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Glossary
Adiabat An adiabatic path in P–V–T space.

Adiabatic A thermodynamic process in which no heat is

allowed to transfer into or out of the system. The local

compression and rarefaction and corresponding increase

and decrease of both pressure and temperature of a material

as compressional wave passes are assumed to be an adiabatic

process.

Anisotropy The condition in which the physical properties

of a material will depend on direction.

Aspect ratio x (dimensionless) In the context of crack-like

porosity, this refers to the aperture width of the crack to its

length.

Bulk modulus K (Pa) Also called the incompressibility.

Ameasure of the resistance of a material to deformation for a

given change in pressure.

Compliances Sij (Pa
�1) The elastic mechanical parameters

that generally relate stresses to strains.

Compressibility (Pa�1) Inverse of the bulk modulus.
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Cricondenbar For fluid mixtures. The greatest pressure at

which both liquid and vapor phases can coexist. Above the

cricondenbar, the mixture must be either a liquid or a

supercritical fluid phase.

Critical point For pure fluids, a point in P–V–T space at

which the liquid–vapor phase line terminates. The fluid will

be in the supercritical state for pressures and temperatures

above the critical pressure Pc and temperature Tc. At the

critical point the fluid will have the critical specific volume

Vc or equivalently the critical density rc¼M/Vc, where M is

the chemical molecular weight.

Cricondentherm For fluid mixtures. The greatest

temperature at which both liquid phase and vapor phase can

still coexist. Above this temperature, the fluid will be either

vapor or supercritical fluid phase.

Density r (kg m�3) Mass per unit volume.

Equation of state A theoretical or empirical function or set

of functions that describes the material’s specific volume as a

function of pressure and temperature.

Hooke’s law The mathematical relationship between stress

and strain via the elastic stiffnesses or conversely the strains

and the stresses via the elastic compliances.

Isentropic A thermodynamic process in which the entropy

of the system remains constant. A reversible adiabatic

process is also isentropic.

Isochor A thermodynamic path in P–V–T space in

which the specific volume Vm or the density r remains

constant.

Isotherm A thermodynamic path in P–V–T space in

which the temperature T remains constant. These are

often the conditions employed in conventional

measurements of fluid properties particularly in the

petroleum industry.

Lamé parameters l and m (Pa). The two elastic parameters

relating stresses to strains in the Lamé mathematical

formulation of Hooke’s law.

Poisson’s ratio n (dimensionless) The negative of the ratio

between the radial and the axial strains induced by an axial

stress.

Polycrystal A material that is a mixture of mineral crystals

and that, often, is assumed to be free of pores. The properties

of the polycrystal are then taken to be representative of those

for the solid portion of the rock.

Pseudocritical point For fluid mixtures, a point in P–V–T

space where the bubble and dew lines meet. This point

depends on the composition of the mixture and occurs at

the pseudocritical pressure PPC and temperature TPC.

Saturated The condition where the pore space of the rock is

filled with fluids.

Saturation The fraction of the pore space that is filled with a

given fluid. If only one fluid fills the pore volume, it will have

a saturation of 1. If the pore volume is equally filled with two

different fluids, they each will have a saturation of 0.5.

Shear modulus m (Pa) The elastic mechanical parameter

relating shear stress to shear strain.

Stiffness Cij (Pa) The elastic mechanical parameters that

generally relate strains to stresses.

Strain eij or gij (dimensionless) Measures of the

deformation of a material.

Stress sij or tij (Pa) The ratio of an applied force to the area

over which it is applied. Normal stresses sij are directed
perpendicularly to the surface. Shear stresses tij are directed
along the plane of the surface.

Supercritical The condition for a fluid encountered in P–V–T

space in which it is no longer considered a liquid or a vapor

(gas) but a fluid with the characteristics of both. For single-

component fluids, the supercritical phase exists above the

critical point at the critical pressure Pc and temperature Tc.

Young’s modulus E (Pa) Also often referred to as the

modulus of elasticity. The elastic mechanical parameter

relating the linear axial strain induced to the applied axial

normal stress.
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11.03.1 Introduction

Geophysicists measure the spatial and temporal variations in

electromagnetic, magnetic, and gravitational potentials and

seismic wave fields in order to make inferences regarding the

internal structure of the Earth in terms of, respectively, its

electrical resistivity (See Chapters 2.25, 11.04, 11.08, and

11.10), its magnetism (See Chapters 2.24, 5.08, 11.05,

11.11), its density (See Chapter 3.03, 11.05, 11.12), and its

elasticity (See Chapters 1.26 and 2.12). In seismology the

most basic observation is that of a seismic wave’s travel time

from its source to the point of measurement. Seismologists

continue to develop increasingly sophisticated analyses to con-

vert this basic observation into seismic velocities from which

the Earth’s structure may be deduced. This holds true for the

simplest 1-D seismic refraction analysis to the most compli-

cated modern 3-D whole Earth tomogram. The influence of

this velocity is not so directly apparent in seismic reflection

profiles, but proper imaging depends critically on solid knowl-

edge of the in situ seismic velocity structure. Indeed, as

 
 
 
 
 

computational power grows, the differences between inversion

and advanced prestack migration in imaging will become less

distinct.

Velocity, as it is used in the geophysical community for

wave speed, would certainly first come to a geophysicist’s

mind as a seismic property. It is also the seismic property that

is most often used to infer lithology. Liberally, compressional

wave velocities that can exist in crustal materials can range

from a few hundred meters per second in air-saturated uncon-

solidated sediments to upward of 8 km s�1 for high-grade

metamorphosed rocks at the top of the mantle. Typically

then, within a given geologic context, the velocities themselves

or additional parameters derived from them such as the

compressional/shear wave speed ratio VP/VS, Poisson’s ratio

n, or the seismic parameter ’¼ VP
2� 4VS

2/3 are useful indicators

of lithology. Unfortunately, the seismic velocities of any given

lithology are not unique. Seismic velocities are affected by

numerous factors such as mineralogical composition, texture,

porosity, fluids, confining stress, pressure, and temperature, all

of which contribute by differing degrees to the value of the
 (2015), vol. 11, pp. 43-87 
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observed wave speed. Seismic anisotropy, being the variation

of the wave speeds with direction of propagation through the

medium, may also need to be included (Chapter 2.20). With

attenuation, even the frequency at which the observation is

made should be considered.

With a particular focus on the porous and fluid-filled Earth

materials near the Earth’s surface, the purpose of this contri-

bution is to review ‘seismic properties.’ To most workers, this

will again mean the measurable ‘seismic velocity.’ Such veloc-

ities are what we, as remote observers, can measure. More

fundamentally, however, the seismic velocities are a manifes-

tation of the competition between a material’s internal forces

(represented in a continuum via the elastic moduli) and inertia

(through density). Without derivation, the relationships

between the compressional P and S waves and the material’s

moduli and bulk density r are

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K +4m=3

r

s
[1]

VS ¼
ffiffiffi
m
r

r
[2]

where K and m are the bulk and shear moduli for an isotropic

medium, respectively. As fluids cannot support a shear stress,

their m¼0 and eqn [1] reduces to the simpler longitudinal

elastic wave of speed VL

VL ¼
ffiffiffiffi
K

r

s
[3]

first derived by Newton and thermodynamically corrected by

Laplace. Care must be exercised in the choice of K particularly

for fluids; much of the task of this contribution will not be in

the examination of the wave speeds so much as attempting to

understand the material’s elastic moduli.

Later, when discussing a fluid-filled porous rock, the K and

m to be used in eqns [1] and [2] will necessarily be those of the

bulk mixture of solids and fluids and will appropriately be

denoted Ksat and msat, respectively.
A given wave speed depends on the ratio between the

moduli and density. One cannot understand the meaning of

an observed seismic velocity, nor calculate it, without sufficient

knowledge of these underlying moduli and density. Not sur-

prisingly, then, the complexity of the physics needed to

describe a wave velocity increases with the number of the

material’s characteristics considered. In particular, the intro-

duction to the problem of porosity and mobile fluids multi-

plies the number of free parameters that can influence the

material’s moduli and density. Properly describing a near-

surface material is substantially more difficult than trying to

predict variations in, for example, the Earth’s mantle where

excursions of only a few percent are considered large!

This review is also carried out from the perspective of rock

physics, the factors affecting wave speeds and the models used

to predict them are presented. This is all done from the

viewpoint of an experimentalist concerned with attempting

to test such theories. That said, it must be recognized that

often, one cannot have all of the information necessary, nor
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are the models sufficiently sophisticated, to properly predict a

given velocity. This will more often than not be the case in

seismic investigations of the near surface for resource explo-

ration or engineering and environmental characterization. As

such, at the end, a number of empirical relationships are also

described. The basics of elasticity, anisotropy, and

poroelasticity are briefly covered in order to set the stage for

understanding how wave speeds relate to moduli. In attempting

to understand the seismic properties of a fluid-saturated crustal

rock, one must first have some understanding of the physical

properties of the rock’s constituent solid minerals, its saturating

fluids, and finally its ‘frame.’ Minerals and fluids are the basic

components in rocks in the upper crust and their behavior first

must be studied. This is followed by a review of the factors

affecting the rock’s frame properties. Finally, these different

components affecting rock properties are then integrated using

various theories to arrive at estimates of the seismic properties.

However, one may not always have available sufficient informa-

tion to allow for the calculation of the physical properties, and

for this case, a number of empirical relations and references to

published compilations of observed results are provided. Lack of

space restricts delving in detail into the range of issues related to

seismic properties, so I conclude with some thoughts about the

topics that will be important in the coming decade. A short

glossary of terms that are not normally encountered in the

geophysical literature is also provided.
11.03.2 Basic Theory

Any understanding of the propagation of mechanical waves

rests on basic elasticity theory. The number of texts on this

topic is large and little is to be gained here by repeating the

basic concepts of stress and strain, the development of

Hooke’s law, or the construction of the wave equations link-

ing elasticity to wave velocities. I assume the reader will have

some basic understanding of elasticity. Some recommended

texts covering the basic governing equations at different levels

of sophistication include Bower (2010), Fung (1965), and

Tadmor et al. (2012). Stein and Wysession (2002) gave a

particularly cogent exposition of both isotropic elasticity

and the solution to the wave equation particularly as it relates

to seismology. Auld (1990) provided an excellent advanced

overview of elasticity with good emphasis on elastic

anisotropy; the notation styles employed here follow largely

from this text. For understanding of more complicated

materials, the essentials of poroelasticity can be found in

Wang (2000), Bourbié et al. (1987), and Gueguen and

Bouteca (2004); of anelasticity in Lakes (2009) and

Carcione (2007); and of hyperelasticity (nonlinear elasticity)

in Holzapfel (2000). These texts will well cover the details,

and only the necessary definitions of moduli within the Voigt

representation of Hooke’s law are provided.
11.03.2.1 Hooke’s Constitutive Relationship and Moduli

In this contribution, we assume all strains are infinitesimal and

describe to the first order the material’s deformation via the

strain tensor e
n, (2015), vol. 11, pp. 43-87 
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Figure 1 Illustration of the three basic deformations that allow the
isotropic elastic moduli to be described. The original dimensions of the
object are in light red with the deformed version in transparent purple.
(a) Change in volume yVo upon application of uniform pressure P
defining the bulk modulus K¼�P/y, there is no change in shape. (b)
Change in the length loEyy and width woExx upon application of a uniaxial
stress syy defining the Young’s modulus E¼syy/Eyy and Poisson’s ratio
n¼�Exx/Eyy. Both the shape and volume change and (c) the change in
shape described by the angle g¼2Exy upon application of a simple
shear stress txy defining the shear modulus m¼txy/Exy. There is no
change in volume.
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[4]

where the displacement of the particle originally at (x, y, z) is

given by the vector u¼uxi+uyj+uzk. Forces within the mate-

rials are defined by the stress tensor s:

s x, y, zð Þ¼
sxx txy txz
tyx syy tyz
tzx tzy szz

2
4

3
5 [5]

where normal and shear stresses are represented by sii and tij,
respectively. Hooke’s law is the linear constitutive relationship

between strain equation [4] and stress equation [5]. The sim-

plest case of an isotopic medium is most commonly assumed

in studies of wave propagation. In this case, Hooke’s law may

be written in the abbreviated Voigt notation as using the math-

ematical simplifications afforded by the use of the Lamé

parameters l and m :

sxx
syy
szz
tyz
tzx
txy

2
6666664

3
7777775
¼

l+ 2m l l 0 0 0
l l +2m l 0 0 0
l l l+ 2m 0 0 0
0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m

2
6666664

3
7777775

Exx
Eyy
Ezz
2Eyz
2Ezx
2Exy

2
6666664

3
7777775

[6]

The reader should take note of the pattern relating the

tensors of eqns [4] and [5] to the stress and strain vectors of

the Voigt abbreviated notation of eqn [6] in which the shear

strains are multiplied by the awkward factor of 2. The Lamé

formulation is mathematically elegant and simple. This sim-

plicity comes with some cost, however, in that l cannot be

directly measured in a simple experiment. In contrast, the

second Lamé parameter m is the shear modulus, which is the

simple ratio between an applied shear stress t and the resulting

shear strain gij¼2Eij, a value that can readily be experimentally

measured (Figure 1(c)).

Two other important moduli in isotropic media are Young’s

modulus E and the already introduced bulk modulus K. These

can be found by conducting simple experiments with clear

physical interpretations. E is the ratio between an applied

uniaxial stress and its corresponding resulting coaxial linear

strain (Figure 1(b)). K is the ratio between an applied uniform

(hydrostatic) pressure P and the consequent volumetric strain

y¼ Exx+ Eyy+ Ezz. Poisson’s ratio n is not a modulus but it too is

an important and popular measure of a material’s deformation

under stress. It is simply the negative of the ratio between the

lateral Exx and axial Eyy strains observed during the same test

used to measure E (Figure 1(b)).

E, K, l, m, or n can be calculated if any of the other two

moduli or parameters are known; extensive conversion tables

are readily found (e.g., Birch, 1961; Mavko et al., 2003). Some

of these relations are, for convenience,
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E¼ 9Km
3K + m

K ¼ l+2m=3

m¼ 3

2
K�lð Þ

n¼ 3K�E

6K

[7]

In the case of a liquid, m¼0 and l can be assigned a physical

interpretation as it collapses to the bulk modulus K.

Although we will not be directly addressing issues of seis-

mic reflectivity here, one can also consider the acoustic imped-

ances Zi¼riVi, where i indicates either the P or the S wave, as a

physical property in their own right.

Most of the theoretical models that will follow attempt to

develop expressions for K and m. With this in mind, Hooke’s
 (2015), vol. 11, pp. 43-87 
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law (eqn [6]) may alternatively be expressed less elegantly but

more physically as

sxx
syy
szz
tyz
tzx
txy

2
6666664

3
7777775
¼

K +
4

3
m K�2

3
m K�2

3
m 0 0 0

K�2

3
m K +

4

3
m K�2

3
m 0 0 0

K�2

3
m K�2

3
m K +

4

3
m 0 0 0

0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m

2
66666666666664

3
77777777777775

Exx
Eyy
Ezz
2Eyz
2Ezx
2Exy

2
6666664

3
7777775

[8]

A comparison of eqns [1] and [7] also allows the moduli to

be written in terms of the wave speeds as

m¼ rV2
S ,

K ¼ r V2
P �

4

3
V2
S

� �
,

n¼ 1

2

V2
P �2V2

S

V2
P �V2

S

� � [9]

11.03.3 Mineral Building Blocks

11.03.3.1 Elastic Properties of Minerals

The majority of seismological studies assume that the elastic

responses of Earth materials behave according to eqn [6]. In

reality, however, isotropy is the exception; all minerals and

most rocks are elastically anisotropic. We introduce this

topic early as it is key to understanding how we arrive at the

physical properties of the minerals that constitute the rocks.

To include this anisotropy, eqn [8] may more generally be

rewritten as

sxx
syy
szz
tyz
tzx
txy

3
777777775
¼ s¼

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

2
666666664

3
777777775
¼

Exx
Eyy
Ezz
2Eyz
2Ezx
2Exy

2
666666664

3
777777775
¼ c½ �E [10]

where each of the matrix components Cij is called the elastic

stiffnesses. More formally, eqn [10] condenses the expression

of Hooke’s law through the fourth-order tensor components

sij¼ cijklEkl with the condensed subscripts following the rules:

xx!1, yy !2, zz ! 3, yz !4, xz!5, and xy ! 6 [11]

and with the full stiffness matrix represented by [c]. E and s
represent the corresponding stress and strain vectors, respec-

tively, within this abbreviated notation. Further, Cij¼Cji mak-

ing [c] symmetrical such that there are at most 21 independent

elastic stiffnesses. The total number depends on the degree of

symmetry of the system varying from only 2 for the isotropic

case just shown to the full 21 for the least symmetrical triclinic

crystals as will be discussed shortly. Conversely, the strains can

be written in terms of the applied stresses using the elastic

compliances Sij with their matrix similarly represented by [s]
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Exx
Eyy
Ezz
2Eyz
2Ezx
2Exy

2
6666664

3
7777775
¼ E¼

S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

2
6666664

3
7777775

sxx
syy
szz
tyz
tzx
txy

2
6666664

3
7777775
¼ s½ �s [12]

The author takes no responsibility for the fact that conven-

tionally [s] and [c] are used to, respectively, denote the com-

pliances and the stiffnesses. Regardless, the Voigt form is

particularly useful because

c½ � ¼ s½ ��1 [13]

where the superscript ‘�1’ indicates the matrix inverse opera-

tion (Auld, 1990). We note that an important property of the

tensor (in its abbreviated form here) is its transformation upon

change of the basis coordinate system. The mathematics

describing this is beyond the needs of this contribution but

Walker and Wookey (2012) provided convenient MATLAB®

codes to carry out these otherwise tedious calculations.

Using this form, eqn [8] for the isotropic case is

sxx
syy
szz
tyz
tzx
txy

2
6666664

3
7777775
¼

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

2
6666664

3
7777775

Exx
Eyy
Ezz
2Eyz
2Ezx
2Exy

2
6666664

3
7777775

[14]

with only C11 and C12 necessary and C44¼(C11�C12)/2. The

symmetry of [c] across the main diagonal should be kept

in mind.

Some of the hypothetical experiments that could be car-

ried out in order to find some of the rarer off-axis elastic

stiffnesses that couple normal stresses to shear strains and

vice versa are illustrated in Figure 2. Hearmon (1946) gave

the geometry for a number of such static measurements that

could be used to fill [c].

For anisotropic materials, the configuration of [c] depends

on the material’s degree of symmetry. Such symmetry is classi-

fied within the six crystal systems listed in terms of diminishing

symmetry: cubic (or isometric), hexagonal, tetragonal, ortho-

rhombic, monoclinic, and triclinic. The literature is not neces-

sarily consistent on how many crystal systems there are, and

many authors divide the hexagonal system into separate hex-

agonal and trigonal systems for a total of 7. This classification

is used here following Auld (1990) and Tinder (2007). Regard-

less of the preference, nine different sets of stiffnesses [c] can be

defined. This is larger than the seven classes because two

unique sets exist in both the trigonal and the tetragonal sys-

tems depending on the slightly different symmetries. The lower

the symmetry, the greater the number of independent elastic

stiffnesses required. The organization of the nine different sets

of [c] is shown symbolically in Figure 3.

Bass (1995) had compiled an extensive collection of Cij for

many minerals up to 1995, and Angel et al. (2009) provided an

overview of the techniques used to obtain these elastic con-

stants. The full sets of the values in [c] are repeated here for a
n, (2015), vol. 11, pp. 43-87 
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Figure 2 Illustration of the physical meaning of the elastic moduli that
provide stress–strain responses outside of those defined in Figure 1.
(a) Generation of a shear deformation of angle gzx by the application
of a uniaxial stress szz leading to the definition of C53¼szz/gzx.
(b) Generation of normal strains Exx and Ezz by the application of a shear
stress (shown as a pure shear) txy leading to the definitions of C16¼txy/Exx
and C36¼txy/Ezz, respectively. (c) Generation of a shear strain gyz
by application of the shear stress txy leading to the definitions
of C16¼txy/gyz.
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few of the more important minerals in Table 1. While most

of the values are from Bass (1995), it should be no surprise

that his compilation did not include any values for triclinic

minerals, as determining all 21 independent elastic constants

for a triclinic mineral awaited the more recent work of Brown

et al. (2006).
 
 

11.03.3.2 Bounds on Isotropic Mixtures of Anisotropic
Minerals

The discussion in the preceding text revealed that all minerals

are elastically anisotropic to some degree. However, we often

prefer that the rocks that we study, which are of course an
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assemblage of these minerals, be isotropic. That is, most

workers prefer to indirectly employ the values in [c] distilled

into bulk K and shear mmoduli for an isotropic polycrystal; it is

this isotropic value that is often all that is reported in compi-

lations. This value is usually called the Voigt–Reuss–Hill

(VRH) average (Hill, 1952), being the simple arithmetic

mean of the isostress Voigt (Voigt, 1928) and isostrain Reuss

(1929b) bounds. The Voigt bulk KV and shear mV moduli for

any crystal class (Anderson, 1963; Hill, 1952) are

KV ¼ 1

9
c11 + c22 + c33ð Þ+2 c12 + c23 + c13ð Þ½ �

mV ¼
1

15
c11 + c22 + c33ð Þ� c12 + c23 + c13ð Þ +3 c44 + c55 + c66ð Þ½ �

[15]

while the corresponding Reuss bulk KR and shear mR moduli are

KR ¼ 1

s11 + s22 + s33ð Þ +2 s12 + s13 + s23ð Þ½ �
mR ¼

15

4 s11 + s22 + s33ð Þ�4 s12 + s13 + s23ð Þ +3 s44 + s55 + s66ð Þ½ �
[16]

One problem can be that the mineral moduli are reported

as stiffnesses in [c] but eqn [16] uses the compliances of [s]. To

overcome this issue, Watt and coworkers (Watt, 1979, 1980,

1986; Watt and Peselnick, 1980) laboriously derived the

expressions for KR and mR in terms of the stiffnesses Cij.

Today, however, matrix inversions are easily accomplished

and one may prefer to first calculate the compliances sij using

eqn [13] and substitute them directly into eqn [16].

Berryman (2005) also provided alternative formulas devel-

oped using a self-consistent approach.

These Voigt and Reuss moduli usually provide the upper and

lower bounds to the moduli, respectively, as shown by Hill

(1952). The values for isotropic polycrystals that are most often

reported in compilations (Table 1), however, are the simple VRH

arithmetic mean averages of these two bounds for the bulk

KVRH ¼ KR +KV½ �=2 [17]

and the shear moduli

mVRH ¼ mR +mV½ �=2 [18]

The differences in the bounds are insignificant for the

highly symmetrical isotropic and cubic cases. Indeed, Table 1

purposefully displays more significant digits than legitimate

just to show the minor differences between the values for

pyrope garnet. However, for hexagonal ice (Ih), the differences

between the bounding shear moduli differ by 40%.

More rigorous bounds may also be found. Simmons (Meister

and Peselnick, 1966; Peselnick andMeister, 1965; Simmons and

Wang, 1971; Watt, 1979, 1980, 1986) derived stronger bounds

on the isotropic polycrystalline moduli using the variational

principles of Hashin and Shtrikman (1962) for all of the crystal

classes except for triclinic. Of course, these become increasingly

complicated as symmetry decreases and more elastic constants

are required; and we repeat here only Simmon’s (see Simmons

and Wang, 1971) expression for cubic minerals:
 (2015), vol. 11, pp. 43-87 
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Figure 3 Graphic description of the nine different elastic stiffness matrices [c] in Voigt abbreviated notation following eqn [10] and employing Tinder’s
(2007) form. The symmetrical system and its corresponding number of independent CIJ’s are given by the title immediately above each matrix.
The values of the Cij are color-coded. A white circle indicates zero. The same solid color for different components means that they share the same
numerical value. A minus sign indicates that the component’s value is the negative of the adjacent component of the same solid color. Note that C66 in the
hexagonal and trigonal [c] matrices has two colors; this is to indicate that in these systems, C66¼ (C11�C12)/2.

Geophysical Properties of the Near Surface Earth: Seismic Properties 49 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Author's personal copy
KHS+ ¼KHS� ¼KV ¼KR ¼K

mHS+ ¼G1 + 3
5

G2�G1
+ 4

3K +2G1

5G1 3K +4G1ð Þ
� ��1

� m�G2 + 2
5

G1�G2
+ 6

3K + 2G2

5G2 3K +4G2ð Þ
� ��1

¼ mHS�

G1 ¼ 1

2
c11� c12ð Þ

G2 ¼ c44 [19]

Calculations of these different averages generally, but not

always, show that the VRH averages lie within the HS bounds.

This suggests that the VRH averages provide reasonable esti-

mates of the isotropic polycrystal properties. The validity of the

VRH averages in providing representative values still remains

of current interest (Berryman, 2005, 2012; Pham, 2011).

Table 1 lists KVRH and mVRH for many of the minerals

commonly found within crustal rocks; these values are often

used for calculating rock properties. This list is not intended to

be comprehensive and many more complete compilations are

available (Babuška and Cara, 1991; Bass, 1995; Gebrande,

1982; Hearmon, 1946, 1956; Huntington, 1958; Simmons

and Wang, 1971; Sumino and Anderson, 1984). Many of

the moduli in these compilations are reproduced from the
Treatise on Geophysics, 2nd editio

 

extensive acoustic measurements made by Alexandrov and co-

workers in the 1960s (Alexandrov and Ryzhova, 1961a,b,

1962, 1964; Ryzhova et al., 1966) on large (and imperfect)

single crystals (see Brown et al., 2006). The impressive contri-

butions of Alexandrov and coworkers have been invaluable to

the geophysical community, but an update of their measure-

ments on the minerals forming rocks in the upper crust using

more modern techniques is long overdue.
11.03.3.3 Isothermal Versus Adiabatic Moduli

So far, the bulk modulus has been defined as the simple

quotient of an applied hydrostatic stress to the resulting volu-

metric strain P/y as shown in Figure 1. This is true, but one

must also be careful about the conditions under which the

experiment is carried out. A bulk modulus measurement can

be carried out either of two ways depending on how heat

energy is allowed to move during the experiment:

i. Adiabatically (also isentropically) when the material is

compressed and no heat is allowed to flow in or out of

the system

ii. Isothermally where heat can flow in or out in order to

maintain the temperature of the system constant
n, (2015), vol. 11, pp. 43-87 
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Stiffnesses in GPa

11 78.08 296.2 13.5 86.6 205 269 109 225 183 69.9

22 78.08 296.2 13.5 86.6 205 269 109 178 178 183.5

33 78.08 296.2 14.9 106.1 113 480 92 214 59.1 179.5

44 31.38 91.6 3.09 57.8 39.8 124 26.7 77.6 16 24.9

55 31.38 91.6 3.09 57.8 39.8 124 26.7 75.9 17.6 26.8

66 31.38 91.6 3.5 40 67 192 33.7 81.6 72.4 33.5

12 15.32 111.1 6.5 6.7 71 177 68 72.4 48.3 34

13 15.32 111.1 5.9 12.6 57.4 146 53 54.1 23.8 30.8

23 15.32 111.1 5.9 12.6 57.4 146 53 52.7 21.7 5.5

14 0 0 0 −17.8 −19.5 0 0 0 0 5.1

15 0 0 0 0 13.7 0 0 0 −2 −2.4

16 0 0 0 0 0 0 −13.6 0 0 −0.9

24 0 0 0 17.8 19.5 0 0 0 0 −3.9

25 0 0 0 0 −13.7 0 0 0 3.9 −7.7

26 0 0 0 0 0 0 13.6 0 0 −5.8

34 0 0 0 0 0 0 0 0 0 −8.7

35 0 0 0 0 0 0 0 0 1.2 7.1

36 0 0 0 0 13.7 0 0 0 0 −9.8

45 0 0 0 0 0 0 0 0 0 −2.4

46 0 0 0 0 0 0 0 0 0.5 −7.2

56 0 0 0 −17.8 −19.5 0 0 0 0 0.5

KV

36.24 172.8

8.722 38.1 99.4 217 73.11 108 67.5 63.8

KR 8.717 37.6 89.1 209 71.58 107 48.7 55.2

KH 8.72 37.85 94.25 213 72.35 108 58.1 59.50

mV

31.38

91.98 3.5093 47.6 51.8 124.6 19.75 76.2 43 41.2

mR 91.98 5.689 41 40 98.7 25.33 75.2 27.6 29.8

mH 92.0 4.60 44.3 45.9 111.7 22.5 75.7 35.3 35.5

MV

78.08

295.4 13.4 101.6 168.5 383.1 99.44 210 125 118.7

MR 295.4 13.3 92.2 142.4 340 105.4 208 85.4 94.93

MH 295.4 13.4 96.9 155.5 361.6 102.4 209 105 106.8

Cell color fills correlate to the symbolic representation of the Voigt elastic stiffness matrices in Figure 3. Values are taken from Bass (1995) except for isotropic fused SiO2
(Ohno et al., 2000) and triclinic low albite (Brown et al., 2006). Values in bold are calculated from the other elastic stiffnesses.
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A propagating compressional wave consists of alternating

zones of high pressure and low pressure that are slightly hotter

and colder, respectively, than the initial ambient temperature.

An isothermal state could only be achieved if during a half-

period, the heat could fully conduct from the high- to the low-

pressure regions. This is in fact difficult to achieve (Condon,

1933; Fletcher, 1974, 1976) with the somewhat paradoxical

result that isothermal conditions can only be reached at
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extremely high frequencies where, in a gas, the wavelengths

are comparable to the mean free path of the molecules

(Condon, 1933).

Table 2 is typical of the types of data presented in the

literature for such properties but its simplicity does hide a

number of complications that the reader, usually simply look-

ing for a value to use, should still keep in mind. The first is that

the values reported are usually the VRH averages as just noted.
 (2015), vol. 11, pp. 43-87 
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The values reported are also usually the adiabatic bulk moduli

as would be measured using acoustic techniques.

In most of the solid crystalline materials, this will insignif-

icantly differ from the isothermal bulk modulus KT obtained

from static measurements carried out at constant temperature.

Voigt (1928) (p. 788; see also Hearmon (1946)) provided the

relationship between the isothermal ik
T and the adiabatic sij

compliances:

sTik ¼ sik +
aiakT
rCP

[20]

where r is the density, T is the absolute temperature in �K, CP is

the heat capacity at constant pressure, and ai is the appropriate
component of the thermal expansion tensor (see Landau and

Lifshitz, 1970, Section 10). This difference can often be ignored

for most minerals, although for KCl, the two S12 values differ

by 18%. The reader may be able to obtain appropriate values

for ai and CP and formulas for their correction to pressure and

temperature in the compilations of Holland and Powell

(1998). It is important to note, however, that these differences

cannot generally so easily be ignored for fluids. This issue will

be discussed in more detail later.

11.03.3.4 Effects of Pressure and Temperature on Mineral
Moduli

The values in Table 2 are for the most part provided under

standard or room conditions. In many cases, in the upper crust,

the use of such values as ‘constants’ is generally valid as the

variations with pressure and temperature will be small. For

example, the variations in the properties are usually ignored

in petroleum and near-surface seismology. Those studying

shallow and high-temperature geothermal systems may, how-

ever, need to take such variations into account.

Even though we can often ignore their effects, the moduli for

various minerals are not constants and do depend on both the

temperature and the confining pressure. With increasing confin-

ing pressure, minerals become stiffer and more rigid, and the

first-order derivatives of the bulk dK/dP and dm/dP are positive

and the range for most minerals is between 4–6 Pa Pa�1 and

0.5–2 Pa Pa�1, respectively. Conversely, the moduli decrease

 

Table 2 Density, isotropic bulk moduli, and isotropic polycrystalline wav

Material Density (kg m�3)
Adiabatic bulk
modulus K (GPa)

Tectosilicates
a-Quartz 2648 37.8
b-Quartza 2522 42.97
Albite 2610b 56.9
Anorthite 2765b 84.2
Orthoclase 2571b 62
Microcline 2567 55.4
Neosilicates
Forsterite 3221 129.5
Fayalite 4380 134
Fo91Fa9 3325 129.5
Grossular 3602 168.4
Pyrope 3567 172.8
Inosilicates
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with temperature with dK/dT��5 MPa �K�1 to�30 MPa �K�1.

As such, within the crust, temperature will usually influence the

moduli more than pressure. The changes in the moduli and

density of an isotropic polycrystalline quartz compact with pres-

sure and temperature are shown for purposes of illustration in

Figure 4. These suggest that the effects of pressure and temper-

ature tend to cancel each other out, although in areas with steep

thermal gradients, the changes in temperature can significantly

alter the bulk modulus and the density of the quartz. The range

of temperatures is intentionally shown to reflect the larger var-

iations in the physical properties of the quartz in the vicinity of

the a-quartz to b-quartz phase transition.

11.03.3.5 Mineral Densities

Equations [1] and [2] also include the material’s bulk density

r. Consider a rock composed of m separate mineral phases

each with density ri and fi of the fractional volume of the

material (with Sfi¼1). The density for this rock takes the form

r¼
Xm
i¼1

firi [21]

Our knowledge of mineral density is often taken for

granted, but in reality, it may not always be so easy to deter-

mine and a number of different methods are applied. While

usually the differences are small, one may still need to take care

to know how the number is derived. The methods used to

determine density include the following:

i. Archimedean fluid displacement in which the mineral

sample’s volume is found from the amount of reference

fluid volume that it displaces. The density so determined is

referred to as the specific gravity and it is simply equal to

the ratio of the sample’s measured mass to the volume of

the fluid displaced.

ii. Boyle’s law pyncnometry where the sample volume is

determined by in a measurement of the deviation of the

gas pressure in a container of a known volume (Lowell

et al., 2004). The noble gas helium is usually used.

iii. x-Ray and neutron scattering crystallography that provide

information on the dimensions and hence volume Vx-ray of
e speeds

Shear modulus
m (GPa)

Poisson’s
ratio n VP (m s�1) VS (m s�1)

44.3 0.079 6048 4090
41.41 0.135 6239 4052
28.6 0.285 6034 3310
39.9 0.295 7049 3799
29.3 0.296 6270 3376
28.1 0.283 6015 3309

81.1 0.241 8589 5018
50.7 0.332 6784 3402
77.6 0.250 8370 4831
108.9 0.234 9331 5498
92 0.274 9101 5079

(Continued)
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Table 2 (Continued)

Material Density (kg m�3)
Adiabatic bulk
modulus K (GPa)

Shear modulus
m (GPa)

Poisson’s
ratio n VP (m s�1) VS (m s�1)

Hornblende 3150 93.3 49.3 0.275 7105 3956
Augite 3320 95 59 0.243 7233 4216
Ferrosilite 4002 101 52 0.280 6524 3605
Enstatite 3272 107.8 75.7 0.215 7987 4810
Phyllosilicates
Muscovite (Illite?c) 2844 58.2 35.3 0.248 6084 3523
Biotite 3050 50.5d 27.4d 0.270 5342 2997
Kaolinite 2669b 71.1e 31.2e 0.309 6498 3419
Na montmorillonite, dry 2700f 82g 32g 0.327 6795 3443
Na montmorillonite, wet 1700f 36g 16.5g 0.301 5841 3115
Talch 2793 41.6 22.6 0.270 5068 2845
Lizarditei 2516 61 33.9 0.265 6400 3600
Antigoritej 2668 69 34.0 0.288 6520 3570
Evaporites
Calcite 2712 73.3 32 0.309 6539 3435
Aragonite 2930 46.9 38.5 0.178 5790 3625
Dolomite 3795 94.9 45.7 0.293 6408 3470
Anhydrite 2963 54.9 29.3 0.273 5631 3145
Gypsum 2317 42 15.4 0.337 5195 2578
Halite 2163 24.9 14.7 0.253 4536 2607
Sylvite 1987 18.1 9.4 0.279 3926 2175
Barite 4473 55 22.8 0.318 4369 2258
Oxides
Corundum 3982 253.5 163.2 0.235 10877 6402
Magnetite 5206 161 91.4 0.261 7371 4190
Periclase 3584 160 130.3 0.180 9650 6030
Ice-I (270 K) 917.5 8.73 3.4 0.328 3802 1925
Sulfides
Pyrite 5016 142.7 125.7 0.160 7865 5006
Galena 7597 58.6 31.9 0.270 3649 2049
Sphalerite 4088 77.1 31.5 0.320 5398 2776
Others
Diamond 3512 443 535.7 0.069 18153 12350
Graphite 2260 161.0 109.3 0.223 11650 6954
Fluids
Air (STP) dryk 1.31 0.00014311 – – 330.2 –
Water (STP)l 999.84 1.97 – – 1402.4 –
Seawater (STP), 35% salinitym 1032.8 2.17 – – 1449.1 –
Light oil (1 atm, 26 �C)n 750 1.15 – – 1237 –
Heavy oil (1 atm, 26 �C)n 1037 2.71 – – 1616 –
Tholeiitic basalt 1505 �Ko 2650 17.9 – – 2599 –
Andesite melt 1553 �Ko 2440 16.1 – – 2569 –
Rhyolite melt 1553 �Ko 2310 13.5 – – 2417 –

Unless otherwise indicated, the densities, adiabatic bulk moduli, and shear moduli are all from Bass (1995). The seismic velocities are calculated using eqns [1] and [2].
aFrom Table 4 of Ohno et al. (2006) at 575.5 �C.
bDensities from Smyth and McCormick (1995).
cSee discussion in Cholach and Schmitt (2006).
dValue is the Voigt–Reuss–Hill average calculated assuming hexagonal symmetry (Watt and Peselni, 1980) using the values reported in Bass (1995).
eValue is the Voigt–Reuss–Hill average calculated assuming hexagonal symmetry (Watt and Peselni, 1980) using the values reported in Karmous (2011). See also Militzer et al. (2011)

and Sato et al. (2005).
fDensities of a dry and saturated montmorillonite as updated by Chitale and Sigal (2000).
gValue is the Voigt–Reuss–Hill average calculated assuming hexagonal symmetry (Watt and Peselni, 1980) using the elastic stiffness calculated in Ebrahimi et al. (2012).
hDensity and estimates of moduli in Bailey and Holloway (2000).
iEstimates from Auzende et al. (2006). See also Schmitt et al. (2007).
jFrom measurements described in Christensen (2004). See also recent modeling by Mookherjee and Stixrude (2009).
kFrom Lemmon et al. (2000).
lOnline calculation Lemmon et al. (2012a) derived from the model of Wagner and Pruss (2002).
mFrom Wong and Zhu (1995) and Safarov et al. (2012).
nFrom ultrasonic measurements of Wang et al. (1990).
oZero frequency (relaxed) estimates based on ultrasonic measurement of Rivers and Carmichael (1987) as reported in Bass (1995).
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Figure 4 Changes in the averaged bulk KVRH and shear mVRH moduli and density of an isotropic polycrystalline quartz aggregate (a) calculated as a
function of pressure at constant temperature 298 �K (Calderon et al., 2007), The density as a function of pressure is calculated with values of
Ko¼37.7 GPa, dk/dP¼4.69 Pa Pa�1, and r¼2650 kg m�3 using the Birch–Murnaghan equation of state (Birch, 1947) (b) measured as a function of
temperature at constant room pressure (Ohno et al., 2006). Note in (b) the influence of the solid state phase transition of a-quartz to b-quartz at
573.0 �C.
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the mineral’s crystal unit cell (Smyth and McCormick, 2013;

Wohlenberg, 1982). The x-ray density rx-ray is then calcu-

lated with knowledge of the chemical molar molecular

weight M in g mol�1 and its number of formula units per

unit cell z:

rx-ray ¼
zM

NAVx-ray
[22]

where NA is Avogadro’s number (6.02214�1023). These

methods are particularly advantageous for the many min-

erals that do not exist in large crystal form and are then not

amenable to the Archimedean or Boyle’s law methods.

Further, they can be used to determine density (and hence

static bulk elastic properties) under conditions of pressure

and temperature (Hemley et al., 2005).

iv. The electron bulk density re is calculated from estimates of

the number of electrons per unit volume, ne, from Comp-

ton scattering attenuation of x-rays (Schmitt et al., 2003):

re ¼
np=Z

NA
M [23]

where ne¼np is the number of protons per unit volume and

Z is the atomic number (i.e., number of electrons or pro-

tons in the electrically neutral molecule). This is no more

than measuring the number of moles of the compound in a

given volume.

The mass of a given atom is close to the sum of the masses

of its constituent neutrons and protons. Neutrons and protons

have nearly the same mass. Further, examination of the peri-

odic table shows that there are equal numbers of neutron N

and protons Z in the most common isotopes of elements that

constitute the rock-forming minerals. It follows from this then
Treatise on Geophysics, 2nd editio

 

that the ratio M/Z�2 g mol�1 and eqn [23] may often be

simplified to

re ¼ 2gmol�1
� � np

NA
[24]

Equation [24] is often applied in geophysical well logging

as it allows for an accurate estimate of the bulk density to be

obtained even in the absence of detailed knowledge of the

mineralogy.

Some of these measures of density are provided Table 2.
11.03.4 Fluid Properties

Pore fluids can strongly influence the overall seismic proper-

ties of rocks. Pore fluids contribute to the overall moduli and

the bulk density of the rocks that they are contained in.

Consequently, they must affect the seismic wave speeds

through eqns [1] and [2]. In many respects, fluids are more

interesting than solids because their density rf, bulk modulus

Kf, and phase state depend on pressure P and temperature T.

These are the dependencies that allow, in part, for successful

active seismic ‘time-lapse’ active seismic monitoring of fluid

motions during hydrocarbon production (Bianco et al., 2010;

Lumley, 2001; Schmitt, 1999) or greenhouse gas sequestra-

tion (White, 2013).

In order to forward model or to interpret observed seismic

velocities through fluid-saturated rocks, one must then have a

good knowledge of rf and Kf with pressure P and temperature T.

This P–V–T relationship, or equation of state (EOS), can take

many forms depending upon the degree of sophistication

required and whether it can account for phase transformations.

Of course, this is a vast topic and only a cursory introduction can
n, (2015), vol. 11, pp. 43-87 
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be given here with particular focus on some key fluids that

researchers would encounter including water, carbon dioxide,

and methane. While as geophysicists we would prefer to be

handed easily obtained values for the desired properties, this

may not always be possible and some work may be required to

obtain appropriate representative values. The reader should not

necessarily look for quick answers here, but this contribution

attempts to at least lead the way to the relevant literature where

answers might be found. An important contribution of Batzle

and Wang (1992), for example, has distilled some of these

complex relations into more readily applicable formulas. Their

equations have been incorporated into numerous fluid property

calculators for use in seismic fluid substitution calculations;

because they are so widely used, these too will be provided

where appropriate. This section attempts to give some appreci-

ation of how complicated and interesting fluid properties are,

particularly relative to the more consistent minerals.

 

11.03.4.1 Phase Relations for Fluids

Before proceeding further, it is important to review the pressure

and temperature dependencies of the fluid phase. Figure 5

shows the phase boundaries for water, carbon dioxide, and

methane. Most workers are familiar with solids, liquids, and

gases and the melting, sublimation, and boiling curves for the

transitions between these phases. These are first-order phase

transformations in that the internal energy and physical prop-

erties (Figure 6) are discontinuous. Via the latent heat of the

transformation, additional energy is also released (exothermic)

or absorbed (endothermic) during the phase change.

Many fluids of interest can also be in their supercritical fluid

phase within the Earth. In the range of pore fluid pressures and
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temperatures encountered, free CO2 and CH4 are more likely

than not to be in the supercritical regime. Supercritical H2O

exists at depth within volcanic systems, and it remains a target

for geothermal power generation because of its lower viscosity

but still considerable enthalpy (Fridleifsson and Elders, 2005).

As illustrated in Figure 6, the transition from either gas or

liquid to supercritical is continuous, and this transition is

referred to as second (or higher)-order. Essentially, any surface

tension between the liquid and vapor disappears under super-

critical conditions, and this fluid is best characterized at the

microscopic scale by rapidly fluctuating regions of density.

Coherent light propagating through this fluid is scattered by

the density fluctuations through a phenomenon referred to as

critical opalescence. Otherwise, detecting when the fluid actu-

ally becomes supercritical can be difficult because of the lack of

any discontinuity in the properties. Indeed, examination of the

phase diagrams shows that it is possible to go from a gas to a

liquid continuously by following a P–T trajectory around the

critical point. The critical point values of temperature Tc, pres-

sure Pc, and density rc are provided for a few representative

fluids in Table 3.

Note that 0.1 MPa is just <1 atmosphere of pressure and
�C¼�K�273.15�.
11.03.4.2 Equations of State for Fluids

Again, in order to determine seismic wave speeds, eqns [1] and

[2] demand knowledge of the moduli and density. Although it

will become fully apparent later in Section 11.03.6, an overall

saturated rock’s bulk modulus Ksat and density rsat will require
knowledge of the fluid bulk modulus Kf and density rf (or
equivalently the specific volume Vf¼1/rf). As Figure 6 shows,
erature (K) Temperature (K)
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Figure 6 Dependence of the density, viscosity, bulk modulus, and enthalpy for CO2 on pressure and temperature in the region around the critical
point (PC¼7.3773 MPa and TC¼30.9782 �C (304.1282 �K)). Underlying data obtained from NIST online model (Lemmon et al., 2012b) using the model
of Span and Wagner (1996).

Table 3 Thermodynamic properties of representative fluids

Molecule

Critical
temperature
Tc (�C)a

Critical
pressure Pc
(MPa)a

Critical
density
(mol m�3)a

Critical volume
(m3mol�1�10�5)

The van der
Waals ab (Pa
(m3mol�1)2)

The van der
Waals bc

(m3mol�1�105)
Acentric
factor

Boiling
point (�C)

Water 373.946 22.064 17873.72 5.595 0.20719 1.8649 0.3443 99.974
Carbon
dioxide

30.9782 7.3773 10624.9 9.412 0.19605 3.1372 0.2239 �78.4

Methane �82.586 4.5992 10139 9.863 0.13421 3.2876 0.0114 �161.48
Propane 96.675 4.24766 5000 20.000 0.50971 6.6666 0.1524 �42.09
Decane 344.6 2.103 1640 60.976 2.34570 20.325 0.488 174.12
Benzene 288.90 4.894 3956.1 25.277 0.93810 8.4258 0.2092 80.08
Nitrogen �146.958 3.3958 11183.9 8.941 0.08144 2.9804 0.0372 �195.79
Helium �267.9547 0.22746 17399 5.747 0.00225 1.9158 �0.382 �268.92
Hydrogen �240.005 1.2964 155508 0.643 0.00016 0.2143 �0.219 �252.78

aData obtained from webbook.nist.gov/chemistry/fluid/.
ba ¼ 3PcVm

3.
cb¼Vm/3.
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both are pressure- and temperature-dependent. The rf maps a

surface in the three-dimensional pressure–volume–tempera-

ture (P–V–T ) space. This surface is mathematically described

by the fluid’s EOS. For our purposes, this means that rf can be

found if we know the in situ P and T. The bulk modulus Kf,

however, requires the calculation of the volume-dependent

derivative along the lines of either constant temperature
Treatise on Geophysics, 2nd editio

 

(isotherms) or entropy (adiabats). Although in practice the

simple EOS described may not always be adequate to describe

real fluid behavior, it is useful to present them to provide some

basic background on how density and bulk moduli may be

determined. Some discussion of how onemay find appropriate

values is necessary, and to do this, a review of common EOS is

required.
n, (2015), vol. 11, pp. 43-87 
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11.03.4.2.1 Ideal gas law
The simplest EOS is that for a perfect gas that considers the gas

molecules to be point masses of no volume such that

PVm ¼RT [25]

where R¼8.3144621(7575) J mol�1�K�1 is the gas constant,

Vm is the molar volume in m3mol�1, and T is the temperature

in degrees kelvin. Note that rf¼1/Vf¼M/Vm. The P–Vm rela-

tionship for a perfect gas law equation [25] is plotted for two

temperatures in Figure 7, and at all temperatures, P simply

decreases monotonically. Consequently, the perfect gas law is

of limited value in rock physics as it only describes gas behavio-

r at low densities and high temperatures. It cannot predict the

existence of more condensed liquid or supercritical phases nor

their properties.

 

11.03.4.2.2 Adiabatic and isothermal fluid moduli
A brief examination of eqn [25] illuminates some issues with

regard to the fluid compressibility, and this brings us again to

the issue of the adiabatic and isothermal bulk moduli first

discussed for solids in Section 11.03.3.3. The general defini-

tion of the isothermal bulk modulus KT for any material is

KT ¼�V
@P

@V

� �
T

¼ r
@P

@r

� �
T

[26]

The application of eqn [26] to the perfect gas EOS of eqn

[25] yields KT¼P. However, as already stressed earlier, most

seismic wave propagation phenomena occur adiabatically and
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are controlled by the adiabatic bulk modulus KS. For an ideal

gas, this is

KS ¼�V
@P

@V

� �
S

¼ r
@P

@r

� �
S

¼CP

CV
KT ¼ gKT ¼ gP¼ g

RT

VM
[27]

where the ratio of the heat capacities at constant pressure CP and

volume CV is often called the adiabatic index g. The value of g
depends on the degrees of freedom for the gases with g�1.67

for a monotonic gas (only three translational motions allowed)

and g¼1.4 for a diatomic gas (with two additional rotational

degrees of freedom). Under adiabatic conditions, then

KS¼gKT¼gP; and consequently, KS and KT can be considerably

different for gases and many hydrocarbon fluids (Picard and

Bishnoi, 1987). This translates to large differences in the wave

speeds between adiabatic and isothermal conditions. Substitut-

ing KS¼gP into eqn [3] for the wave speed in a ‘perfect’ gas

VL ¼
ffiffiffiffiffi
gP
rf

s
[28]

but more generally for nonideal fluids, one arrives at the

Newton–Laplace eqn [3] rewritten here as

VL ¼
ffiffiffiffiffi
KS

rf

s
[29]

For example, in dry air with g¼1.3998 (Wong and Embleton,

1984), the adiabatic sound speed calculated using eqn [28]

at 0 �C and 101.325 kPa (i.e., one standard atmosphere)

is 331.29 m s�1 (	0.02%) in excellent agreement with
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experimental observations. In contrast, the isothermal sound

speed first predicted by Newton would be only �280 m s�1.

As will be apparent later, an appropriate value for the fluid

bulk modulus Kf is necessary to calculate the saturated rock

properties. In the following discussions, we will assume that

the fluid bulk modulus Kf that needs to be found is the adia-

batic, or isentropic, bulk modulus KS. It is worth mentioning

that VL as defined by eqn [29] is at low frequencies with the

system at equilibrium a thermodynamic property in its own

right; in the fluid physics and engineering communities, VL is

called the thermodynamic sound speed (Castier, 2011; Picard

and Bishnoi, 1987).

Similarly to eqn [20], adiabatic and isothermal bulk moduli

are related through

1

KS
¼ 1

KT
� a2T
rCP

[30]

where a is the coefficient of thermal expansion, T is the tem-

perature in K, r is the density, and CP is the isobaric (i.e.,

constant pressure) heat capacity (Clark, 1992; Kieffer, 1977).

11.03.4.2.3 The van der Waals model
The deficiencies of the perfect gas law of equation [25] were

recognized early. In order to attempt to resolve these problems,

van der Waals (1873) adapted eqn [25] by assigning the mol-

ecules a finite molar volume b and allowing them minor self-

attractive ‘van der Waals’ forces to develop his EOS

P + a=V2
m

� �
Vm�bð Þ¼RT [31]

that may alternatively be displayed in its polynomial

cubic form

V3
m� b+

RTc
Pc

� �
V2
m +

a

Pc
Vm�ab

Pc
¼ 0 [32]

Factor a describes the weak self-attraction of the gas mole-

cules to one another, and a is proportional to the liquid’s

vaporization energy. Factor b is roughly equivalent to the

molar volume of the liquid. These constants may be found

from the fluid’s Tc and Pc:

a¼ RTcð Þ2
64Pc

b¼RTc
8Pc

[33]

The reader will note in Figure 7 that the isotherm of the van

der Waals curve at 0 �C (i.e., below the critical temperature Tc
where two phases can exist at a given pressure) displays cubic

behavior with three possible real roots. The smallest and largest

solutions provide the molar volumes of the liquid and the

vapor, respectively, while the intermediate root has no real

physical meaning. At sufficiently high temperatures or at low

pressures, only one real root exists. While not obvious to the

more casual reader, this shape allows for the prediction of

liquid, gas, and supercritical regimes. The real fluid does not

follow the trajectory in the region of the function’s trough and

peak, which is actually a mixed-phase region where the liquid

and vapor coexist until either condensation or boiling is com-

plete. Castellan (1971) contains a particularly clear discussion

of the information that may be obtained from the van der
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Waals curves that are beyond the scope of the discussion

here. Carcione et al. (2006) had applied the van der Waals

formula to obtain appropriate fluid moduli and density for use

in modeling of the seismic behavior of CO2 saturated rocks.

11.03.4.2.4 The Peng–Robinson EOS
The development of the van der Waals equation [31] was a

major improvement over the perfect gas law equation [25], but

as examination of Figure 7(a) shows, it is not at all accurate in

the fluid state; and a plethora of additional formulas have been

developed to overcome this to varying degrees of complication.

The Peng and Robinson (1976) modification to the van der

Waals formula

P +
aPRaPR

V2
m + 2bPRVm�b2PR

� �
Vm�bPRð Þ¼RT [34]

remains one of the most popular in that it retains much of the

simplicity of the van der Waals EOS but provides better esti-

mates of the P–V–T relations. In eqn [34], there are three

factors that are obtained from tabulated values that include

the Peng–Robinson aPR and bPR

aPR ¼ 0:45724
RTcð Þ2
Pc

bPR ¼ 0:07780
RTc
8Pc

[35]

and the acentric factor o that accounts for nonsphericity of the

molecule (Bett et al., 2003). The effects of the acentricity and

temperature are included in aPR:

aPR ¼ 1+ 0:37464+ 1:5422o�0:26992o2
� �

1�
ffiffiffiffiffiffiffiffiffiffi
T=Tc

p	 
h i2
[36]

The cubic form of the Peng–Robinson equation [34] is

most often for simplicity given in terms of the compressibility

factor Z¼PVm/RT with

Z3� 1�Bð ÞZ2 + A�3B2�2B
� �

Z� AB�B2�B3
� �¼ 0 [37]

where

A¼ aPRP

RTð Þ2

B¼ bPRP

RT

[38]

and, as for the van der Waals equation, in the two-phase region

below Tc, the largest and smallest roots correspond to the vapor

and liquid molar volumes, respectively.

The Peng–Robinson equation [34] predicts well the P–V–T

relationship for in the vapor and supercritical regimes. The

liquid properties are not as precise but depending on

the application may be sufficient. In Figure 7, for example,

the Peng–Robinson EOS value for Vm at the boiling point

exceeds that observed by about 7%. It too shows cubic behav-

ior below Tc and the same arguments used for the van der

Waals equation [32] hold. The Peng–Robinson equation [34]

was a seminal development, and a very large literature of

adaptations and additional corrections to it has emerged. It is

particularly heavily used in the petroleum industry to describe

P–V–T relations of both in situ and produced hydrocarbons.
n, (2015), vol. 11, pp. 43-87 
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11.03.4.2.5 Correlative EOS models
The best models, at least for monomolecular fluids, are those

constructed by fitting of actual observed experimental measure-

ments. As such, these correlative models rely on the existence of

solid experimental observations of P–V–T relations and phase

boundaries and of course can only be as good as the quality of

the data and are limited by the ranges of conditions over which

measurements have been made (Setzmann and Wagner, 1989).

Models exist for important geophysical fluids including water

(Wagner and Pruss, 2002), CO2 (Span and Wagner, 1996; see

also Han et al. (2010, 2011)), and methane (Kunz and Wagner,

2012; Setzmann andWagner, 1991). The formulas used in these

models are extensive and are not repeated here as they are

lengthy and dependent on the phase state. The correlative

model for CO2 is shown as the ‘reference’ against which the

other simpler models are compared in Figure 7. Online calcu-

lation of isotherms (P–V–T paths of constant temperature), iso-

bars (P–V–T paths of constant pressure), and isochors (P–V–T

paths of constant volume or density) is available from Lemmon

et al. (2012b) for a number of important fluids. Independent

software for water properties may also be found for water (NIST,

2010b) and for other fluids and mixtures of interest to geophys-

ics (NIST, 2010a).

Pure water has been extensively studied and numerous less

complicated expressions exist with validity over more limited
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ranges of P and T and a large literature exists. A few of the

contributions in this area for liquid water in include those of

Del Grosso and Mader (1972) and Kell (1975).

Batzle and Wang (1992) provided a number of simplified

equations for the acoustic properties of water based on earlier

experimental work of many authors (Helgeson and Kirkham,

1974; Rowe and Chou, 1970; Wilson, 1959). For example,

based on Rowe and Chou’s (1970) compilation, they derived

a formula for the density of pure water rw (in g cm�3) as a

function of pressure P (in MPa) and temperature T (in �C)

rw ¼ 1 +10�6 �80T�3:3T2 + 0:00175T3 + 489P�2TPð

+ 0:016T2P�1:3�10�5T3P�0:333P2�0:002TP2Þ [39]

and provided Wilson’s (1959) empirical regression for the

speed of sound Vw (longitudinal wave in m s�1) in pure water

Vw ¼ 1 P P2 P3
� � w00 w10 w20 w30 w40

w01 w11 w21 w31 w41

w02 w12 w22 w32 w42

w03 w13 w23 w33 w43

2
664

3
775

1
T
T2

T3

T4

2
66664

3
77775 [40]

with the coefficients wij
w00 w10 w20 w30 w40

w01 w11 w21 w31 w41

w02 w12 w22 w32 w42

w03 w13 w23 w33 w43

2
666664

3
777775¼

1402:85 4:871 �0:04783 1:487�10�4 �2:197�10�7

1:524 �0:0111 2:747�10�4 �6:503�10�7 7:987�10�10

3:437�10�3 1:739�10�4 �2:135�10�6 �1:455�10�8 5:230�10�11

�1:197�10�5 �1:628�10�6 1:237�10�8 1:327�10�10 �4:614�10�13

2
666664

3
777775 [41]
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Wilson’s equation [40] may be adequate for fluid substitution

use under field conditions (Chen and Millero, 1976), whereas

in the laboratory, the more recent correlation models

(Lemmon et al., 2012a; Wagner and Pruss, 2002) or more

recent formulas (Belogol’skii et al., 1999; Lin and Trusler,

2012; Vance and Brown, 2010) may be preferable if greater

accuracy is desired. That said, the adiabatic bulk modulus

predicted using eqns [39] and [40] from Batzle and Wang

(1992) agrees well with other models (Figure 8).
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Figure 8 Comparison of the bulk moduli of liquid water at 1
atmosphere from 0 to 100 �C for (i) isothermal KT (blue line) calculated
using expressions in Kell (1975), the adiabatic KS (green line) as
calculated from the correlative model sound speeds and densities from
Lemmon et al. (2012b), and a second adiabatic KS (red line) calculated
from the Batzle and Wang (1992) formulas for density (eqn [40]) and
sound speed (eqn [41]). Note that the peak in the bulk moduli arises from
the unique behavior of water.
11.03.4.2.6 Determining Kf from equations of state
Ideally, the best way to obtain the adiabatic fluid bulkmodulus

Kf is from direct determinations of the sound speed and density

in the fluid subject to the appropriate P–T conditions (Clark,

1992; Picard and Bishnoi, 1987). Equations [26] and [27]

provide the definitions of the isothermal KT and adiabatic KS

bulk moduli as the partial derivative of P with Vm. In principle

then, one may simply obtain KT or KS by appropriately

differentiating, respectively, either an isotherm (such as

shown in Figure 7) or a corresponding adiabat. This is done

relatively easily for the isotherms for which we can write

explicit equations as in the preceding text, and, ignoring imper-

fections in the EOS itself, KT can then be easily obtained.

Unfortunately, for purposes of seismic wave propagation, KS

is the one required as discussed in Section 11.03.3.3. From the

EOS, KS can be determined in different ways:
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i. Assuming that the differences are small such that KS�KT.

This may be true in some cases, but even for liquid water at

1 atmosphere, the two deviate above 20 �C (Figure 8). This

assumption becomes even more problematic for hydrocar-

bon fluids. In practical interpretation of seismic data, the

errors in determining seismic velocities may be greater than

the differences produced by using KT, but workers should

still take care when assuming KT is sufficient.

ii. Obtaining KT by derivation of the isotherm and then apply-

ing eqn [30] assuming appropriate knowledge of CP and a.
One problem with this approach is that the knowledge of

these parameters may be incomplete or erroneous.

iii. Numerically converting the P–V isotherms to P–V isentropes

and taking the derivative of these directly (Picard and

Bishnoi, 1987). Again, this approach can be fraught with

additional error. Clark (1992) noted that this may be the

only way to obtain a value for KS particularly for complex

multiphase fluids but it should be recognized that the EOSs

are usually imperfect (as demonstrated in Figure 7). She

recommended that, if possible, workers should find KS by

measuring the sound speeds in the fluids directly with eqn

[29]. Plantier et al. (2008) also echoed this caveat on the

direct application of thermodynamic relations to predict

wave speeds or bulk moduli in heavy oils.

An alternative strategy to calculate the isentropic compress-

ibility and hence the fluid’s thermodynamic sound speed has

recently been developed by Nichita et al. (2010). They obtain-

ed the relevant parameters from partial derivatives of the total

enthalpy with respect to temperature at constant pressure and

composition.

 

11.03.4.3 Mixtures and Solutions

The discussion in the preceding text focuses primarily on sim-

ple fluids with a single chemical component, but in the Earth,

this will rarely be the case. Pore waters are never pure and

usually contain numerous solvated ions and absorbed gases

(van Weert and van der Gun, 2012). Hydrocarbon-saturated

rocks actually contain a complex mixture of different organic

species mixed both miscibly and immiscibly, with water and

free gas often residing separately from the oil in the same pore.

Perhaps most importantly, the pore space can hold the fluid in

pockets of liquids and gas, a mixture with unexpected mechan-

ical properties (the so-called ‘patchy’ saturation). Conse-

quently, we must look at the topic of fluid mixtures from a

number of different perspectives as solutions, mixtures of

immiscible fluids, and mixed phases.
 
 
 
 
 

11.03.4.3.1 Frozen mixtures
‘Frozen’ fluid mixtures can consist of either (i) a mix of immis-

cible and nonchemically interacting fluids or (ii) a mix of

vapor and liquid phases of the same fluid, the proportions of

which do not vary during passage of the seismic wave. In his

classic text, Wood (1955) developed the formula for the wave

speed in a bubbly fluid with liquid and gas phases in pro-

portions of fl and fg, respectively, and of bulk moduli Kl

and Kg, respectively (Wilson, 2005),
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Vf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

flrl +fgrg
	 


fl=Kl +fg=Kg

	 

vuut [42]

where he assumed no chemical interaction between the phases

and that the Laplace surface tension pressure in the gas bubbles

was negligible (i.e., the bubbles were sufficiently large

approximately >0.1 mm in water). By analogy to eqn [29],

the bulk modulus is

Kf ¼ fl=Kl +fg=Kg

	 
�1
[43]

In the rock physics literature, eqn [43] has been extended to

mixtures of n fluids and further generalized to include sus-

pended solids within the liquid. It is often assumed to be an

exact representation:

Kf ¼
Xn
i¼1

fi=Ki

 !�1

[44]

For purposes of illustration and following Wood’s example,

consider a mixture of air and water. The density of the mixture

increases linearly from that for air to that for water but its bulk

modulus remains much closer to that for air and only rises to

that for water in at near 100% water content (Figure 9(a)).

Conversely, a few bubbles within the water have a large influ-

ence on diminishing the mixture’s bulk modulus. This leads to

the unexpected result that the wave speed in the mixture is

substantially less than that in either air or water (Figure 9(b)),

a consequence of the competition between stiffness and den-

sity in eqn [3].

As noted, the results of Figure 9 obtained using Wood’s

equation [42] are presumed to be valid at low frequencies, but

the formula is applied nearly universally in the geophysical

literature. Nichita et al. (2010) had recently questioned even

this assumption. In reality, the physics of the problem is quite

complex with numerous additional considerations needing to

be accounted for including changes to the bulk modulus of the

gas due to Laplace internal pressure in the bubbles (e.g.,

Kieffer, 1977; Landau and Lifshitz, 1959) and of dispersion

due to a wide variety of thermal and mechanical factors (Carey

and Evans, 2011), the literature of which is too large to

review here.

One of the more popular models that considers wave speed

dispersion is that of Commander and Prosperetti (1989). This

model includes the bubble size and corresponding resonance

frequency, thermal diffusivity, and the Laplace bubble pres-

sure. Because of these factors, this model is able to determine

both mixture wave speed and attenuation with frequency. This

model, too, has another unexpected result that, while Wood’s

equation [42] appears to predict the velocities well for this case

below a few hundred Hz, above the resonance frequency for

the bubbles, the stiffness of the mixture increases dramatically

with surprisingly unexpected wave speeds above 15000 m s�1

(Figure 10). Cheyne et al. (1995) provided a heuristic descrip-

tion of this phenomenon. The minimum near 3 kHz is at the

bubble resonance frequency; and the subresonant (‘Wood’s

regime’) and superresonant regimes will shift left and right as

the mean bubble dimensions increase and decrease, respec-

tively. The point of showing these phenomena is not so
n, (2015), vol. 11, pp. 43-87 
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much that we may be interested in the wave speed of the

mixture itself but that the fluid mixture’s bulk moduli can be

frequency-dependent. Consequently, some care may need to

be exercised in the use of the otherwise ubiquitously applied

general Wood’s equation [44]. It is also important to note that

dispersion exists even in the low-frequency Wood’s regime but

this is masked by the logarithmic scaling in Figure 10.

11.03.4.3.2 Miscible fluid mixtures
Miscible fluid mixtures are also very common within the Earth.

Natural oils, for example, are really a complex blend of a
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multitude of different hydrocarbon compounds, and the

‘heavier’ (denser) and more viscous the oil, the greater the

number of compounds that can occur in it. Brines are by far

the most common liquids in both sedimentary basins and the

crystalline crust, and their properties differ from those for pure

H2O. Molecules that would by themselves be gases, particu-

larly CO2 or CH4, go into solution in both H2O and oils. In

this section, we will briefly review a number of these different

types of miscible mixtures.

11.03.4.3.2.1 Brines

Solutions of water and, mostly, NaCl are the predominant

fluids within the Earth’s crust in both sedimentary basins and

crystalline hard rocks. Brines have engendered a large literature

primarily because of the need for information by a number of

disciplines on their physical properties. Work on this topic

continues to the present day with a standardized formula

provided (IAPWS, 2008) and an alternative scheme developed

by Del Grosso (1974) being the most popular descriptions of

brine behavior. While the salt composition of seawater may

remain globally consistent, brines in the Earth can contain

numerous different electrolytes with wide concentrations

affecting both the liquid density and bulk modulus. The den-

sity of the solution invariably increases with salinity, often

given as some fractional measure such as ppt (referring to g

of salt per kg of pure water) as illustrated for a 30 ppt brine

compared with pure water in Figure 11. The trough in the bulk

modulus near 50 �C is again apparent.

Numerous simple polynomial expressions describe the

sound speeds and densities of seawater as a function of

depth, salinity, and temperature (Coppens, 1981; Mackenzie,

1981; Safarov et al., 2009). Following from eqns [39] and [40],

Batzle and Wang (1992) constructed fits of existing data for

brine density rB
 (2015), vol. 11, pp. 43-87 
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rB ¼ rw + S1 0:668+0:44S +10�6
�

� 300P�2400PS +T 80+ 3T�3300S�13P +47PSð Þ½ �Þ
[45]

and sound speed VB

VB ¼Vw + S 1170�9:6T +0:055T2�8:5�10�5T3
�

+2:6P�0:0029TP�0:0476P2Þ
+ S1:5 780�10P +0:16P2

� ��820S2 [46]

where S is the salinity in terms of the weight fraction in ppm/

106. They noted that these were for NaCl concentrations and

could be in significant error for other electrolytes particularly

with divalent anions.

The lack of information on the properties of more concen-

trated brines is an important gap in our knowledge. The exten-

sive work of Safarov et al. (2013) only reaches 30 ppt, but in

situ natural brines can reach full salt saturations with salinities

approaching 300 ppt. Data at higher concentrations are more

difficult to find, but some appropriate density information

might be obtained to 5.5 molal (320 ppt) in Rogers and

Pitzer (1982), Gucker et al. (1975), and LaLiberte and

Cooper (2004). Formation waters in the Earth too also can

have quite different compositions than seawater, with a wide

variety of ions including the cations Na+, Ca2+, Mg2+, Fe2+, K+,

Ba2+, Li+, and Sr2+ and anions Cl�, SO4
2�, HCO3, CO3

2�,
NO3

�, Br�, I�, and S2�. Kumar (2003) measured wave speeds

in KCl solutions but there is little in the literature on the effect

of these ions on the acoustic properties of the solution. These

few citations are in no way intended to be exhaustive, and there

are many contributions that discuss the properties of brines.

However, most of the work is performed under conditions,

particularly of pressure, that are below what is needed in situ,

and workers may need to take care in regard to the range of

applicability of a given formulation.

 

mixture. Percentages represent the saturation proportions of liquid to
gas in the mixed-phase region between the bubble and dew point lines.
(b) Mixed-phase envelopes for various proportions of ethane and
n-heptane. The single-component boiling lines for ethane and n-heptane
are shown in red and purple, respectively, in analogy to (a). The phase
curves for three differing mixture compositions 1, 2, and 3 are shown
with the bubble and dew point lines in blue and green and with their
corresponding pseudocritical point. The yellow line is an envelope of the
critical points and highlights the compositional dependence of the
mixture’s critical points. Adapted from Ezekwe N (2010) Petroleum
Reservoir Engineering Practice. New York: Prentice Hall; Figure 4.5.
11.03.4.3.2.2 Multicomponent fluid mixtures

Multicomponent mixtures in this section refer to miscible

combinations of different gases and liquids, that is, a single-

phase solution that is formed from two or more fluids. Car-

bonated water is one example. Natural hydrocarbon oils are

another; they are quite complex and will literally contain thou-

sands of different molecules. Indeed, we expect that such mix-

tures are likely the rule, not the exception, within the Earth.

Such mixtures have many of the same characteristics as the

pure fluids described in the preceding text, but with significant

complications.

In addition to pressure P, volume V, and temperature T, the

proportions xi of the different fluids in the mixture and their

respective solubilities must also now be considered. As such,

the literature on the study of the behavior of such mixtures is

immense and the field remains an active area of research.

Consider a mixture of two fluids A and B. The phase dia-

gram of this multicomponent system in Figure 12 is broadly

similar to that for the single components shown in Figure 5

except for the zone in P–T space separating the pure fluid

and the vapor phases from one another. For the pure com-

pounds of Figure 5, this boundary is only a line. For a miscible

mixture in Figure 12, the boundary instead becomes an area in

P–T space in which both liquid and vapor coexist. This
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mixed-phase zone lies between the single-component boiling

lines of the two pure fluids A and B.

For purposes of illustration, it is useful to follow the

changes of a 50–50 mixture of two fluids along a hypothetical

pathM–N–O–P in P–T space in Figure 12. AtM, the mixture is

a homogeneous liquid. It remains a homogeneous liquid with

decreasing pressure until point N is reached. Here, the path

meets the bubble point line whereupon the first trace of vapor

phase appears. From the appearance of this first gas bubble at

N, the phase transformation progresses with varying satura-

tions (i.e., proportions of liquid to gas) as one travels from N

toO. At O, called the dew point, the last vestige of liquid phase

remains. Past the dew point O and downward in pressure to P,

the fluid is a homogenous vapor.
 (2015), vol. 11, pp. 43-87 
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The pseudocritical point C in Figure 12 (Kay, 1936) lies

where the bubble and dew point lines meet at pressure PPC and

temperature TPC. Note that C lies above the critical points for

pure A and B. The envelope of the mixed-phase boundary (i.e.,

the line that includes both the bubble and dew point lines)

further complicates the phase behavior. Unlike the single-com-

ponent fluid, C is not the limiting point at which multiple

phases can exist. Consequently, the cricondenbar and the

cricondentherm are the pressure and temperature limits,

respectively, at which both liquid and vapor coexist. At pres-

sure above the cricondenbar, the mixture can only be in liquid

or supercritical states. At temperatures above the crico-

ndentherm, it must be vapor or supercritical.

The location ofC and the shape of themixed-phase envelope

change with the miscible fluid composition as illustrated for a

real mixture in Figure 12(b). The behavior must approach that

of the pure end-member as the proportions of the fluids move

towards 100%. The P–T phase diagrams for various proportions

of the hydrocarbon mixture of ethane (C2H6) and n-heptane

(C7H16) show the evolution of the envelope as the proportions

of the two fluids vary. The position of the pseudocritical point

relative to the cricondenbar, too, varies. The yellow line in

Figure 12(b) maps the locus of the pseudocritical points. It is

worth noting that for the ethane/n-heptane mixture, this line is

continuous between the critical points for pure ethane and

n-heptane. Vankonynenburg and Scott (1980) classified this as

a class I binary phase diagram (Gray et al., 2011).

The class I phase diagram of Figure 12 exemplifies the

behavior of mixtures of organic liquids and particularly natural

hydrocarbon oils. As noted, this is a vast topic in the hydrocar-

bon energy industry as such knowledge is required at nearly

every point from initial production to refining. An understand-

ing of such curves is necessary for purposes of seismic monitor-

ing over oil reservoirs. For example, the fluid pressure in an oil

field declines as fluids are produced. If this pressure decline

followed a hypothetical path downward leading from point M,

the pressure must eventually reach the bubble point where

vapor comes out of solution. The fluid is now mixed-phase,

and its overall bulk modulus drastically decreases similar to

the behavior for air bubble water as shown in Figure 9. As will

be seen later, this change in the fluid properties affects the

overall saturated bulk modulus with a consequent decrease in

both the rock’s wave speed and elastic impedance. This changes

the overall reflectivity of the structure with a detectable change

(Fereidoon et al., 2010). Similarly, heating of liquid heavy oils

to lower their viscosity and enhance their producibility would

also result in the bubble point of the hydrocarbonmixture being

reached with the consequential change in the seismic responses.

There are a number of resources that practitioners can

exploit to obtain appropriate moduli and density. The GERG-

2008 (Kunz and Wagner, 2012) model calculates the proper-

ties for hydrocarbon mixtures and it includes 21 different com-

mon components of natural gas. The software that carries out

these calculations is available (Wagner, 2013). Although this is

a sophisticated model, its authors still argue that new experi-

mental data are necessary.

Batzle and Wang (1992) also provided useful approximate

formulas for hydrocarbon mixtures. In their developments, a

gas mixture is characterized simply only by its specific gravity

G, the ratio between the gas mixture density rg and that of

air rair
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G¼ rg
rair

[47]

measured at 1 atmosphere of pressure and 15.6 �C. Following
Thomas et al. (1970) and using a Benedict–Webb–Rubin EOS

model (Benedict et al., 1942, 1951), they defined pseudo-

reduced temperature TPR and pressure PPR, both of which can

be related to G according to

PPR ¼ P=PPC ¼ P= 4:892�0:4048Gð Þ [48]

TPR ¼ TK=TK
PC ¼ TK= 94:72 +170:75Gð Þ [49]

where the superscript K in eqn [49] indicates that the temper-

atures must be the absolute temperatures in degrees kelvin (TK

(�K)¼T (�C)+273.15). With these variables, the gas mixture’s

density rg at P and T is approximately given by

rg ffi
28:8GP

zRTK
[50]

where z is

z¼ 0:03 +0:00527 3:5�TPRð Þ3� �
PPR

+ 0:642TPR �0:007T4
PR �0:52 + 0:109 3:85�TPRð Þ2

exp � 0:45 +8 0:56�1=TPRð Þ2� �
P1:2
PR =TPR

 �
[51]

The adiabatic bulk modulus KS for this mixture may also be

estimated as

KS ffi P

1�PPR
Z

@z

@PPR

� �
T

�

0:85 +
5:6

PPR + 2
+

27:1

PPR + 3:5ð Þ2�8:7exp �0:65 PPR + 1ð Þ½ �
( )

[52]

with the derivative @z/@PPR taken at constant temperature

calculated from eqn [51].

Batzle and Wang (1992) also gave expressions for estimat-

ing the density and bulk modulus of oils. As already noted,

natural petroleum oils are composed of numerous different

organic compounds, and, as was done with natural gas in

eqn [47], these natural oils can be characterized by their den-

sity ro, again measured at 15.6 �C and atmospheric pressure.

They developed expressions for the pressure and the tempera-

ture dependence of the density of such oils (in g cm�3)

r¼ ro + 0:00277P�1:71�10�7P3ð Þ ro�1:15ð Þ2 + 3:49�10�4P

0:972 + 3:81�10�4 T + 17:78ð Þ1:175
[53]

that lead to the adiabatic bulk modulus

KS ffi r 2096
ro

2:6�ro

� �1=2

�3:7T +4:64P + 0:0115

(

� 4:12
1:08

ro
�1

� �1=2

�1

" #
TP

)2

[54]

Live oils are oils containing gas in solution. As Figure 12

suggests, this gas will come out of solution upon depressur-

ization at the bubble point N; and consequently, the compo-

sition and physical properties of a produced oil may be

significantly different from its in situ precursor (Clark,
n, (2015), vol. 11, pp. 43-87 
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1992). Batzle and Wang (1992) also considered the case of

live oils and provided additional relationships to eqns [53]

and [54] for such cases. They suggested, however, that addi-

tional work is necessary.

As noted by Clark (1992), the best way to obtain appropri-

ate information is to directly measure sound speeds in the oils

themselves. This approach can provide a great deal of thermo-

dynamic information but it remains quite rare. Wang and co-

workers carried out numerous measurements of the wave

speeds in oils at ultrasonic frequencies and observed their

variation with pressure and temperature (Wang and Nur,

1991; Wang et al., 1990). Daridon et al. (1998) conducted a

series of ultrasonic measurements on a suite of hydrocarbons.

Han and Batzle (2000) described a series of measurements on

natural oils and provided a straightforward way to model the

behavior. Oakley et al. (2003a,b) provided an extensive review

of the literature of ultrasonic measurements in organic fluids in

general and expressions for the speed of sound in 68 different

pure organic fluids as a function of pressure.
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Many workers have shown that the sound speeds in hydro-

carbons are significantly affected by pressure and temperature.

The experimental results of Daridon et al. (1998) on a light oil

condensate, a medium weight hyperbaric oil, and a heavy

natural hydrocarbon oil are shown in Figure 13. Generally,

the denser the oil, the greater the wave speed. Wave speed also

increases with pressure and decreases with temperature. How-

ever, it is important to note that these experiments were con-

ducted at ultrasonic frequencies, and it is still not clear whether

the values of Kf derived from them would reflect the adiabatic

value at lower seismic frequencies; more work is required on

this topic as very heavy oils have been shown to display a

substantial dispersion both in situ (Schmitt, 1999) and in the

laboratory (Behura et al., 2007).

Mixtures of CO2 and H2O are also of great importance for

understanding chemical processes within the Earth. The

growth of the geologic sequestration of greenhouse gases has

further accelerated the need for knowledge of this system’s

behavior and its influence on the seismic properties of rocks
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in situ. Again, a large literature on the CO2–H2O system exists

and Hou et al. (2013) gave an up-to-date listing of the many

PVTx studies. The global phase diagram is described by a

number of authors (Evelein et al., 1976; Spycher et al., 2003;

Takenouchi and Kennedy, 1964; Wendland et al., 1999).

The limits on the solubility of CO2 in H2O complicate the

phase diagrams (Duan and Sun, 2003) relative to those of the

hydrocarbon mixtures as shown in Figure 12 because, in addi-

tion to the vapor–liquid (VL) equilibrium curves, one must

also consider the vapor–liquid–liquid (VLL) equilibrium

where vapor coexists with H2O-rich and CO2-rich liquids.

Some of this behavior is illustrated in Figure 14. Two compo-

sitionally dependent critical lines are evident although the one

near the boiling line for pure CO2 is small. The second critical

line extends to higher pressures from the critical point of H2O,

but it does not continue to the critical point of CO2 as was seen

for the hydrocarbon mixtures in Figure 12. Instead, this curve

bends backward to increasing temperatures with pressure, and

it would be expected to eventually intersect the solid phase line

at much higher pressures that are above the limits of current
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experiments (Evelein et al., 1976). This type of phase diagram

is denoted class III (Gallagher et al., 1993; Gray et al., 2011;

Vankonynenburg and Scott, 1980).

Figure 14 highlights only the phase behavior of CO2–H2O

mixtures. However, in order to calculate seismic properties,

the density and bulk modulus of the mixture are required.

Obtaining this information is challenging for such a complex

system. Although a global model of the EOS for CO2–H2O

mixtures has not yet been realized, workers have been able to

provide EOS information over certain regions of PVTx space.

For example, Duan and colleagues have developed models for

the CO2–H2O gas phase from 0 to 28 MPa and from 323 to

645 �K (Duan et al., 2008) and vapor–liquid phase above

523 �K (Mao et al., 2009). Gallagher et al. (1993) provided

estimates of behavior from 400 to 1000�K and to 100 MPa.

However, a good deal of work still is required to fully under-

stand this system (Hu et al., 2007). The use of such data in

fluid substitution modeling of seismic responses may be fur-

ther complicated by the fact that in practice, there will also be

numerous additional impurities in the injected gas streams

(Ziabakhsh-Ganji and Kooi, 2012).
11.03.5 The Rock Frame

11.03.5.1 Essential Characteristics

In order to properly understand the seismic properties of a real

and usually fluid-saturated rock at depth in the Earth, one must

also know the elasticity of the rock’s skeleton or frame. The frame

is anassemblage of a number of solidminerals. This construction,

free of fluids or dry, will have its own elastic properties Kd and md
and density rd. The subscript ‘d’ usually denotes the ‘dry’ or

unsaturated state for the frame. This can also mean in certain

contexts ‘drained,’ which is the state of a saturated sample after

sufficient time such that the pore fluid pressure has equilibrated

after a deformation. In the literature, the ‘dry’ and ‘drained’

conditions are usually taken to give the same static bulkmodulus.

The situation is different for wave propagation as fluids may not

have time to move relative to the frame. In the earlier literature,

the reader needs to take care when the term ‘skeleton’ is discussed

as this has variously been used to describe either the mineral or

the frame. The frame is characterized by its constituent minerals

that will have their own solid moduli Km and mm and density rm,
its porosity f, and its permeability k.

The fluid directly affects the overall density of the rock, r,
through eqn [21] that is often simplified to

r¼frf + 1�fð Þrm [55]

where f is the porosity (the ratio of the void space volume to

the envelope or total volume of the material) and rf and rm are

the fluid and the solid densities, respectively. When more than

one fluid resides in the pore space, eqn [55] is further modi-

fied, particularly in the applied literature, to saturations Sj for

each of the n immiscible free fluid components such that

r¼f
Xn
j¼1

Sjr
f
j

 !
+ 1�fð Þrm [56]

with

1¼
Xn
j¼1

Sj [57]
n, (2015), vol. 11, pp. 43-87 
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and where rj
f is the respective fluid component density.

Usually, the saturations are assigned more directly to the dif-

ferent fluid phases such as Sw, So, and Sg for water, oil, and gas,

respectively.

With these definitions out of the way, we proceed in this

section to discuss the elastic properties of the rock frame. These

frame properties are key to understanding the elasticity, and

hence the wave propagation, through rocks. Again, there is a

large literature on this topic as the study of wave propagation in

porous fluid-saturated media is important in many disciplines.
 

11.03.5.2 The Pore-Free Solid Portion

In this section, we are interested in the effective elastic proper-

ties of the solid frame by itself. Rocks are most commonly a

mixture of a number of minerals, and often, knowledge of the

effective bulk Km and shear mm moduli for the solid mineral

portion is a first prerequisite to the more sophisticated calcu-

lations incorporating porosity and fluids. To obtain these,

workers often assume that on average, the rock’s minerals are

randomly oriented such that the effective material is elastically

isotropic. The simplest approaches to calculating the effective

mineral moduli of the pore-free composite were derived by

Voigt (1887) and by Reuss (1929a) who, respectively, assumed

constant strain or stress within each of the components. Con-

sequently, the Voigt and Reuss formulations are mixing rules

for the stiffnesses or the compliances, respectively, such that for

N isotropic components,

KV ¼
XN
i¼1

fiKi �Km �
XN
i¼1

fi=Ki

" #�1

¼KR [58]

and

mV ¼
XN
i¼1

fimi � mm �
XN
i¼1

fi=mi

" #�1

¼ mR [59]

In eqns [58] and [59], the values of Ki and mi could be taken

from Table 2 or more extensive compilations (Bass, 1995).

Hill (1952) demonstrated that the Voigt and Reuss values

bound the composite’s effective bulk Km and shear mm moduli.

Various authors (see Watt et al. (1976)) have argued over

which of the bounds or averages provide the best values. In

practice, Hill’s simple arithmetic mean of the bounds

KVRH¼ [KR+KV]/2 and mVRH¼ [mR+mV]/2 is most usually calcu-

lated to give Km and mm as done similarly in Section 11.03.3.2

for isotropic composites of polycrystals made of a single min-

eral phase. The difference here is that the bounds are assumed

to be mixtures of isotropic materials.

Hashin and Shtrikman’s (1962) approach may also be

applied to estimating the composite’s elasticmoduli according to

K +
HS ¼K1 +

f2

K2�K1ð Þ�1 +f1 K1 +
4

3
m1

� ��1 �Km

�K2 +
f1

K1�K2ð Þ�1 +f2 K2 +
4

3
m2

� �¼K�
HS [60]

and
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m +
HS ¼ m1 +

f2

m2�m1ð Þ�1 +
2f1 K1 + 2m1ð Þ
5m1 K1 +

4

3
m1

� �� mm

� m2 +
f1

m1�m2ð Þ�1 +
2f2 K2 + 2m2ð Þ
5m2 K2 +

4

3
m2

� �¼ m�HS [61]

Equations [60] and [61] are valid for only two mineral

components, but Hashin and Shtrikman (1963) also provided

the methodology to carry out the calculations for N compo-

nents (Berryman, 1995; Watt et al., 1976).

Calculations using eqns [58] through [61] are carried out

for a hypothetical mixture of quartz and calcite for purposes of

illustration in Figure 15. Such a quartz–calcite mixture is not

expected to exist naturally, but these two minerals were chosen

only because of the large differences in their elastic moduli and

because of the unusual differences between Km and mm. Equa-
tion [59] gives similar values of the shear moduli with the

largest deviation between mV and mR being<3% at fquartz¼0.5.

In contrast, the Voigt and Reuss bulk moduli from eqn [58]

differ by nearly 11% at the same quartz proportion. In contrast,

the Hashin–Shtrikman bounds for both moduli of eqns [60]

and [61] differ by only a fraction of a percent. This translates

into tighter differences for the wave speeds that vary by at most

by 3.5% and 1.4% for VP and VS, respectively. Consequently,

eqns [58] through [61] are widely used to estimate Km and mm
for the rock, and there appears to be good experimental evi-

dence of their applicability to pore-free metal composites

(Hashin and Shtrikman, 1963; Umekawa and Sherby, 1966)

and to an assortment of rocks (Brace, 1965; Ji et al., 2002)

subject to high pressures.

One caveat is that in many rocks, the minerals have a

preferential crystallographic alignment due to sedimentary

deposition or metamorphic deformation. In such cases, the

minerals are no longer crystallographically randomly oriented;

and their intrinsic anisotropy affects the overall anisotropy

of the composite. These preferential mineral alignments

are variously called lattice-preferred orientations (LPO) or

crystallographic-preferred orientations (CPO) in the literature.

This requires that the various mixing theories be modified to

account for the crystal symmetries and the statistics of their

orientations with respect to that of the material.

There is insufficient room to go into details of the proce-

dures used and only a brief listing of the relevant literature is

given. Different averaging techniques were described by a vari-

ety of workers (Babuska, 1972; Bunge, 1974; Crosson and Lin,

1971; Kumazawa, 1969; Thomsen, 1972). Mainprice (1990)

provided computer programs that utilized these ideas and

applied it to a textured plagioclase rock.

Noting that the results from the Voigt and Ruess averages

are not invertible to each other (i.e., eqn [13] does not hold),

Matthies and Humbert (1993) developed the geometric mean

average that was then used by Mainprice and Humbert (1994)

on polycrystals of feldspar and biotite and by Cholach and

Schmitt (2006) to explore the effects of the strength of phyllo-

silicate orientations on the seismic anisotropy of shales and

schists. The ability to quantitatively obtain mineralogical ori-

entation distribution functions has grown greatly in the last
 (2015), vol. 11, pp. 43-87 
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decade with developments in x-ray and neutron scattering and

electron backscatter diffraction techniques. This is motivating a

growth in the use of the averaging techniques that have now

been applied to numerous different rock types (e.g., Almqvist

et al., 2010; Kanitpanyacharoen et al., 2011; Wenk et al., 2007,

2012), although often the model results disagree with corre-

sponding observations because the averaging models cannot

account for porosity. Development of modeling procedures

still continues (Man and Huang, 2011; Morris, 2006).
 
 
 
 
 

11.03.5.3 Influence of Porosity

The rock’s porosity f has a large influence on the elastic prop-

erties of a material. Walsh et al.’s (1965) classic experiments

still remain of interest in this context. They constructed a series

of glass ‘foams’ of differing porosities by heating packs of glass

beads. They then measured the linear compressibility of these

samples with strain gauges during hydrostatic compression;

unfortunately, this only provides a measure of the Kd as indi-

cated by the filled squares in Figure 16(a). Regardless, these

data illustrate the rapid decline in Kd with f.
It is worthwhile to compare these observations to the Voigt,

Ruess, and Hashin–Shtrikman bounds described above, the

expressions developed for a solid composed of a ‘mineral’

filled with spherical pores by MacKenzie (Li and Zhang,
Treatise on Geophysics, 2nd editio

 

2011; Mackenzie, 1950; Yoshimura et al., 2007) and those of

Kuster and Toks€oz (1974a,b).

Mackenzie’s expressions take the form

KMK ¼ Km

1+
3f 1� nmð Þ

2 1�2nmð Þ 1�fð Þ
� � [62]

and

mMK ¼
mm 1�fð Þ

1+
f 12 +6Km=mmð Þ
8 +9Km=mmð Þ

� � [63]

Poisson’s ratio for the solid portion nm may be calculated

from the pore-free mineral moduli Km and mm using a standard

elastic relation (Birch, 1961)

nm ¼ 1

2

3Km�2mm
3Km +mm

[64]

The corresponding formulas for spherical inclusions with

moduli Ki and mi and volume fraction, f, according to Kuster

and Toks€oz (1974a) are

KKT�Kmð Þ Km +4mm=3ð Þ
KKT + 4mm=3ð Þ¼fi Ki�Kmð Þ Km + 4mm=3ð Þ

Ki +4mm=3ð Þ [65]

and
n, (2015), vol. 11, pp. 43-87 
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mKT�mm
� � mm + zmð Þ

mKT + zmð Þ¼fi mi�mmð Þ mm + zmð Þ
mi + zmð Þ [66]

where

zm ¼ mm 9Km + 8mmð Þ
6 Km +2mmð Þ [67]

The moduli for the inclusions are taken to be zero for the

calculations shown in Figure 16. For this particular case (and

also for cases in which the spherical voids are filled with a fluid

for which mi¼0), the Reuss and the lower Hashin–Shtrikman

bounds coincide. Further, the Kuster–Toks€oz and the upper

Hashin–Shtrikman bound values also are the same, and these

are also close to those calculated using Mackenzie’s equations.

One important observation from Figure 16 is that unlike the

calculations for a nonporous mixture of solids (Figure 15), the

Voigt–Reuss bounds are less useful in predicting the moduli for

porous materials. One reason for this is the large divergence

between the vanishing moduli in the empty pore. The Hashin–

Shtrikman bounds, too, have a wide variance although the

upper bounds appear to match Walsh et al.’s (1965) bulk mod-

ulus observations reasonably well.

There is some scatter in Walsh et al.’s (1965) experimental

results in Figure 16(a), but they do trend close to but slightly

lower than the KKT�KHS+�KMK prediction line. The reason for

this most likely lies in the fact that both the Kuster–Toks€oz and

Mackenzie formulations assume ‘dilute’ amounts of spherical

voids that are sufficiently removed from one another such that

the interactions between their concentrated stress and strains

may be ignored. Interaction of the elastic fields from individual

spheres cannot be avoided once the spheres become suffi-

ciently proximate.

Numerous authors have attempted to overcome these limi-

tations by addressing such interactions by two main groups of
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approaches: that of an effectivematrix or that of an effective field

(Carvalho and Labuz, 1996; Mavko et al., 2003). The effective

matrix approaches are often further subdivided either into ‘self-

consistent’ methods (Budiansky and O’Connell, 1976; Hill,

1965; Wu, 1966) that consider the solids and pores as a whole

or by ‘differential effective medium’ methods in which pores are

incrementally added to a matrix in order to update its modulus,

and this revised modulus is then that of the new matrix for the

next iteration (e.g., Berryman et al., 2002; David and

Zimmerman, 2011; Kachanov, 1980; Li and Zhang, 2011;

Norris, 1985; Zimmerman, 1984). The effective field methods

developed by Mori and Tanaka (1973) place a pore in the

nonporous solid to which a stress field is then applied. The

advantage of this approach is that more complex stress fields

can be applied within the material accounting directly for the

existence of the holes. These techniques have been widely

applied in the composite materials literature but have not seen

as much application in rock physics (Sayers and Kachanov,

1995), although Kachanov et al. (1994) suggested that the

Mori–Tanaka approach may be superior. Berryman and Berge

(1996) noted the exclusivity of the use of the Mori–Tanaka

approach in the engineering literature and contrasted it with

the Kuster–Toks€oz model employed in geophysics indicating

that both are likely only valid for f<0.3. Yan et al. (2011)

gave a recent example of the use of the Mori–Tanaka approach

in estimating the frame moduli of sandstones.

The literature on modeling of rock properties using the

various developments presented earlier in the text is large and

only a small view of it is possible here. Mavko et al. (2003)

provided some starting points for further investigations.

The porosity-dependent variations in moduli transfer

through to the wave speeds according to eqns [1] and [2]. An

illustration of this effect in a suite of carbonates, primarily

clean limestones, shows the significant changes in both VP

and VS with increasing porosity. Both wave speeds decrease
 (2015), vol. 11, pp. 43-87 
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by upward of 50% over the range of fmeasured. This is despite

the fact that the bulk density, r, which is in the denominator of

eqns [1] and [2], also decreases as f increases according to eqn

[55]. Cleary, porosity is an important factor in determining a

material’s seismic wave speeds.
11.03.5.4 Influence of Crack-Like Porosity

As just noted, aside from the constituent mineralogy, the most

important factor affecting the elastic properties of the frame is

f. The calculations shown in Figure 16 are based on spherical

pores, but most pores will not be shaped so simply; and the

geometry of the pores needs also to be considered. It is useful

to return to Figures 16 and 17 to see some of such effects. Berge

et al. (1995) measured VP and VS on sandstone analogs of

lightly sintered glass beads and, from these values, calculated

the dynamic moduli shown in Figure 16. Their observed

values substantially deviate from those obtained in Walsh

et al.’s (1965) measurements and from those predicted by

Mackenzie’s (1950) derivation of eqn [62]. Bakhorji’s (2009)

measurements on carbonates, too, show considerable scatter of

up to 1700 m s�1 for limestones near a given f. Other factors

that simplify porosity and mineralogy must be influencing

these observations.

Much of this can be explained by considering the influence

of the pore shape. At the risk of oversimplifying the problem,

pore shapes can broadly be placed into two categories: equant

or crack-like. Much like a Roman arch, large aspect ratio equant

pores are stiff; they do not significantly deform under the

application of a stress. In contrast, small aspect ratio crack-

like pores are easily compressed and can close under even

modest stresses.

An important consequence of this is that the rock elastic

moduli are generally pressure-dependent, a fact that has been

known since the very first elastic measurements on rock to high

pressures by Adams and Williamson (1923) (Figure 18(a)).

They were surprised that such effects were seen in rocks with

porosities <1%. They theoretically tested a number of possible
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hypotheses and finally inferred that this nonlinear behavior

must be due to the existence of crack-like pores of small aspect

ratio.

Heuristically, this behavior stems from the large compress-

ibility of a crack-like pore perpendicular to its plane. A normal

stress applied across the crack face pushes the surfaces towards

one another. As this stress increases, the effective crack shortens

and eventually closes at pressure Pc. For a crack with an ellip-

tical cross-section of aspect ratio w (ratio of the minor to major

axes), this is (Walsh, 1965)

Pc ¼ pEmw
4 1� n2m
� � [68]

where Em and nm are the solid mineral Young’s modulus and

Poisson’s ratio, respectively. Cracks with small aspect ratios w
are easily closed. For example, a hypothetical elliptical crack

with w�10�3 residing in quartz matrix closes by application of

<2 atmospheres of pressure (�0.2 MPa). In contrast, a spher-

ical ‘crack’ with w¼1 would according to eqn [68] not close

until 172 GPa. Of course, the material would crush long before

such a pressure could be reached, but these calculations serve

to illustrate how easily crack-like porosity can be closed relative

to more equant porosity.

Consider subjecting a material containing cracks with a

distribution of different w’s to an increasing confining pressure.

At low pressures, those cracks with small w first close. As the

pressure continues to increase, cracks with progressively larger

w will close. Once closed, a crack no longer influences the

overall elasticity and essentially disappears with the result

that the rock becomes less compressible. This is illustrated in

Figure 18(b), which is a cartoon of the expected strains on a

cracked rock sample. As pressure increases, the observed strain

(heavy dark line) is initially nonlinear. As the cracks progres-

sively close, the material stiffens and the strain–stress curve

becomes less steep. This continues until all of the crack poros-

ity is closed at which point the strain–stress curve becomes

linear and parallel to that expected for the pore-free solid

(thick dashed line). The observed strain is a combination of

the strains due to closure of the cracks (thick dashed line) and

that of the solid. This can be seen in the real strains observed

on a dolomite rock sample (Figure 18(c)). These arguments

are perhaps a bit oversimplified (Stroisz and Fjaer, 2013), but

regardless at lower confining stresses, rocks are generally non-

linearly elastic materials, that is, their moduli and subsequently

their seismic wave speeds depend on confining pressure. One

may be able to ignore this in the deep crust and the Earth’s

mantle, but it appears to be an important factor in seismic

investigations nearer the Earth’s surface (Crampin and Peacock,

2008; Schijns et al., 2012). Recognizing this fact is key, for

example, in properly interpreting time-lapse seismic observa-

tions from reservoirs subject to varying states of effective stress.

As noted, such nonlinear pressure dependencies have been

noted since Adams andWilliamson (1923). This pressure depen-

dence of the elastic moduli translates into a pressure dependence

of the waves speeds. Such effects have been observed in nearly all

rock types and an incomplete listing of contributions where such

nonlinear effects have been observed includes those for igneous

andmetamorphic hard rocks (e.g., Birch, 1960, 1961; Blake et al.,

2013;ChengandToks€oz, 1979;Cholach et al., 2005;Christensen
n, (2015), vol. 11, pp. 43-87 
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and Stanley, 2003; Goddard, 1990; Kern, 1982; Lyakhovsky et al.,

1997; Todd and Simmons, 1972), sandstones (e.g., Christensen

and Wang, 1985; Gomez et al., 2010; Jones and Nur, 1983;

Khazanehdari and McCann, 2005; Khazanehdari and Sothcott,
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represent the spread of the moduli they expected due to mineralogical
differences within a given geologically defined rock type. Note that
their definition of a megabar¼1.0197 kg cm�2¼0.9869 atm�0.1 MPa
and should not be confused with the modern Mbar¼100 GPa.
(b) Illustration of the partitioning of the total observed strain into
components due to the cracks and the minerals as a function of pressure
(redrafted from Schmitt and Li, 1995). (c) Observed strains parallel and
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2003; Lo et al., 1986; Prasad andManghnani, 1997; Sayers, 2002;

Sayers et al., 1990; Smith et al., 2010;Wyllie et al., 1958; Xu et al.,

2006), carbonates (e.g., Alam et al., 2012; Azeemuddin et al.,

2001; Fabricius et al., 2008; Melendez Martinez and Schmitt,

2013), and mudstones (Freund, 1992; Kwon et al., 2001;

Sayers, 1999). For example, the wave speeds in a highly cracked

sandstone (Figure 19(b)) from the Cadotte formation in Alberta

vary greatly even over the relatively modest range of confining

pressures to 60 MPa (He, 2006). It is interesting to contrast this

rock’s behavior with that for a comparison brass sample that over

this pressure range has a wave speed that increases slightly due to

the pressure-dependent increase in the intrinsic crystal moduli as

described in the section on minerals in the preceding text.

Many workers have focused on different ways to describe

this nonlinearity including the use of curve fitting (Carcione

and Tinivella, 2001; Eberhart-Phillips et al., 1989; Freund,

1992; Khaksar et al., 1999; Kirstetter et al., 2006; Prasad and

Manghnani, 1997; Prikryl et al., 2005; Zimmerman, 1985),

Birch–Murnaghan equations of state (Birch, 1961), differential
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to eqn [70] are shown. (b) Photomicrograph (2�2 cm) under
transmitted light of the Cadotte sandstone showing its highly cracked
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2457.7 m depth) and image from He (2006).
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approaches (Ciz and Shapiro, 2009), crack damage

(Lyakhovsky et al., 1997), and third-order elastic moduli

(Payan et al., 2009; Sayers and Kachanov, 1995; Sinha and

Kostek, 1996). In describing the pressure dependence of a

velocity in such rocks, often workers will use an empirical

expression of the form

Vi ¼A+CPeff �Be�DPeff [69]

where Vi can be either VP or VS, Peff is the effective pressure (to

be described shortly) applied to the material, and A, B, C, and

D are simply parametric fitting parameters. C is often left as

zero as it can result in unreasonable values at elevated pressures

(Khaksar et al., 1999). This is convenient when the only infor-

mation available might be laboratory measurements on the

core samples. While eqn [69] is essentially devoid of any

physics, it does well describe the shapes of the curves shown

in Figure 19 differing from the observed values by <15 m s�1

(He, 2006).

A number of approaches have been employed to more

fundamentally explain the effects of cracks on elastic moduli

and velocities. The already mentioned self-consistent approach

(Budiansky and O’Connell, 1976; O’Connell and Budiansky,

1974) remains popular because of its relative ease of applica-

tion. Consider the case of flat circular cracks of radius a and

with an elliptical cross-section of minor axis c and with a�c.

The crack density parameter is E�N<a3>whereN is the num-

ber of cracks per unit volume. It can only be related to the crack

porosity fc if one assigns values to a and c so that vc¼4pa2c/3 if

all the cracks have the same dimensions whereupon fc¼Nvc.

Once E is set, the effective Poisson’s ratio of the cracked solid nd
must first be found from

E¼ 45

16

nm� ndð Þ 2� ndð Þ
1� n2d
� �

10nm�3nmnd� ndð Þ [70]

whereupon the moduli

Kd ¼Km 1�16

9

1� n2d
1�2nd

� �
E

� �
[71]

and

md ¼ mm 1�32

45

1� ndð Þ 5� ndð Þ
2� ndð Þ E

� �
[72]

are easily calculated. For purposes of illustration, this self-

consistent approach is applied by placing cracks with major

axis diameter of a¼1 mm for three different and small aspect

ratios a¼ c/a in Figure 20. We choose to plot the moduli and

wave speeds as function of the crack porosity fc because the

physical meaning of the crack density parameter E is less intu-
itive. Examination of Figure 20 shows that smaller aspect ratio

cracks have a disproportionate influence on the overall elastic

moduli and velocities. Further, even a vanishingly small crack

porosity of <1% has a substantially larger effect than the

equivalent more equant porosity. This is particularly apparent

when the theoretical results for spherical pores of Figure 16 are

compared to the equivalent crack porosities in Figure 20.

While we have used here the O’Connell and Budiansky

(1974) self-consistent forms to illustrate the large influence of

crack-like porosity on rock properties, it must be noted that

there are also many competing models. Again, geophysicists
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will often employ the Kuster and Toks€oz (1974a) model

adjusted to employ small a ellipsoids. Horii and Nemat-Nasser

(1983) extended the self-consistent approach by including

crack–crack interactions, crack closure, and frictional sliding

along the planes of closed cracks to show that the loading

history may be important. Berryman et al. (2002) developed a

differential effective medium model to account for dry and

fluid-filled cracks. Hudson (1981) used a mean field approach

to account for the dynamic effects of both aligned and randomly

oriented cracks, and an advantage of his formulation is that he

can account for seismic attenuation. Mavko and Nur (1978)

carried out an analysis that employed dislocation theory to

solve for the deformations associated with a more realistic
n, (2015), vol. 11, pp. 43-87 
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Figure 21 Illustration of the confining pressure dependence of (a) the
dry frame moduli Kd (eqn [74], dashed green line) and md (eqn [75],
dashed blue line) according to Walton (1987) and (b) the corresponding
compressional VP (dashed green line) and shear VS (dashed blue line)
wave speeds of an unconsolidated pack of quartz spheres
(Km¼36.5 GPa, mm¼44.5 GPa, rm¼2650 kg m�3) with a porosity
f¼0.36 and coordination number R¼6. The corresponding values
that include the pressure dependence of R (eqn [78]) are shown as solid
lines and denoted by 0.
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crack geometry with tapered edges. More recently, Gao and

Gibson (2012) developed a statistical asperity model to describe

the influence of microcracks and provide a more extensive

review of the recent literature than is possible here.

Numerous authors have attempted to use the shapes of either

the strain curves (as in Figure 18) orwave speeds (as in Figure 19)

to invert for various characteristics of the cracks and the distribu-

tions of their dimensions (e.g., Angus et al., 2009; Cheng and

Toks€oz, 1979; David and Zimmerman, 2012; Schubnel et al.,

2006) under a variety of simplifying assumptions.

11.03.5.5 Pressure Dependence in Granular Materials

Cracked Earth materials are not the only ones with pressure-

dependent frame properties. Granular materials, such as

unconsolidated sands at low confining pressures, too, are

also highly sensitive to applied confining pressures. This has

been demonstrated by many workers in the laboratory

(Bachrach and Avseth, 2008; Domenico, 1977; Goddard,

1990; Makse et al., 1999; Zimmer, 2003; Zimmer et al.,

2007) or inferred from field measurements (Bachrach et al.,

2000). In order to predict the moduli and wave speeds in such

materials, theoretical developments (Digby, 1981; Walton,

1987) rely primarily on the ‘Hertz–Mindlin’ deformations

( Johnson, 1987) at the contact between two mineral grains.

Consider a grain pack with porosity f within which each grain

will on average touch R neighbors. Further, assume that both

normal and shear tractions exist at each grain contact according

to Walton’s (1987) ‘infinitely rough’ grain model. The moduli

of this grain pack as rewritten by Makse et al. (1999) are

Kd ¼Cn fRð Þ2=3
12p

ffiffiffiffiffiffiffiffiffi
6pP
Cn

3

r
[73]

and

md ¼
Cn + 3Ct=2ð Þ fRð Þ2=3

20p

ffiffiffiffiffiffiffiffiffi
6pP
Cn

3

r
[74]

where

Cn ¼ 4mm
1� nm

[75]

and

Ct ¼ 8mm
2� nm

[76]

are factors that relate the forces at the contact points to the

induced overlap between the grains. Walton also derived

expressions for the case of ‘smooth’ spheres where any tangen-

tial forces at the grain contacts disappear. Makse et al. (1999)

gained insight from discrete particle modeling (Cundall and

Strack, 1979) to infer that the coordination number R is also

pressure-dependent because of grain motions with a value

empirically derived from their numerical modeling of

Rh i¼ 6+
P

0:06

� �1=3

[77]

where in this expression, the confining pressure P must be in

units of MPa. The cubic root dependence of the moduli with

confining pressure in eqns [73] and [74] is perhaps the most

interesting aspect of these equations. This is essentially due to

the fact that the grain contacts become stiffer with pressure as

their contact area expands. Themoduli increasemore rapidly in
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Makse et al.’s (1999) model because the number of grain con-

tacts is also increasing with pressure. This cubic root for the

moduli translates to a 1/6 root dependence for the wave speeds.

Although the theory illustrated in Figure 21 captures some

of the elements of the pressure dependence of the moduli, real

measurements on granular materials give different moduli and
 (2015), vol. 11, pp. 43-87 
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velocities (Hardin and Blandford, 1989). On the basis of an

extensive series of ultrasonic wave speed measurements on a

wide variety of different packs of synthetic and natural grains,

(Zimmer, 2003; Zimmer et al., 2007) found exponents that

were significantly <1/6. Recently, Andersen and Johansen

(2010) found that Walton’s (1987) model overpredicts the

observed sonic log wave speeds in unconsolidated sands by

more than a factor of 1.5, and they suggested empirically

derived curves (e.g., Fam and Santamarina, 1997) may be best.
11.03.5.6 Implications of Pressure Dependence

The pressure sensitivity of moduli and wave speeds has two

important implications. The first is that the application of

nonhydrostatic or deviatoric stress states affects the rock’s elas-

tic anisotropy. The second is that the properties are also highly

sensitive to a pore pressure. Both of these factors can strongly

affect the seismic observations.

11.03.5.6.1 Stress-induced anisotropy (acoustoelastic
effect)
All of the discussions to this point have assumed that the

materials are subject to a uniform hydrostatic confining pres-

sure P. In the Earth, however, a deviatoric state of stress is the

general case. Such states of stress produce wave speed anisot-

ropy in both granular (Sayers, 2002, 2007; Walton, 1987) and

cracked (Horii and Nemat-Nasser, 1983; Sayers and Kachanov,

1995) rocks. In the former, the anisotropy results from the

stiffening of the contacts in the direction parallel to the greater

compression. In the latter, the anisotropy is primarily a conse-

quence of the preferred closure of those cracks whose plane is

aligned normal to the greatest principle compression. Nur and

Simmons (1969) may have been the first to observe these

phenomena although the stress concentrations in their circular

sample subject to a uniaxial force were not uniform. Since then

the effect has been documented by many workers under more

controlled stress state conditions (e.g., Babuska and Pros,

1984; Becker et al., 2007; Bonner, 1974; Gurevich et al.,

2011; Johnson and Rasolofosaon, 1996; Stanek et al., 2013)

in cracked rock, (Nur, 1971) in granular rock (e.g., Dillen et al.,

1999; Khidas and Jia, 2010; Prioul et al., 2004; Rai and

Hanson, 1988; Roesler, 1979) and numerically (Gallop,

2013; Hu et al., 2010). At the field scale, Schijns et al. (2012)

were able to explain the observed seismic anisotropy in a

1300 m thick section of the Outokumpu biotite gneiss on the

basis of oriented microcracks and mineral CPO (Elbra et al.,

2011; Kern et al., 2009; Lassila et al., 2010; Wenk et al., 2012).

The basis of this effect again derives from the progressive

closure of the crack-like porosity with compression. Consider

an unstressed rock mass containing numerous narrow cracks,

the orientations of which are randomly but uniformly distrib-

uted (Figure 22(a)). Application of an appropriately large

uniaxial stress sxx to the mass closes those cracks whose planes

are perpendicular or nearly so to the direction of sxx (Berg,

1965; Walsh, 1965) while leaving the cracks whose planes are
(i.e., in the plane of the figure), and the horizontally polarized
shear (i.e., perpendicular to the plane of the figure) wave modes,
respectively. In (c), the wave speed is represented by the distance
from the origin.

n, (2015), vol. 11, pp. 43-87 
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aligned to the stress open as shown in Figure 22(b). This

transforms the initially isotropic rock into a transversely iso-

tropic one (Fuck and Tsvankin, 2009) with directionally

dependent relative wave speeds as shown in Figure 22(c).

Stress-induced anisotropy is important in many geophysi-

cal problems from complicated stress conditions near a well-

bore (Schmitt et al., 1989; Winkler, 1996), in mines (Holmes

et al., 2000a; Holmes et al., 2000b), over petroleum reservoirs

(Wuestefeld et al., 2011), and in stress changes related to

seismicity. (Crampin, 1994; Crampin and Peacock, 2008) in

particular had championed the interpretation of shear wave

splitting to infer stress states for reservoir monitoring and

earthquake forecasting.

11.03.5.6.2 Influence of pore pressure
Although we are not yet considering the effects on the dynamic

seismic properties of fluids in the pore space of the rocks, the

fluid pore pressure Pp has an important effect on the static

elastic properties of the frame that must be taken account of

in most cases. Numerous laboratory experiments have shown

that the frame properties of rocks depend not on the confining

pressure P per se but on the effective pressure Pe:

Pe ¼ P�xPp [78]

where x the pore pressure coefficient. More generally, for a set

of total or confining stresses sij, the effective stresses seij eqn
[78] can be written as

seij ¼ sij�dijxPp [79]

where dij is the Kronecker delta; the pore fluid does not influ-

ence the shear stresses.

What this means is that the frame moduli Kd and md and

consequently the wave speeds VP and VS are generally func-

tions of Pe. A corollary to this is that the dry moduli do not

change (to the first approximation) if Pe remains constant. The

measurements of He (2006) on the Cadotte sandstone illus-

trate these effects well (Figure 23). In his tests, he first mea-

sured VP and VS through a water-saturated sample of the

Cadotte sandstone at confining pressures to 60 MPa while

maintaining the pore pressure Pp¼0. This yields the highly

nonlinear curve of velocities versus confining pressure as was

already encountered for a similar dry sample in Figure 19.

Once this was accomplished, He repeated the measurements

in suites where the differential pressure was held constant first

at 15 MPa and then at 30 MPa. In both of these, the wave

speeds remain constant, meaning that x¼1 over this pressure

range to within experimental error.

The concept of effective pressure can be confusing in part

because a worker must take care to consider which definition

of effective pressure one truly requires for the phenomena at

hand. More directly, this usually means one must have the

appropriate value of x for the physical process being studied

(Berryman, 1992; Berryman, 1993). The effective pressure/

stress concept was first developed by Terzaghi with x¼1. How-

ever, the apparent x will deviate from unity depending on the

rock structure and potential of chemical interaction (e.g., swell-

ing clays) (Bernabe, 1987; Zoback and Byerlee, 1975), on the

rates at which pore pressures can recharge during rapid defor-

mation and dilatancy leading to failure (Brace and Martin,
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1968; Schmitt and Zoback, 1992), and on the linear strains

and volumetric deformation of the material itself (Biot and

Willis, 1957; Nur and Byerlee, 1971). With regard to the last

item, the Biot–Willis effective stress coefficient for poroelastic

strain is

x¼ 1� Kd

Km
[80]

Unfortunately, the use of eqn [80] in determining the

appropriate effective pressure or stress in determining VP or

VS has propagated through the rock physics literature. This

usage is incorrect, as emphasized by Mavko and Vanorio

(2010), and can lead to significant error particularly in com-

pressible materials. For purposes of finding moduli or wave

speeds, it is more proper to assume x�1 in the absence of

additional information on the material behavior.

The influence of effective pressure on seismic responses is of

particular interest in time-lapse seismology. Pore pressures Pp
in reservoirs will vary as fluids are injected or produced and

this results in a change in the effective stress and, hence, VP and

VS and the consequent seismic reflectivity. Proper interpreta-

tion of time-lapse observations cannot easily ignore the

changes in the effective pressure or stress (Herwanger and

Horne, 2005; Sayers, 2004).
11.03.6 Seismic Waves in Fluid-Saturated Rocks

Most commonly, a worker requires a prediction of the seismic

wave speeds under the in situ conditions in the Earth where the

rock is subject to various stresses, pore pressures, and fluid

saturations. After providing information on the behavior of
 (2015), vol. 11, pp. 43-87 
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the rock’s various components of the mineral solid, the fluid,

and the rock’s frame in the preceding sections, we are now

ready to review the approaches to understanding the seismic

properties of fluid-saturated rocks. This is often referred to as a

fluid substitution analysis. To summarize, the building blocks

needed to determine the fluid-saturated bulk Ksat and shear msat
moduli that are necessary to calculate VP and VS with eqns [1]

and [2] are as follows:

• The elastic moduli Km and mm and density rm of the solid

mineral constituents.

• The saturating fluid’s adiabatic bulk modulus Kf and its

density rf. If velocity dispersion is included, then one

must also include the viscosity z.

• The rock frame’s elastic dry or drained elastic moduli Kd

and md and its porosity f. If frequency is considered, then

one must also include additional factors such as the tortu-

osity t, the permeability k, and somemeasure of the dimen-

sions of the pore.

Of course, one must remember that most of these depend

on stress, pressure, and temperature as discussed in the previ-

ous sections and the values need to be appropriately chosen for

the case at hand. After the intensive earlier discussions of

the various mineral, fluid, and frame properties, the fluid-

saturated expressions to come may seem anticlimactic. Often,

finding the appropriate values of the inputs may take the most

effort.

In this section, we review a number of the more important

expressions that allow for the calculation of the saturated rock

elastic moduli. This begins with Gassmann’s widely employed

formula and progresses through brief surveys of the local and

global flow models that account for frequency effects.

 

 
 
 
 
 

11.03.6.1 Gassmann’s Equation

Gassmann (1951) constructed expressions for the moduli of a

fluid-saturated porous material. These expressions are rela-

tively simple, and because of this, they are used almost exclu-

sively in practice. His development is essentially that for an

undrained poroelastic solid (Berryman, 1999; Rice and Cleary,

1976; Smith et al., 2003; Wang, 2000) and as such is strictly

valid for static deformations. In developing his equations, he

assumed the minerals and fluids interacted only mechanically,

that the material was fully saturated and isotropic, that it was

monomineralic, and, importantly, that the shear modulus is

not influenced by the pore fluid. This last assumption leads to

the expression for the saturated shear modulus msat

msat ¼ md [81]

and the saturated bulk modulus Ksat

Ksat ¼Kd +
x2

f
Kf

+
x�f
Km

[82]

where x is the poroelastic pore pressure coefficient of eqn [80].

Gassmann looked at the problem more as a superposition of

interrelated volumetric strains of the frame, the minerals, and

the fluid. The same result can be found independently as the

undrained modulus from poroelasticity. Gassmann’s formulas
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are written in many different ways, but one advantage of eqn

[82] is that it highlights that the fluid effects are essentially a

correction to Kd (Han and Batzle, 2004).

For the sake of convenience it is also worth rewriting an

inverted form of Gassmann’s equation [82]:

Kd ¼
fKm

Kf
+ 1�f

� �
Ksat�Km

fKm

Kf
�1�f +

Ksat

Km

[83]

which is particularly useful in estimating Kd from sonic log

information (Carcione et al., 2006).

Physically, the application of Gassmann’s equations [81]

and [82] assumes that during the passage of a wave over a small

(relative to the wavelength) but representative volume VR of

the saturated rock, the frequency is sufficiently low that the

pore pressure remains uniform throughout VR. With no varia-

tions in pressure, there can be no fluid exchange between VR

and its neighboring representative volumes.

There are a number of salient points arising from

Gassmann’s equations including the following:

i. Ksat�Kd. That is, a fluid-saturated rock is always less com-

pressible than the dry frame by itself.

ii. 1�x�0. The upper bound occurs as Kd vanishes for

increasingly compressible materials such as unconsolidated

sands. It is interesting to note by examination that as x!1,

Ksat approaches the Voigt bound equation [58] for the

mixture of fluid and solid. The lower bound is approached

as Kd!Km where the rock is very stiff. Consequently, the

influence of fluids diminishes as the frame stiffens.

iii. Km�Kf.. As Tables 1 and 2 show, typical mineral moduli

are mostly >30 GPa. In contrast, most typical liquid mod-

uli are �1–3 GPa and gas moduli are �0.1–100 MPa

(Table 3). As such, for real materials, Ksat is substantially

more sensitive to Kf than to Km. A corollary to this is that a

compressible fluid (i.e., gas) has less effect than does a

stiffer fluid (liquid).

iv. VS will decrease upon saturation. The decrease, although it

may only be small, occurs because, by definition, the shear

modulus does not change but the bulk density r as given in

eqns [55] and [56] must increase.

v. VP will usually, but not necessarily, increase upon satura-

tion. This increase is primarily due to the larger value of

Ksat. However, one must always keep in mind that rsat also
rises, and should rf be sufficiently large, it is quite possible

that VP will decrease upon saturation. This happens, for

example, with pure CO2 (e.g., see Njiekak et al., 2013).

It is worthwhile investigating the implications of

Gassmann’s equations. Figure 24(a) shows a suite of dry elas-

tic moduli that might represent the values for a number of

limestones with a range of porosities 0f0.4. Both Kd and

md decrease substantially with porosity as expected. Ksat is

calculated using eqn [82]; it is always greater than Kd but the

two continue to diverge from one another with porosity and

Ksat is nearly twice Kd once a porosity f¼0.35 is reached. The

dry and saturated shear moduli are exactly the same according

to Gassmann’s assumptions in eqn [81].

The seismic wave speeds may subsequently be calculated

using eqns [1] and [2] (Figure 24(b)). VS decreases a small
n, (2015), vol. 11, pp. 43-87 
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amount upon substitution because of the increase in the bulk

density as already noted. For this case, however, VP increases

relative to that for the dry frame; the increase in the bulk

modulus has managed to overwhelm the increase in the den-

sity. At the greater porosities (or equivalently smaller Kd), the

saturating water has a greater influence on VPsat. These differ-

ences would be further amplified for the acoustic impedances.

It is these types of differences that hold the key to the time-

lapse seismic surveying.

Figure 24(c) shows the two parameters that are often

derived from the wave speeds, the direct VP/VS ratio and

Poisson’s ratio equation [9]. These can serve as proxy indica-

tors of the saturation state of the rock in part because of the

relative impacts of saturation on VPsat and VSsat. For example,

the VP/VS ratio for water saturation is substantially greater than

that for the dry (or nearly equivalently gas-filled) conditions.

This difference is even greater for Poisson’s ratio n with a larger

Poisson’s ratio, indicating liquid saturation.
11.03.6.2 Frequency-Dependent Models

Gassmann’s equations remain popular, but as noted, they

strictly apply only under static conditions. However, in

reality, researchers must work over a large range of frequencies.

In the broadest sense, ‘seismic’ investigations center on fre-

quencies of 1 MHz, 10 kHz, and 100 Hz for ultrasonic labora-

tory measurements, borehole sonic log readings, and applied

seismic investigations, respectively.

In the laboratory, Gassmann’s equations rarely reproduce

the observed wave speeds particularly at low confining pres-

sures. An example of this, again taken from measurements on

the Cadotte sandstone (He, 2006), is given in Figure 25 that

shows the observed dry and water-saturated measurements as a

function of the effective confining pressure. The observed VPsat

are greater than VPdry as expected but they exceed those values

predicted using Gassmann’s equations significantly. Similar

anomalies are seen for VSsat that again is much greater than

VSdry; this is in opposition to Gassmann’s predicted values that

are slightly smaller than VSdry because of the increased density

of the bulk saturatedmaterial. It is important to note that as the

crack-like porosity closes, the observed and predicted values

begin to approach one another. Indeed, even at the pressure of

only 60 MPa, VSsat has nearly intersected with VSdry. Clearly,

there is a large discrepancy between the observed and predicted

saturated wave speeds particularly at the low confining pres-

sures where the cracks remain most open (see also Mavko and

Jizba (1991) for similar evidence).

An extreme case of wave speed dispersion is seen from

recent VP and VS measurements through a highly porous,

CO2-saturated medium of sintered alumina (Yam, 2011; Yam

and Schmitt, 2011). Figure 26 shows the variations of the

observed ultrasonic (1 MHz) VPsat and VSsat with pore pressure

Pp for a suite of measurements carried out at constant differ-

ential effective stress Peff¼P�Pp of 15 MPa. As noted in the
the dry frame modulus bulk Kd (blue) to the saturated bulk modulus Ksat.
Note that by definition, the dry md and saturated msat shear moduli are
equal. (b) Corresponding compressional and shear waves speeds for
the dry and saturated cases. (c) Corresponding VP/VS and Poisson’s
ratios for the dry and saturated cases.
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Figure 26 Comparison of observed ultrasonic wave speeds in a
CO2-saturated porous sintered alumina held at a constant differential
pressure of Peff¼15 MPa and temperature T¼28 ºC. The pore
pressure is varied in order to effect the gas–liquid phase transition that
occurs at 6.144 MPa. Observed values of VPsat and VSsat are indicated
by red upside down triangles. Calculated values of the wave speeds
according to the Biot formulations at 100 and 1 MHz are shown as
dashed and solid black lines, respectively. For this case, the fluid
substitution calculations using Gassmann’s zero frequency equations
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violet-filled zones indicate the range of wave speed dispersion that exists
between 100 Hz (Gassmann) and 1 MHz (Biot). Data and calculations
from Yam (2011).
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preceding text, carrying out the measurements at constant

differential pressure should minimize any pressure-dependent

effects of the rock frame of wave speeds and most of

the variation will be due to changes in the fluid properties.

Figure 26 also shows the corresponding wave speeds predicted

by Gassmann’s equations from fluid substitution calculations

that employ knowledge of the fluid, solid, and dry frame

properties. Gassmann’s predictions are always less than the

observations. This difference is relatively small when CO2 gas

saturates the pores but it grows to over 6% when the CO2 is in

the liquid state.

In the case shown, the differences between the observed

and the predicted wave speeds at low frequencies arise primar-

ily because the latter does not account for differential motions

between the solid and fluid as the wave passes. We briefly

survey the two main models in the succeeding text that do

admit fluid motions. These are usually referred to as the global

and local flow models.

11.03.6.2.1 Global flow (biot) model
Building on his work in the consolidation of porous media, Biot

(1956a,b) constructed a seminalmodel to account for frequency-

dependent wave propagation through a fluid-saturated porous

and permeable medium. A full description of the model is

beyond the needs here but readers can find more information

in numerous contributions (Bourbié et al., 1987; Johnson, 1984;

Smeulders, 2005). A most interesting outcome of this theory is

that a third ‘slow’ longitudinal wave mode P2 exists in such

porous media because the fluid and solid are allowed to move

independently of one another. This out-of-phase motion
Treatise on Geophysics, 2nd editio

 

between the two admits a newdegree of freedom to the equations

of which the slow wave speed is the consequence.

This wave mode is difficult to observe in nature because the

differential fluid–solid motions result in large viscous losses.

Plona (1980) first observed this wave in acoustic refraction

experiments through highly porous sintered glass beads.

Figure 27 shows the results from similar recently conducted

tests (Bouzidi and Schmitt, 2009) that highlight well the exis-

tence of all three modes. It is interesting to note the loss of the

fast P1 wave past its critical angle. The P2 mode, which travels

substantially more slowly than the surrounding water, has no

critical angle and exists at all angles.

At this point, it is important to return to the CO2-saturated

measurements of Figure 26 where the Biot model has been

used to predict the observed VPsat and VSsat. The theory and

observations match well as the observed and calculated values

of VSsat agree to within experimental uncertainty. Those for

VPsat are only 20 m s�1 different. This agreement strongly sug-

gests that the Biot model and its low-frequency limit given by

Gassmann’s equations adequately predict the behavior with

frequency in highly porous and permeable materials. Although

not shown here, the Biot formulas also allowed attenuation to

be modeled satisfactorily (Yam, 2011).
n, (2015), vol. 11, pp. 43-87 
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Figure 27 Experimental arrangement to show the existence of the slow
wave. (a) Schematic of the experiment. An ultrasonic pulse insonifies a
saturated porous plate immersed in a water tank with incoming
longitudinal wave P. At the first boundary of the sample, the P wave
converts to the ‘fast’ P1, the S, and the ‘slow’ P2 modes that propagate
through the sample. These modes then are again converted back to
separate P waves at the second surface and these waterborne arrivals
are detected by an ultrasonic transducer. (b) Observed ultrasonic
waveforms as a function of the incidence angle y of the incoming
waterborne P wave.
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However, there are two problems with the use of the Biot

formulas. First, properly carrying out the analysis requires

knowledge of at least 14 different physical properties and

characteristics of the porous medium. This is regrettably

impractical in many situations. Second, the model does not

account for all differential fluid motions within the porous

rock and fails in predicting the wave speeds and attenuation

through rocks containing compressible crack-like pores. This

situation is discussed next.

11.03.6.2.2 Local flow (squirt) models
Although the concept was initially suggested by Mavko and

Nur (1975), O’Connell and Budiansky (1977) carried out a

theoretical analysis of a cracked solid containing cracks filled

with a viscoelastic fluid. They noted that as long as the cracks

are connected, then application of a stress to the porous

medium allows the fluids to flow locally from those cracks

preferentially oriented such that they compress (see Figure 22)

into those cracks oriented more parallel to the stress. That is,

the pressurized fluid in the compressed cracks ‘squirts’ into the

uncompressed cracks. These fluid motions will preferentially

occur at frequencies controlled by the crack density, effective

permeability, and crack dimensions. At sufficiently high

frequencies, the fluids cannot move fast enough and essentially
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become locked within the pores causing the medium to

become stiffer. Similar phenomena can exist if the material

contains both compressible cracks and stiffer equant pores.

O’Connell and Budiansky (1977) described a number of

frequency domains that depend on the relationships between

crack dimensions, frequency, and viscosity. Jackson (Lu and

Jackson, 2006) had provided a particularly useful summary of

their limiting cases that from high to low frequency are the

glued (i.e., shear stresses do not have time to relax), the satu-

rated isolated (i.e., shear stresses in the fluids relax but there is

insufficient time for fluid exchange between pores), the satu-

rated isobaric (i.e., adjacent pores can exchange fluids but there

is no global fluid movement; this is similar to the undrained

case of Gassmann’s equations), and, finally, the drained case

(i.e., bulk fluids can move in or out of the material to equili-

brate the pore pressure and the moduli act as if the sample

were dry).

These shifts between fluid-flow regimes impact the moduli

and attenuation in different ways as illustrated in Figure 28.

A large shift in the bulk modulus K occurs for the transition

from the drained to undrained conditions. At low frequencies,

there is no dispersion in the shear moduli m across this same

transition. Once viscous forces come into play, however, the

shear moduli stiffen in the transitions from the saturated iso-

baric to the saturated isolated and from the saturated isolated

to the glued regimes. A peak in the attenuation is expected at

each of these jumps in the moduli with higher frequency.

These developments have been useful conceptually but

finding appropriate expressions to account for these local

flow effects has remained challenging. One issue is that the

actual dimensions of the cracks play a significant role but

appropriately assessing crack sizes is not easily accomplished.

Mavko and Jizba (1991) attempted to indirectly account for the

local flow effects by measuring the ‘crack-free’ modulus at high

confining pressures in order to provide an estimate of the ‘wet

frame modulus.’ These moduli are then used in Gassmann’s

equations to provide for a prediction of the high-frequency

moduli. Work continues on this issue with numerous recent

contributions (Adelinet et al., 2011; Dvorkin et al., 1995;

LeRavalec and Gueguen, 1996; Schubnel and Gueguen, 2003).
11.03.7 Empirical Relations and Data Compilations

The sections in the preceding text have attempted to give some

sense of the problems associated with predicting the seismic

properties of rocks. Often, however, there is far from sufficient

information in order to justifiably carry out such predictions,

and workers rely instead on the observations of others. There

are numerous drawbacks to this. For example, from the per-

spective of geology, the name of a rock type may reveal a great

deal about how a rock was formed, what minerals might be in

it, and what its texture is. However, the geologic name by itself

may have little meaning from the perspective of the rock’s

physical properties except in the broadest of senses. Despite

this, sometimes this is the only information that we have

available.

Mavko et al. (2003) had already extensively reviewed a

number of existing empirical relationships for a wide variety

of rock types; as such we do not need to reproduce all of these
 (2015), vol. 11, pp. 43-87 



Figure 28 Description of the fluid-flow regimes expected in a cracked and fluid-saturated solid during passage of a harmonic wave according
to O’Connell and Budiansky (1977) as explained by Lu and Jackson (2006). Figure 10 from Lu and Jackson (2006) with permission granted according
the Society of Exploration Geophysicists fair use policy.

Table 4 Quadratic regression coefficients for pure rock types of
Castagna et al. (1993)

Rock type ai2 ai1 ai0 R2

Sandstone 0 0.80416 �0.8558 0.98352
Limestone �0.05508 1.01677 �1.3049 0.99096
Dolomite 0 0.58324 �0.07775 0.87444
Shale 0 0.76969 �0.86735 0.97939
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here, but we provide a few that have been popular in the

literature. Dvorkin (2008) also provided a listing of many of

the simpler linear fits for VP and VS.

Eberhart-Phillips et al. (1989) fitted various functions to

the large ultrasonic data set of saturated shaley sandstones

obtained by Han (1986) and arrived at the forms

VP ¼ 5:77�6:94f�1:73
ffiffiffiffi
C

p
+ 0:446 Peff �exp �16:7Peffð Þð Þ

VS ¼ 3:70�4:94f�1:57
ffiffiffiffi
C

p
+0:361 Peff �exp �16:7Peffð Þð Þ

[84]

where VP and VS are in km s�1, C is the clay volume fraction,

and Peff is the differential pressure in kilobars

(1 kbar¼100 MPa).

Castagna et al. (1985) derived what they called a ‘mudrock’

line from sonic logs allowing VS to be predicted from VP for

siliclastics using

VS ¼ 0:862VP �1:1172 [85]

where both velocities are in km s�1. This simple linear fit has

surprising predictive power. Jorstad et al. (1999) later carried

out their own regression for their area of study and produced a

remarkably similar relation:

VS ¼ 0:8966VP�1:1665 [86]

Following the earlier work of Pickett (1963), Castagna et al.

(1993) also developed a set of quadratic regression polyno-

mials relating VS to VP for the pure lithologies of sandstone,
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limestone, dolomite, and shale saturated fully with brine

of the form

VSi ¼ ai2V
2
P + ai1VP + ai0 [87]

with the resulting empirical coefficients ai0, ai1, and ai2 pro-

vided in Table 4. Note that except for limestone, a linear fit

suffices to describe the VS–VP relationships.

Greenberg and Castagna (1992, 1993) developed an itera-

tive method that allows mixing of pure monomineralic ‘lithol-

ogies’ of sandstone (quartz), limestone (calcite), dolomite

(dolomite), and shale (illite) lithologies together to predict

VS for variable fluid saturations. Their method is somewhat

analogous to Hill’s mean value of the Voigt–Reuss bounds as

described in Section 11.03.5.2. Essentially, the strategy is to

find the ‘best’ predicted value of the compressional wave veloc-

ity VP1C of the rock under study when it is brine-saturated.

Once this is found, the equivalent brine-saturated shear wave
n, (2015), vol. 11, pp. 43-87 
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velocity is calculated using the empirical regressions of Equa-

tion [87] just described. With knowledge of the brine-saturated

density, one can easily calculate the rock’s shear modulus md
that in turn can be used to calculate the proper shear wave

velocity for the saturation at the proper saturation state using

the rock’s density rsat.
Hence, the basis of the method is to make a proper estimate

of VP1C. To carry this out, one must have appropriate knowl-

edge of the rock’s porosity f, its in situ saturations Sw, So,

and Sg (see eqns [56] and [57]), and its observed in situ com-

pressional velocity VPsat. Further, the solid volume fractions Xi

of the L different ‘lithologies’

XL
i¼0

Xi ¼ 1 [88]

forming the rock’s frame must also be found.

In the Greenberg and Castagna method, they first guess a

value of the compressional wave speed VP1C for the rock fully

saturated with brine (i.e., Sw¼1). With the guess VP1C, one

can directly calculate the expected values VSi for each of the

lithologies using eqn [87] and Table 4. Using these VSi,

the shear wave velocity for the brine-saturated rock VS1C is

calculated in a manner analogous to the Voigt–Reuss–Hill

calculations:

VS1C ¼ 1

2

XL
i¼0

XiVSi

" #
+
XL
i¼0

Xi

VSi

" #�1( )
[89]

The density of the brine-saturated rock r1C is calculated

using an adaptation of eqn [55]:

r1C ¼frw + 1�fð Þ
XL
i¼1

Xirmi [90]

where the brine density must be determined for the appropriate

conditions as discussed in Section 11.03.4.3.2.1. Note that the

Greenberg and Castagna (1992) lithologies are sandstone, lime-

stone, dolomite, and shale. The mineral densities rmi that they

employed for these lithologies are, respectively, those for quartz,

calcite, dolomite, and illite as could be obtained from Table 2.

The in situ saturated density rsat can be either directly observed

or calculated with an additional adaptation of eqn [56]:

rsat ¼f
Xn
j¼1

Sjr
f
j

 !
+ 1�fð Þ

XL
i¼1

Xirmi [91]

With the values of VS1C and r1C, the drained shear modulus

md using eqn [2]

md ¼V2
S1Cr1C [92]

may be calculated. The saturated bulk modulus Ksat of the rock

in situ with its proper saturation is then from eqn [1]:

Ksat ¼V2
Psatrsat�

4

3
md [93]

The drained frame modulus Kd may then be determined

using the inverse Gassmann’s equation [83] with knowledge of

the appropriate Kf for the pore fluids and Km for the mineral

solids discussed in earlier sections. Now, the calculations are

run somewhat backward in order to provide an updated value

for the fully brine-saturated (Sw¼1) compressional wave speed

V 0
P1C using eqn [1]:
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V 0
P1C ¼ Kd +

x2

f
Kw

+ x�f
Km

 !
+
4

3
md

" #
r�1
1C

( )1=2

[94]

with the bulk modulus of the brine Kw taking the place of Kf in

Gassmann’s equation [82]. V 0
P1C can then be used as the new

VP1C and the calculation repeated. This process can iterate until

V 0
P1C and VP1C converge within acceptable limits. Once the

convergence is complete, the current value of md is accepted

and the final estimate of the shear wave velocity VSsat is simply

calculated using eqn [2]:

VSsat ¼
ffiffiffiffiffiffiffi
md
rsat

r
[95]

Raymer et al. (1980) also using well log information devel-

oped a piecewise relationship to predict velocity from knowl-

edge of porosity and the intrinsic compressional wave speeds

VPm and Vf for the constituent mineral and solid, respectively.

This formula is

VP ¼ 1�fð Þ2VPm +fVf , f< 0:37

1

rV2
P

¼ f
rf V

2
f

+
1�f
rmV

2
Pm

, f> 0:47

1

VP
¼ 0:47�f

0:10

1

V37
+
f�0:37

0:10

1

V47
, 0:37<f< 0:47

[96]

where V37 and V47 are the velocities of the saturated rock for

f¼37% and f¼47%, respectively. Dvorkin (2008) more

recently came up with a similar relation to predict shear wave

velocities:

VS ¼ 1�fð Þ2VSm
1�fð Þrm

1�fð Þrm +frf

� �
[97]

given knowledge of the intrinsic mineral shear wave velocity

VSm and the fluid and intrinsic mineral densities, rf and rm,
respectively.

Hamilton (1979) derived a number of expressions for

velocities in marine sediments (primarily silt–clays, turbidites,

and mudstone shales); one of these relates VP (in km s�1) to

depth D (in km) by

VP ¼ 1:511+ 1:304D�0:741D2 + 0:257D3 [98]

which is accurate to about 800 m depth.

The general empirical relationship between density and

seismic velocity fit by Gardner et al. (Gardner et al., 1974;

Sayers and den Boer, 2011) is still widely applied in seismic

studies particularly if only one of the other logs is available

from a borehole

r� 1:741V0:25
P [99]

with VP in km s�1 and r in g cm�3.

More recently, Christensen and Stanley (2003) carried out a

fit of VP and VS versus r from a compilation of laboratory

measurements on a variety of igneous, metamorphic, and sed-

imentary rocks yielding

VP ¼ 2:8r�1:5752 [100]

and

VS ¼ 1:4r�0:4019 [101]

where again the velocities are in km s�1 and r in g cm�3.
 (2015), vol. 11, pp. 43-87 
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Examination of these regressions shows that, for the most

part, they do not contain any physical principles. Hence, the

reader must take care when applying these formulas and know

their limitations.

Compilations of observed values of velocities and densities

are also important sources of information. The densities of

rocks and minerals are covered extensively by Wohlenberg

(1982), while in the same series, Gebrande (1982) and Kern

(1982) provided exhaustive listings of wave speeds as func-

tions of pressure for various rock types. Christensen (1982,

1989) had provided the results of thousands of ultrasonic

velocity laboratory measurements that have been used to create

sophisticated models of the continental crust (Christensen and

Mooney, 1995). Ji et al.’s (2002) compilation is perhaps the

most complete in that it contains the results of both modeling

and measurements for a wide variety of different rock types.

Most recently, Gercek (2007) had compiled values of Poisson’s

ratio for a number of different Earth materials.

 

 
 
 
 
 

11.03.8 The Road Ahead

Studies related to ‘seismic properties’ continue to rapidly

expand, and in reality, each of the topics touched on in the

preceding text could be easily be turned into textbooks on their

own. In writing such a review, some important issues were

overlooked. The listing in the succeeding text contains impor-

tant directions of investigation that I believe will be of increas-

ing importance in the coming decade. These include the

following:

i. Seismic anisotropy was touched on only in the context of

mineral properties, but in general, rock is an anisotropic

medium. Since the 1980s, geophysicists have dominated

the literature on elastic anisotropy. As noted earlier, we do

not really have a good understanding of the anisotropy of

‘shales.’ This is in part because the physical properties of

clay mineralogical constituents are still not well known.

Characterizing the clay mineralogy within a given sample

remains problematic. The clay minerals themselves are dif-

ficult to study as the ‘crystals’ are often no more than a few

nanometers in dimension. The effects of cracks and frac-

tures on seismic responses still remain elusive. Being able to

deconvolve seismic observations to detect and characterize

fractures remains a goal for the future.

ii. Although it has been hinted at in the discussions earlier in

the text, we currently do not have a good handle on seismic

velocity dispersion in the Earth. Progress in this field

should come more rapidly with the development of a vari-

ety of forcing-function stress–strain techniques that can

allow the complex elastic moduli to be found at seismic

frequencies.

iii. We have seen earlier that most rocks display nonlinear

stress–strain or stress–velocity behavior. Despite this, we

still cling to attempting to analyze much of our observed

seismic data under the linearly elastic assumption. Cur-

rently, only a handful of workers are studying the often

unexpected effects of wave propagation in nonlinear mate-

rials. It is likely that this field can gain from the much larger

community of workers in nonlinear optics.
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iv. In the laboratory, we often work on decimeter-scale sam-

ples that appear uniform and homogeneous. We then

attempt to extend this assumption of homogeneity to

much larger scales over many tens of meters (about the

seismic wavelengths). However, there are subtle dispersion

effects introduced by the scale of the heterogeneity of a rock

mass relative to the interrogating seismic waves. For exam-

ple, we most usually work under the ray theory paradigm

that assumes the wavelengths are small relative to the

dimensions of the heterogeneity. This is likely only rarely

true, and in many cases, the waves we observe may more

actually be revealing an effective medium. Much work

remains to be done on assessing to what degree effective

medium concepts may need to be incorporated to our field

observations.

v. Finally, the remarkable growth in computing power and in

easily employed parallel multiphysics numerical modeling

together with parallel technical developments in benchtop

x-ray tomography systems with micrometer-scale resolving

power is leading to the rapid growth of ‘digital rock

physics.’ These techniques allow one to calculate a variety

of physical properties from the 3-D microtomograms. Esti-

mation of electrical conductivity and permeability has been

most successful so far, but accurate predictions of the elastic

moduli and wave speeds have not yet been adequately

solved. This is in part because for the most part, workers

have focused on continuum approaches to solving such

problems. Now, however, one can build actual models

mimicking the true architecture of the minerals and pore

space and more thought needs to go on with regard to

actual physical phenomena in porous media at that scale

before the seismic properties can be adequately modeled.

Taken together, there still remains a great deal to learn with

regard to seismic properties of rocks. The new computational,

imaging, and experimental tools now at our disposal will allow

for rapid progress over the next decade.
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Babuška V and Cara M (1991) Seismic Anisotropy in the Earth. Netherlands: Springer.
Babuska V and Pros Z (1984) Velocity anisotropy in granodiorite and quartzite due to

the distribution of microcracks. Geophysical Journal of the Royal Astronomical
Society 76: 113–119.

Bachrach R and Avseth P (2008) Rock physics modeling of unconsolidated sands:
Accounting for nonuniform contacts and heterogeneous stress fields in the effective
media approximation with applications to hydrocarbon exploration. Geophysics
73: E197–E209.

Bachrach R, Dvorkin J, and Nur AM (2000) Seismic velocities and poisson’s ratio of
shallow unconsolidated sands. Geophysics 65: 559–564.

Bailey E and Holloway JR (2000) Experimental determination of elastic properties of talc
to 800 degrees C, 0.5 GPa; Calculations of the effect on hydrated peridotite, and
implications for cold subduction zones. Earth and Planetary Science Letters
183: 487–498.

Bakhorji A (2009) Laboratory Measurements of Static and Dynamic Elastic Properties in
Carbonate. PhD, University of Alberta.

Bass JD (1995) Elasticity of minerals, glasses, and melts. In: Ahrens TJ (ed.) Mineral
Physics and Crystallography: A Handbook of Physical Constants, pp. 45–63.
Washington, DC: American Geophysical Union.

Batzle M and Wang ZJ (1992) Seismic properties of pore fluids. Geophysics
57: 1396–1408.

Becker K, Shapiro SA, Stanchits S, Dresen G, and Vinciguerra S (2007) Stress induced
elastic anisotropy of the Etnean basalt: Theoretical and laboratory examination.
Geophysical Research Letters 34: L11307.

Behura J, Batzle M, Hofmann R, and Dorgan J (2007) Heavy oils: Their shear story.
Geophysics 72: E175–E183.

Belogol’skii VA, Sekoyan SS, Samorukova LM, Stefanov SR, and Levtsov VI (1999)
Pressure dependence of the sound velocity in distilled water. Measurement
Techniques 42: 406–413.

Benedict M, Webb GB, and Rubin LC (1942) An empirical equation for thermodynamic
properties of light hydrocarbons and their mixtures II. Mixtures of methane, ethane,
propane, and n-butane. Journal of Chemical Physics 10: 747–758.

Benedict M, Webb GB, and Rubin LC (1951) An empirical equation for thermodynamic
properties of light hydrocarbons and their mixtures – Constants for
12 hydrocarbons. Chemical Engineering Progress 47: 419–422.

Berg CA (1965) Deformation of fine cracks under high pressure and shear. Journal of
Geophysical Research 70: 3447–3452.

Berge PA, Bonner BP, and Berryman JG (1995) Ultrasonic velocity porosity
relationships for sandstone analogs made from fused glass-beads. Geophysics
60: 108–119.

Bernabe Y (1987) The effective pressure law for permeability during pore pressure and
confining pressure cycling of several crystalline rocks. Journal of Geophysical
Research-Solid Earth and Planets 92: 649–657.

Berryman JG (1992) Effective stress for transport-properties of inhomogeneous porous
rock. Journal of Geophysical Research, Solid Earth 97: 17409–17424.

 

 
 
 
 
 

Treatise on Geophysics, 2nd edition,

 

Berryman JG (1993) Effective-stress rules for pore-fluid transport in rocks containing 2
minerals. International Journal of Rock Mechanics and Mining Sciences &
Geomechanics Abstracts 30: 1165–1168.

Berryman JG (1995) Mixture theories for rock properties. In: Rock Physics & Phase
Relations, pp. 205–228. Washington, DC: American Geophysical Union.

Berryman JG (1999) Origin of gassmann’s equations. Geophysics 64: 1627–1629.
Berryman JG (2005) Bounds and self-consistent estimates for elastic constants of

random polycrystals with hexagonal, trigonal, and tetragonal symmetries. Journal of
the Mechanics and Physics of Solids 53: 2141–2173.

Berryman JG (2012) Evaluating bounds and estimators for constants of random
polycrystals composed of orthotropic elastic materials. International Journal of
Engineering Science 58: 11–20.

Berryman JG and Berge PA (1996) Critique of two explicit schemes for estimating
elastic properties of multiphase composites. Mechanics of Materials 22: 149–164.

Berryman JG, Pride SR, and Wang HF (2002) A differential scheme for elastic properties
of rocks with dry or saturated cracks. Geophysical Journal International
151: 597–611.

Bett KE, Rowlinson JS, and Saville G (2003) Thermodynamics for Chemical Engineers.
Cambridge: MIT Press.

Bianco E, Kaplan S, and Schmitt DR (2010) Seismic rock physics of steam injection in
bituminous-oil reservoirs – Chapter 6. In: Batzle ML, Chopra S, Lines LR, and
Schmitt DR (eds.) Heavy Oils: Reservoir Characterization and Production
Monitoring, pp. 105–110. Tulsa: Society of Exploration Geophysicists.

Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid.1.
Low-frequency range. Journal of the Acoustical Society of America 28: 168–178.

Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous
solid.2. Higher frequency range. Journal of the Acoustical Society of America
28: 179–191.

Biot MA and Willis D (1957) The elastic coefficients of the theory of consolidation.
Journal of Applied Mechanics-Transactions of the ASME 24: 594–601.

Birch F (1947) Finite elastic strain of cubic crystals. Physical Review 71: 809–824.
Birch F (1960) The velocity of compressional waves in rocks to 10-kilobars.1. Journal

of Geophysical Research 65: 1083–1102.
Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars, part 2.

Journal of Geophysical Research 66: 2199–2224.
Blake OO, Faulkner DR, and Rietbrock A (2013) The effect of varying damage history in

crystalline rocks on the P- and S-wave velocity under hydrostatic confining
pressure. Pure and Applied Geophysics 170: 493–505.

Bonner BP (1974) Shear wave birefringence in dilating granite. Geophysical Research
Letters 1: 217–220.
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