167[1, 6]
B (1, B]

(2.15)

'S

Equation (2.15) provides an upper limit to the ampli-
tude of the higher-order advective corrections to the
balanced motion.

We note that it is possible to invert Eq. (2.14) to
solve for u,V*x' in a manner analogous to that de-
scribed in section 4 for €V?y. In this manner one could
determine the contributions by the balanced motion to
the unbalanced motion, although this course is not pur-
sued in the present analysis. Instead we will determine
unbalanced motions by subtracting the balanced com-
ponent from the total.

To estimate the multiscale amplitude of the fast un-
balanced motion, we assume that gravity waves dom-
inate the unbalanced motion field and that they are be-
ing forced by advective terms of higher order than those
retained in the balance equations. We further assume
that initialization gravity waves have been damped suf-

Pa a

ficiently so as not to influence the solution, so that all
gravity waves present are being forced by the higher-
order advective terms. We here exploit the multitime
and length-scale expansion and retain the frequency ra-
tio w and the wavenumber ratios 4 and ». Since all the
advective terms in the vorticity and energy equations
are included within the framework of balanced dynam-
ics, one must consider the higher-order advective terms
of the divergence equation (or, equivalently, the omega
equation, since this contains the same information) as
being those that force the gravity waves. We consider
the balance between the amplitude factor multiplying
the linear gravity wave terms with the advective terms
of O(eR) in the divergence equation (2.9) to estimate
the multiscale unbalanced amplitude 1, as

_ RIL,R](1, 6]

< 2.16
B = = Il 62B] (2149)

This is, of course, an upper bound insofar as the balance
equations are a valid leading order description and the
actual forcing of the gravity waves may be deferred to
higher order. The dispersion relation for linear gravity
waves under this particular scaling may be obtained by
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a linearization of the nondimensional anelastic equa-
tions, assuming wavelike solutions. It may be written

as
UIIZ v
o [2)
3. The numerical simulation

The reader is referred to Bush and Peltier ( 1994 ) for
a complete description of the model simulation, but we
will reiterate the salient points here for completeness.
The model equations are the same three-dimensional,
nonhydrostatic anelastic system (e.g., Clark 1977) that
has been previously employed in baroclinic wave life
cycle analyses on the basis of the assumption of rigid-
lid upper boundary conditions ( Polavarapu and Peltier
1990). The baroclinic wave life cycle that we will con-
sider here was initialized using a mixed baroclinic/
barotropic mean state (Fig. 1), upon which we super-
impose the structure of the fastest-growing mode of
linear theory calculated from a Galerkin-type stability
analysis of the mean state. This life cycle is more re-
alistic than those analyzed by Polavarapu and Peltier
(1990) in that both tropospheric and stratospheric com-
ponents are included in the model. From the sequence
of analyses presented in Bush and Peltier (1994), we
have selected the intermediate baroclinicity case for
discussion here because of the strong frontal develop-
ment that we expect may lead to significant unbalanced
motion. The model domain has x, y, z dimensions of
3590, 8000, 18 km, respectively, and the integrations
were performed with a constant Coriolis parameter.
The model has a channel configuration with periodic
boundary conditions in the zonal direction, the zonal
dimension being chosen to be equal to the wavelength
of the fastest-growing linear normal mode. The spatial
discretization is of moderate resolution with Ax, Ay,
Az = 52.8, 63.5, 0.6 km, and a horizontal V° diffusion
operator is employed in the interior of the model do-
main. Time differencing is centered and second-order
accurate, and an Euler backward step is performed
every 20 time steps to prevent the buildup of splitting
errors. We note here that this choice of grid resolution
should be roughly consistent with the aspect ratio of
the expected frontal zones; namely,

(2.17)

Az~£AL (3.1)

in which Az and AL are the vertical and horizontal grid
scales and f/N is a geostrophic estimate for the slope
of the front that will be induced by the growth of the
baroclinic wave. Using typical midlatitude tropospheric
values for f and N, we therefore anticipate adequate
vertical resolution for any frontal motions (that inher-
ently collapse to the horizontal grid scale ) whose slope
is not less than 0.01.
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FiG. 1. The two-dimensional mean state used to grow a synoptic-
scale baroclinic wave. Thick contours are zonal velocities and thin
contours are potential temperature. The jet maximum is 57 ms '; a
contour interval of 15 m s ' is used starting at 10 m s ',

The vertical and meridional dimensions of the model
have been chosen so that both upper- and lower-level
frontogenesis may be examined without horizontal
boundary influences. A deep tropopause fold forms
during the life cycle of this wave [ see Bush and Peltier
(1994 ) for a detailed discussion], and it will be of in-
terest in the present analysis to investigate the differ-
ences, if any, in the degree of imbalance that develops
between the upper- and the lower-level fronts. Since
tropopause folding events have to some degree been
successfully analyzed using semigeostrophic theory
(e.g., Reeder and Keyser 1988; Koshyk and Cho
1992), we expect the upper-level frontal motion to be,
for the most part, balanced.

The evolution of the surface potential temperature is
displayed in Fig. 2, and strong frontal zones are evident
within this field by day 3.5 on the cold air side of the
cusp from which the surface low is beginning to oc-
clude. We will refer to this region of intense fronto-
genesis as the cold front. In Figs. 3a—d we display the
energetics of the life cycle: the eddy kinetic energy, the
vertical heat flux, and the vertical and horizontal Reyn-
olds stresses [see Bush and Peltier (1994 ) for the def-
initions of these quantities]. The maximizing of the
eddy kinetic energy (defined to be the departure from
a zonal average) at day 6 demonstrates that this is the
time at which the baroclinic wave saturates. The con-
version terms, however, show that after day 4 the baro-
clinic conversion is no longer adding to disturbance
energy. The occlusion of the low occurs at day 4, and
we will see from the following analysis that the bal-
anced rotational motion does not saturate until day 6.
One may therefore conclude that the kink in the eddy
Kinetic energy at day 4 is associated with the actual
pinch-off of the low and the termination of baroclinic
growth, whereas day 6 marks the time at which the
rotational flow around the low and along the cusp
reaches its maximum amplitude. The inertia—gravity
oscillation observed between days 0 and 2 is a conse-
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FiG. 2. Evolution of the surface potential temperature on (a) day 2.5, (b) day 3.5, (c) day 4.5,
(d) day 5, (e) day 8.5, (f) day 9.5. The domain is 8000 % 3590 km. The maximum temperature
in the core of the low is 282 K with a contour interval of 3 K.

quence of the fact that the simulation was initialized
with an imperfectly balanced initial state. The reader is
referred to Bush and Peltier (1994 ) for a discussion of
the start-up phase of the time integrations.

4. The balance analysis

The procedure to be employed for the analysis of
balance in the above described flow hinges on the ap-
proximation that the initial W field is balanced, that is,
that any unbalanced rotational motion present initially
is included in the balanced component. Motivation for
this approximation is based on the scaling argument
(see SM) that small errors in ¥ (or p) result in negli-
gible errors in the balanced divergent flow for R < 1
or F < 1. The unbalanced divergent flow, determined
by the residual, then has a negligible error in this pa-
rameter regime. We will show in section 5 that these
errors are indeed small in our analysis.

From Eq. (2.4), it is readily apparent that the poloi-
dal/toroidal scalars may be computed from the model
data by inversion of the (nondimensional) Poisson
equations,

VW = -5, (4.1)

eVix = —pw, (4.2)
in which { is the vertical component of the vorticity
vector and w is the vertical component of the velocity
vector. The appendix discusses the boundary condi-
tions required to solve Egs. (4.1), (4.2), and all other
Poisson equations that arise in the diagnostic analysis
of balance.

The method of diagnostic analysis that we will em-
ploy is as follows (in this section, when we quote the
number of a particular equation, we are referring to the
balanced form of the equation):
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plots.

1) solve (4.1) for ¥ from the model {; solve (4.2)
for a first guess for x from the model w;

2) assume the resulting ¥ is balanced;

3) solve Eq. (2.9) for the balanced pressure, then
Eq. (2.11) for the balanced density field;

4) calculate the balanced y field by iteration on
Egs. (2.8) and (2.12) until the solution for V*y con-
verges;

5) calculate the balanced vertical mass flux accord-
ing to (4.2).

Convergence is monitored by calculating the maximum
{normalized ) difference between successive iterations.
The solution generally converges to a difference that is
less than 1% in less than 7 iterations, although later in
the simulation (i.e., after day 5) convergence requires
upward of 20 iterations. We will focus most of our
attention in what follows on the unbalanced vertical
mass flux field p,w’, since this is a field in which grav-
ity waves have a strong signature. All unbalanced flux
fields p,u’ are calculated as differences between the
model data p,u,,, and the derived balanced fields
p.u,; thatis, pu’ = pu, — p.u,.

To investigate the degree to which the initial fields
are balanced, we ran the above-described diagnostic
balance procedure on the two-dimensional mean
state of Fig. 1 without the added perturbation. The
mean state temperature and zonal velocity fields are
constructed so as to be in thermal wind balance to

machine precision (see Polavarapu and Peltier
1990), and a diagnostic analysis of the mean state
revealed unbalanced meridional and vertical veloci-
ties that were 11 orders of magnitude smaller than
those in the jet core. The normal-mode perturbation,
however, is not balanced in any sense. The arbitrary
magnitude of the perturbation is chosen such that the
potential temperature deviation is 2 K, so we expect
the unbalanced contributions to ¥ to be small. A bal-
anced diagnostic analysis of the initial mean state
plus the perturbation delivers the mass fluxes dis-
played in Fig. 4. The contributions to the horizontal
mass fluxes are negligible compared to the magnitude
of the flux in the jet core, and the amplitude of these
unbalanced fluxes is a factor of 10 smaller than the
unbalanced magnitudes that arise later in the simu-
lation in the frontal zones. We therefore conclude
that the magnitude of the initial imbalance is small
compared to the unbalanced motion that evolves as
the baroclinic wave matures. A similar diagnostic
analysis of the inertio—gravity waves that arise upon
time integration of the initial fields reveals that the
amplitude of these waves is likewise an order of mag-
nitude smaller than the unbalanced motion associated
with the growing baroclinic wave.

The balance equations are solved diagnostically
every 5 hours of model time for the first 6 days of a
10-day simulation. As in SM, estimates of our scaling
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FiG. 4. Contour plots of a meridional cross section of the initial balanced and unbalanced mass flux fields g,u. (a) p,u (contour interval
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of 0.1 kg m2s™"), () pow (contour interval of 10 * kg m™*s'), and (f) 5w’ (contour interval of 7 X 10™* kg m™s7").

parameters may be calculated according to the follow-
ing expressions:

_

€= 0 (4.3)
XD
H= ) (4.4)

in which the norm (-) of a field A is defined by

1 nx ny nz

1/2
zzzAmmm] 4.5)

(nx-ny-nz) =1 j=1 k=l

]

for an (nx, ny, nz) grid. We can also estimate the
relative wavenumbers according to

g [yt

VA0 () s

_(Wawwy% s

- \(VAE)(x')

Similarly, the spatial distribution of the kinetic energy
densities of the balanced rotational, the balanced di-
vergent, and the unbalanced divergent components may
be calculated according to

KE,, (i, ], k) =

pa(Tz+93) (4.8)

1
2
KEu(i, j, k) = 3 52" (X + X3 + (V)7 (49)

e ey ' ' '
KE.(i,j, k) = 3Pa' (" + x5 + (V?X')?). (4.10)
Note that the sum of (4.8)—(4.10) does not equal the
total kinetic energy because of nonvanishing cross
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FiG. 5. (a) Time series of the balanced rotational kinetic energy
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of the divergent components: balanced (solid) and unbalanced
(dashed).

terms among components. From these expressions, we
may estimate a characteristic frequency for each com-
ponent according to

_(9KE(, j, k))

= . 4.11
Y= KB, J, b)) i)

5. Discussion

In this section we will apply the techniques of section
4 to the numerical simulation described in section 3 to
determine the degree of balance characteristic of the
life cycle of a synoptic-scale baroclinic wave. The ki-
netic energy components, calculated by application of
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Eqs. (4.8)—(4.10), are given in Fig. 5a, with an en-
largement of the divergent components in Fig. 5b. The
exponential growth of the wave is clearly evident in all
components, the balanced rotational and balanced di-
vergent components growing together and the unbal-
anced rotational component lagging by roughly 0.4
days during this phase of growth. This lag is consistent
with the fact that the higher-order advective terms of
O(eR, €?) are driving the unbalanced motion, so that
when e becomes large enough, p will increase accord-
ingly. The exponential growth of this baroclinic wave
is a result of the conversion of available potential en-
ergy into rotational and divergent eddy kinetic energy.
The degree to which available potential energy is con-
verted into divergent kinetic energy depends on the zo-
nal asymmetry of the flow. When the asymmetric flow
is small compared to the symmetric flow, balanced dy-
namics will adequately describe the motion. As the
asymmetry increases, however, balanced dynamics
fails to capture the intense divergent motion, and we
see an increase in the unbalanced components of the
flow. We note that the balanced rotational kinetic en-
ergy does not saturate until day 6, although the bal-
anced and unbalanced divergent kinetic energies ap-
pear to saturate well before this time at day 4, the time
at which the baroclinic conversions reach their maxi-
mum. Since divergent/convergent motion is required
to produce a vertical heat flux, it is no surprise that the
divergent component of the flow is correlated with the
baroclinic conversion terms.

In Fig. 6 we display the volume-averaged balanced
(¢) and unbalanced () divergent potentials during the
simulation. The initial inertial oscillation caused by the

0.20 r T ¥
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FiG. 6. Amplitude estimates of the balanced divergent (solid) and
the unbalanced divergent (dashed) components of the flow, calcu-
lated by Egs. (4.3) and (4.4).
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(4.4) instead of x and x'. The disappearance of the inertial oscillation
suggests that it is occuring on a length scale much smaller than that
of the rotational motion.

imbalance in the normal-mode perturbation is clearly
evident, although it appears to have little influence on
the following evolution. The early exponential growth
of the baroclinic wave is described by the rise of the
amplitude of the balanced components. This is more
clearly seen in the volume-averaged p,w fields, shown
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Fic. 8. The ratio e:u, where ¢ and p are calculated according
to (4.3) and (4.4). The ratio increases as the balanced divergent
component rises exponentially, then saturates, and decreases to
roughly 1.
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FiG. 9. (a) Time series of the maximum (solid) and minimum
(dashed) momentum Rossby number defined by (5.1). The dashed
horizontal lines denote 1 and —1. (b) As in (a), only for the buoy-
ancy Rossby number defined by (5.2). Note the O(1) values of these
Rossby numbers in the initial flow, and their subsequent increase as
the frontal regions form. The threshold for inertial instability in (a)
is —1, and values of F, in the surface front drop below this threshold
at roughly day 3.

in Fig. 7, since the length scale separation for p,w and
p.w' is more pronounced than for y and x’. The sat-
uration of both the balanced and the unbalanced fields
at approximately day 4 coincides with the saturation of
the energy conversion terms of Fig. 3 and the equili-
bration of the baroclinic wave.

The ratio €/ is plotted in Fig. 8. Initially, there are
only extremely small values of the balanced divergent
potential (i.e., the structure of the normal mode is
mainly unbalanced ), but ¢ rapidly increases to a value
greater than p, after which time approximate equality
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FiG. 10. The meridional structure of (a) R, and (b) R; at day 3.4,
the cross section being taken at x = 1285 kilometers. The contour
interval is 0.17 for both plots. Note in (a) the large values of Ry in
the surface front and in (b) the maximum and minimum values of
R; in both the upper and lower level fronts.

between the two obtains. This result is at first glance
contradictory to the predictions of the scaling analysis.
which say that y should be at the most of O(eR, €°)
(although p = e does not imply a loss of evolutionary
control by the balanced dynamics unless there is a sig-
nificant feedback from the unbalanced motion onto the
rotational and balanced divergence components). To
explain this discrepancy we plot, respectively, in Figs.
9a and 9b calculations of the maximum and the mini-
mum momentum Rossby number R; and buoyancy
Rossby number Ry, defined by

g
Ry == (5.1)
T
. 0:9 _ (a;H>A}-
Ry = BT (5.2)

in which (A),, denotes a horizontal average of a field
A. As can be seen in both figures, the initial Rossby
number of the flow is not small. It is, in fact, of O(1).
As the baroclinic wave develops, the mesoscale frontal
zones produce large values of vertical vorticity and
large values of buoyancy,

The maximum momentum Rossby number saturates
at a value around 7 at roughly day 4, when the baro-
clinic conversions have ceased. This is consistent with
the fact that the frontal zones relax and their cross-front
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scale increases after the occlusion of the low (cf. Figs.
2d—f), decreasing the local frontal vertical vorticity.
The minimum momentum Rossby number has a con-
stant value of about —0.7 until the time of intense fron-
tal formation, at which time it decreases below the
threshold value for inertial instability of —1 (e.g., Hol-
ton 1979). Examination of the spatial distribution of
the buoyancy Rossby number (Fig. 10a) reveals that
the maximum values occur in the surface frontal zone,
although large values are also found in the upper-level
front. Figure 10b reveals that the momentum Rossby
number has its largest and smallest values in both the
upper- and the lower-level fronts as the wave is grow-
ing. The smallest values of the momentum Rossby
number are found in the surface front at the tip of the
cusp (cf. Fig. 2). The contribution to frontolysis by
vortex stretching has been noted by Reeder and Keyser
(1988) in their study of anelastic equation and semi-
geostrophic upper-level frontogenesis, although they
found no evidence of such a mechanism at work in the
surface front and some evidence that this occurred in
conjunction with diffusion in upper levels. At this point
in our simulation, however, diffusion is setting the
frontal scale and we see no definite evidence of a dy-
namical inhibitor to frontal collapse (such as, for ex-
ample, strong internal wave emission), given our rel-
atively moderate resolution of the mesoscale.

Since the maximum Rossby number of the flow dur-
ing the evolution of the baroclinic wave is so large, we
cannot expect the previous scaling analysis to hold rig-
orously in the frontal regions wherein one finds these
large values. However, the multiscale amplitude esti-
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FiG. 11. Time series of the nondimensional volume-averaged bal-

anced (solid) and unbalanced ( dashed) pressure. Note the rise of the
unbalanced pressure at day 3 resulting from an underestimation by
the balance equations of the depth of the surface low (see Fig. 12).
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mate for the unbalanced motion (2.15) implies that for
Rossby and Burger numbers of O(1) the unbalanced
amplitude p will be of O(e), and this is what we find
in Fig. 8.

The volume-averaged balanced and unbalanced
pressure (again normalized by W) are shown in Fig. 11,
and the constancy of the balanced pressure is, through
the balanced divergence equation, a simple reflection
of the fact that the volume-averaged rotational motion
is relatively constant. The cyclostrophic acceleration
term 2RJ(¥,, ¥,)/p, in the balanced divergence equa-
tion is seen to have a magnitude of roughly 17% of the
Coriolis term V*¥. A marked increase in the unbal-
anced pressure starting at day 3 is evident, this unbal-
anced pressure being associated with an underestimate
by the balance equations of the rapidly deepening low
pressure center (Fig. 12). Since the model employs the
nonhydrostatic equations of motion and the balance
analysis assumes hydrostatic balance, the unbalanced
fields will include implicitly all nonhydrostatic motion.
As demonstrated by Polavarapu and Peltier (1990), the
surface low and the cold front are regions in which
nonhydrostatic accelerations are the greatest and the
errors in assuming hydrostatic balance are the largest.

In Fig. 13a, we show the length scale ratio estimates
(i.e., ' and v ") as calculated from Egs. (4.6)—
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(4.7). There is a length scale collapse in both estimates

as the baroclinic wave grows; the collapse saturates at
roughly day 3.5, the time by which frontal collapse is
arrested by the numerical diffusion. In Fig. 13b we dis-
play the dimensional length scales of the balanced ro-
tational, the balanced divergent, and the unbalanced di-
vergent components of the flow:

( (\IJ) )uz ( <X) )IIZ ( (xr> )ltz
(V) T (V) T (VD)

The decrease in length scale of the balanced diver-
gent flow in Fig. 13a is a result of a decrease in the
length scale of the balanced rotational flow (Fig. 13b),
although the estimate for ¢ is always of O(1) as ex-
pected. The length scale associated with the balanced
divergent flow alone is relatively constant at 500 km,
a value that would be characteristic of balanced meso-
scale up- and downdrafts. The balanced rotational flow,
on the other hand, starts off with a characteristic length
scale of 2300 km, which decreases rapidly to a value
of roughly 870 km as the cyclogenesis matures. This
decrease is characteristic of a cascade of the scale of
the dominant motions from the synoptic scale to the
mesoscale, that is, from the scale of the growing baro-
clinic wave to that of frontal flow. We note that the
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FiG. 12. Horizontal cross sections taken at z = 1 km of (a) total pressure, (b) balanced pressure, and (¢) unbalanced pressure at day 4 in

units of 10~' mb and plotted as a deviation from the initial adiabatic profile (which is 2000 mb at the surface). The magnitude of the
deviations in (a) and (b) are 8 mb and 4 mb, respectively. The unbalanced pressure has a maximum amplitude of 4 mb. Contour intervals
are 0.6 mb, 0.3 mb, and 0.2 mb, respectively.
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Note that the decrease in the length scale ratio noted in (a) is caused
by a collapse in the length scale of the balanced rotational motion.
Units in (b) are kilometers.

occlusion of the surface low (cf. Fig. 2) occurs at
roughly day 4, shortly after the collapse in length scale
of the balanced rotational flow has ceased. The length
scale of the unbalanced x' field is fairly constant at a
value of 700 km, indicating predominantly mesoscale
frontal imbalance. We may explore further the length
scale separation between the balanced and the unbal-
anced motions by plotting the length scale ratio esti-
mates for the vertical mass flux (Fig. 14a). Here we
see a relatively constant value for the balanced diver-
gent length scale ratio 8, which since we know that the
estimate for ¥ decreases between days 1 and 3, must
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imply a decreasing scale for the balanced divergent po-
tential during this same time. Examination of Fig. 14b
reveals a length scale estimate of roughly 1000 km for
the first 2.7 days, after which there is a rapid scale
decrease to the mesoscale (roughly 300 km). The un-
balanced length scale, on the other hand, decreases con-
tinuously from initialization to occlusion, finally satu-
rating at a value of 210 km after day 3. This collapse
of the divergent length scales is consistent with the fact
that the majority of the balanced and unbalanced di-
vergent motion occurs in the collapsing frontal zones.

A comparison of the unbalanced vertical mass flux
at z = 1 km and at z = 8 km is shown in Fig. 15. The
magnitude of p,w' in the upper levels is a factor of 3
smaller than that found in the lower levels and, if back-
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FiG. 14. Same as Fig. 13 except the calculations are performed
using the vertical mass flux (V *x ) rather than the divergent potential
{(x). Estimates for the balanced divergent flow are the solid lines.
Estimates for the unbalanced divergent flow are the dashed lines.
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kg m *s ' the cross-sections being taken at day 4).

ground density effects are taken into account, we con-
clude that the magnitude of the unbalanced vertical ve-
locity in the upper levels is smaller than that in the
lower levels by a factor of roughly 2/3.

So far in the analysis there has been no distinct
evidence of gravity wave generation by the cold
front, although some banded structure in the p,w’
field is evident in Fig. 15 [see also Fig. 14 in the
simulations described by Polvarapu and Peltier
(1990)]. The time and length scales of the unbal-
anced potential flow are characteristic of mesoscale
frontal flows, so it is unclear from the previous anal-
ysis whether or not there is gravity wave radiation.
The best way to distinguish between gravity wave
imbalance and frontal flow imbalance is to examine
the temporal evolution of the unbalanced potential
field since gravity waves evolve on a much faster
timescale than the slower higher-order corrections.
To this end we display in Fig. 16 a time sequence of
isosurfaces of positive and negative values of the un-
balanced vertical mass flux. When the fronts start
their collapse (Fig. 16a) we see the generation of
unbalanced velocities along the entire frontal zone.
As the low deepens and the fronts tighten further, we
see the initial generation of gravity waves at the cold
front (Fig. 16b). At the point of occlusion (Fig.

16¢), gravity waves are clearly evident at the base
of the surface cold front. After the low has detached,
there is still significant gravity wave activity (Fig.
16d), although they do not appear to be propagating
away from the front. The horizontal wavelength of
these waves is approximately 250 km (roughly 4Ax)
and the vertical wavelength is slightly greater than 1
km.

The origin of these gravity waves is most probably
numerical, although higher-resolution solutions will
be required to establish this definitively. In Figs.
17a,b we show two cross-sectional plots of potential
temperature and vertical mass flux through the front
at days 4 and 6, respectively. The frontal slope in the
lower 2 km is markedly more shallow, especially at
the later time, than its slope at upper levels; we
roughly estimate the aspect ratio in the lower 2 km
to be 0.002, whereas above 2 km the ratio is slightly
greater than 0.01. We are therefore, according to
(3.1), underresolved in the vertical in the lower 2
km by a factor of roughly 5, and this underresolution
may be producing spurious gravity waves near the
surface that do not propagate away from their
source. The magnitude of these gravity waves ap-
proaches 50% of that of the slower advective flow,
which itself has a maximum magnitude of 0.15
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FiG. 16. Isosurface plots of positive (light) and negative (dark) unbalanced vertical mass flux at (a) day 2.3, (b) day 3.2, (c) day 4, and
(d) day 6. Light (dark) surfaces enclose values above (below) 0.06 (—0.06) kg m > s~'. The perspective is such that we are looking
downward and northeastward. The solid light planes denote the model domain. Note in (¢) and (d) the appearance of gravity waves ( most
likely of numerical origin) of horizontal wavelength ~ 250 kilometers in the vicinity of the surface cold front.

kg m ?s ' in the center of the low. Typical frontal
values of the unbalanced vertical flux field are 0.07

-2

kgm s,

6. Conclusions

We have developed a set of balance equations for
the three-dimensional anelastic primitive equations
based on an expansion in Rossby and Froude numbers.
The accuracy of the balance approximation for a strong
midlatitude baroclinic wave life cycle has been tested
by the application of these equations diagnostically.
We conclude that, although the scaling assumptions

formally break down during the life cycle of the baro-
clinic wave, the implications of this analysis are robust
in the sense that they deliver what would be expected
according to other analyses (Spall and McWilliams
1992; Snyder et al. 1993; Gent et al. 1993). The broad
(R, F) parameter regime in which this study is per-
formed spans both the slow synoptic-scale develop-
ment of the baroclinic wave and the mesoscale frontal
regime to which the flow eventually collapses. Accord-
ing to the criteria proposed by Spall and McWilliams
(1992) to determine through scaling arguments
whether the unbalanced motion is predominantly slow
or fast (i.e., respectively, R< 1, F* < Ror R > 1 and
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FiG. 17. Meridional cross sections (looking zonally) of unbalanced vertical mass flux (contour interval of 0.01 kg m ™ s~ at (a) day 4 at
x = 3161 km, and at (b) day 6 at x = 1661 km. Shown in (c) and (d) are the corresponding potential temperature fields. Only those values
of ® < 336 K are plotted with a contour interval of 3 K. Note the appearance of numerical gravity waves above the surface cold front in

those regions where the slope of the front falls below f/N.

F =< 1), the unbalanced motion in this simulation
should be a combination of both slow and fast imbal-
ance. The slow timescale unbalanced motion is caused
by neglect of the higher-order advective terms in de-
riving the balance equations and is found here to be
responsible for the majority of the unbalanced ampli-
tude. Spatial distributions of the unbalanced motion re-
veal the largest imbalance in the frontal zones, with the
largest magnitude being in the core of the surface low.
Evidence of fast timescale gravity waves is clear, but
these are, most probably, numerically spurious, being
generated when the slope of the front becomes shallow
enough to violate the consistency criterion between the
horizontal and the vertical grid spacing used. These
gravity waves have an amplitude that reaches a maxi-
mum of roughly 50% of that of the slower unbalanced
motion, so they may not be considered insignificant.
Further analyses are in the planning stage that will at-
tempt to track the nondiffusive collapse of the frontal-
scale flow to smaller scales than was possible in this
preliminary analysis. The issue remains as to whether
we will then begin to see the spontaneous emission of
internal waves from the frontal zone that is expected
on both observational and theoretical grounds (e.g.,
Ley and Peltier 1978 ). The technical apparatus that we
have developed here for the analysis of the origins and
nature of imbalance in anelastic baroclinic wave life

cycles is expected to prove useful in the further devel-
opment of these ideas.

APPENDIX
Boundary Conditions

The domain is periodic in the x direction, with walls
aty =vy,,y; kmand at 7 = z7;, z; km, so we need explicit
boundary conditions on the walls for all the Poisson
equations in section 2.

a. Toroidal scalar

The inversion of Eq. (4.1) requires knowledge of
d,¥ on the meridional walls at y = y,, y,. We assume
that the poloidal component of the zonal mass flux is
negligible at the meridional walls, so that

¥ =pau on y=y,. (AD)

b. Poloidal scalar

To invert Eq. (4.2) for ey, we require boundary con-
ditions for ¢d,x on the meridional walls at y = y;, ..
We impose no normal flow at the meridional walls, so
from Eq. (2.4) we see that

= f V.dz' on y=y,y. (A2)
0



15 ApriL 1995

c. Vorticity equation

The vorticity equation (2.8) involves a two-dimen-
sional Laplacian operating on d,¥, so explicit boundary
conditions are required for y = y;, y,. We make the
approximation that the time variation of the toroidal
component of the zonal mass flux in the domain is
small; namely,

Uy,=0 on y=y, (A3)

This approximation has been validated for an instan-
taneous diagnostic analysis [V, on the meridional
boundaries is of nondimensional O(1072)]. This ap-
proximation may not be desirable, however, in a time
integration of these balance equations.

d. Divergence equation

For the divergence equation (2.9), we again have a
two-dimensional Laplacian operating on the pressure,
so O,p is required on y = y;, y.. We make the approx-
imation of gradient wind balance at the walls, and the
zonal velocity field is completely determined by its to-
roidal component, which delivers in nondimensional
form

p,.=—‘<I’_,, on y=y,Ya. (A4)

e. The omega equation

The omega equation (2.12) is a three-dimensional
elliptic equation, requiring boundary conditions on
eV’x ony =y, ¥, and on z = z,, z,. Since eV
= —p,w, then trivially,

eViy =0,

on =2z, Za- (AS)

Further, we impose no meridional flow aty = y,, y,
so that from Eq. (2.4) we deduce that

Vix, = f Vi, on y=y.,y. (A6)

0
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