
Chapter 12. Special topics 
 

12.1. Nonparametric regression 

 

12.1.1 Bootstrapping 

 

Appropriate for handling problems of sample dependence, non-normal distribution, 

sampling error in x (calibration analysis).  

 

Given model: 

iii xy εββ ++= 10 ,  i = 1, 2, …, n. 

Step 1: create a new dataset by , where eiii exy ++= 10 ˆˆ ββ i is resampled with 

replacement form the observed residuals. 

Step 2: Do a regression on the new data 

Step 3: Repeat the process for R times. 

 

We need library “boot” for implementation. The R program attached for doing 

bootstrapping for data: hl.dat, is boot.lm.r. To run boot.lm.r: 

>boot.lm.r(hl.dat). 

Compare the outputs with those of lm. 

 

12.1.2 Monotonic regression (based on rank) 

 

If the regression relationship is believed not a straight line but Y is monotonically 

increasing with X, this method is useful. 

 

Data: X: x1, x2, …, xn. 

 Y: y1, y2, …, yn. 

Steps: 



(1) Obtain the ranks R(X) and R(Y) for X and Y, respectively. Use average ranks in 

case of ties. 

(2) Fit a regression line to the ranks: 

xy RR 10 ˆˆ ββ += , 

 where 
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(3) To predict y at x0, we need to obtain a rank R(x0): 

(a) If x0 equals one of the observed X’s, let R(x0) equal the rank of that xi.  

(b) If x0 lies between two adjacent values xi and xj where xi < x0 < xj, interpolate 

between their respective ranks to get R(x0): 
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+= .   This “rank” may not be an integer. 

(c) If x0 is less than the smallest observed X or greater than the largest X, do not 

attempt to extrapolate. Information on the regression of Y on X is available 

only within the observed range of X. 

(4) Substitute R(x0) for x to get an estimated rank to R(y0) using the rank linear 

model: 

xy RR 10 ˆˆ ββ +=  

(5) Use R(y0) to estimate original : ŷ

(a) If R(y0) equals the rank of one of the observation yi, let the estimate  

equal that observation y

ŷ

i. 

(b) If R(y0) lies between the ranks of two adjacent values yi and yj where yi < 

yj, so that R(yi) < R(y0) < R(yj), interpolate between yi and yj:  
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(c) If R(y0) is greater than the largest observed rank of Y, let  equal the 

largest observed Y. If R(y

ŷ

0) is less than the smallest observed rank of Y, let 

 equal the smallest observed Y. ŷ
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(6) Since no assumptions are being involved in the rank regression, there are no 

confidence intervals, hypothesis tests, prediction intervals, etc. The assessment of 

goodness-of-fit is based on R2 between the observation Y and estimated Y : . ˆ 2
ŶY

r

 

12.2. Local regression (lowess/loess) is a useful technique for EDA to detect patterns 

 

R-code for local regression: 

>plot(hl$dbh, hl$htt) 

>lines(lowess(hl$dbh,hl$htt),col=2) 

 

Try the distribution of Czech birds (occupancy versus no of clusters): 

>plot(czech.bird.dat$occup,czech.bird.dat$nclst) 

> bird.lo=loess(nclst~occup,data=czech.bird.dat) 

>id=order(czech.bird.dat$occup) 

> lines(czech.bird.dat$occup[id],bird.lo$fit[id],col="red") 

>lines(czech.bird.dat$occup[id],bird.lo$fit[id]+1.96*predict(bird.lo,se=T)$se.fit[

id],col="blue",lty=8) 

>lines(czech.bird.dat$occup[id],bird.lo$fit[id]-

1.96*predict(bird.lo,se=T)$se.fit[id],col="blue",lty=8) 
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12.4. Nonlinear regression 

 

Linear regression models provide a broad and rich framework that suits many 

applications. However, linear regression cannot be adequate for all problems. Another 

important type of models is nonlinear models. 

 

There are two ways to incorporate error terms in nonlinear models: 

 

(1). Multiplicative error: 

εβ β10 xy = , where ε follows a lognormal distribution 

We can log-transform this nonlinear model into a linear model 

)log()log()log()log( 10 εββ ++= xy  

Or write as , where  ''' 1
'
0 εββ ++= xy ),0(~' 2σε N

If you believe your model has multiplicative error, you should use the linear regression 

methods as we have learned. The way to do it is to linearize the nonlinear models. 

 

Here are some models you can linearize them by transformation: 

Figure Linearizable functions Transformation Linear form 

A 10
ββ xy =  )log(' yy = , )log(' xx =  ')log(' 10 xy ββ +=  

B xey 10
ββ=  )log(' yy =  xy 10 )log(' ββ +=  

C )log(10 xy ββ +=  )log(' xx =  '10 xy ββ +=  

D 
x

xy
10 ββ +

=  
y

y 1'= , 
x

x 1'=  '' 01 xy ββ +=  
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The shapes of the models given in the previous table. 

 

(2). Additive error: 

εβ β += 10 xy , where  ),0(~ 2σε N

Nonlinear regression is based on this model. In general, we can write a nonlinear 

regression model as: 

εθ += ),( ii xfy ,  i = 1, 2, …, n. 

 

Given a set of observation data, our purpose is to find a suitable model and fit it to the 

data. 

 

> sparea.dat: 

area  nsp (no of species) 
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250000 806 
125000 775 
62500  734 
31250  699 
15625  636 
7812  581 
3906.25 486 
1953.12 390 
976.56 300 
488.28 193 
244.14 119 
122.07 74 
61.035 46 
30.518 12 
15.259 11 
7.6294 6 
3.8147 4 
3.8147 3 
 
 
Steps: 
 
1. In order to model the species-area data, we have to find a model which can capture 

the shape of the curve. There are several models which may be useful, including: 
 

Power model:    10
ββ xy =

Logarithmic model:  )log(10 xy ββ +=  

Michaelis-Menten model: 
x

xy
10 ββ +

=  

 
2. Parameter estimation – nonlinear least squares: 

 

[ 2

1
0

1)( ∑
=

−=
n

i
ii xyS βββ ] → minimum. 

 

3. R-code: 

 

> sparea.nls=nls(nsp~beta0*area^beta1,start=c(beta0=10,beta1=0.2), 
data=sparea.dat) 
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> summary(sparea.nls) 
 
Formula: nsp ~ beta0 * area^beta1 
 
Parameters: 
      Estimate Std. Error t value Pr(>|t|)     
beta0 57.50154   16.12696   3.566  0.00258 **  
beta1  0.22634    0.02599   8.709 1.81e-07 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 99.47 on 16 degrees of freedom 
 
Correlation of Parameter Estimates: 
        beta0 
beta1 -0.9813 
 
4. Measurement of goodness-of-fit: 

In general, R2 is not appropriate for nonlinear regression because the regression 

and residual sum of squares do not necessarily add to the total sum of squares. 

That is why the R output does not provide R2. However, R2 may still be valid if it is 

calculated using following formula: 
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R-code: 

 >SSE=sum((sparea.dat$nsp-predict(sparea.nls))^2) 

 >SST=sum((sparea.dat$nsp-mean(sparea.dat$nsp))^2) 

>R2=1-SSE/SST 
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 We get R2 = 0.9034577 

 

Another useful measure is the correlation between the observation and estimated 

values: 

2
ˆ

2
yyRR = . 

R-code: 

> cor(sparea.dat$nsp,predict(sparea.nls)) 

> plot(sparea.dat$nsp,predict(sparea.nls))  

 

 

 

 

 

 

5. Plot observations and prediction: 

 

Although the R2 seems reasonably high, the 

power model: 

226.057.501xy =  

does not appear to be a good model. It 

underestimates nsp at small area, but 

overestimates nsp at large area. 

 

 

Exercise: Try to fit other two models: 

Logarithmic model:  )log(10 xy ββ +=  

Michaelis-Menten model: 
x

xy
10 ββ +

=  

 

6. You may also want to fit the power model using the linearized form: 
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)log()log()log( 10 xy ββ +=  

 

R-code:  

>sparea.lm=lm(log(nsp)~log(area),data=sparea.dat) 
 

You will find the output from the lm is very different from the nls. Which one we 

should use? This is a difficult question without a simple answer. We may choose one 

with highest R2. It is also useful to look at residuals. 

 

7. Exercise: To model the relationship between occup and nclst for the Czech bird data, 

using model: 

)exp( γα βxxy −=  

 
 

12.5. Quantile regression 

(http://en.wikibooks.org/wiki/Statistics:Numerical_Methods/Quantile_Regression) 

Quantile regression as introduced by Koenker and Bassett (1978) seeks to complement 

classical linear regression analysis. The primary goal of the OLS is to determine the 

conditional mean of random variable Y, given some explanatory variable xi, reaching the 

expected value E[Y | x ]i . Quantile regression goes beyond this and enables one to pose 

such a question at any quantile of the conditional distribution function. 
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OLS is the best, linear, and unbiased (BLUE) estimator, if following four assumptions 

hold: (1) The explanatory variable xi is non-stochastic, (2) The expectations of the error 

term εi are zero, i.e. E[ε ] = 0, i (3) Homoscedasticity - the variance of the error terms εi is 

constant, i.e. var(ε ) = σi
2, and (4) No autocorrelation, i.e. cov(ε ,ε ) = 0i j , for i ≠ j.  

However, frequently one or more of these assumptions are violated, resulting in that OLS 

is not anymore the BLUE estimator. In constrast, quantile regression can tackle following 

issues:  

(i) The error terms are not necessarily constant across a distribution (heteroscedasticity), 

(ii) QR is robust to outliers, 

(iii) QR can consider the entire spectrum of distribution. This is particularly useful in 

ecological application as ecologists are often interested in limiting factors which locate in 

the tails of a distribution. (By focusing on the mean as a measure of location, information 

about the tails of a distribution are lost in OLS.) 

 

1. What are quantiles? 

Quantile is defined in terms of cumulative distribution (or distribution function). A 

quantile is simply the value that corresponds to a specified proportion of an (ordered) 

sample of a population. For instance a very commonly used quantile is the median M, 

which is equal to a proportion of 0.5 of the ordered data. This corresponds to a quantile 

with a probability of 0.5 of occurrence. 

More formally stated, let Y be a continuous random variable with a distribution function 

F (y)Y  such that 

τ=≤= )()( yYPyFY  

which states that for the distribution function F (y)Y  one can determine for a given value y 

the probability τ of occurrence. Now if one is dealing with quantiles, one wants to do the 

opposite: to determine for a given probability τ of the sample data set the corresponding 

value y. A τth quantile refers in a sample data to the probability τ for a value y: 
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)(1 ττ
−= YFy      (*) 

That is yτ is equal to the inverse of the function F (τ)Y  for a probability τ.  

Quantile: yp is called the pth quantile of the random variable Y, if p(X<yp) ≤ p and 

  p(Y>yp) ≤ 1-p.  [R: >quantile(y,p) produces yp] 

However, a problem that frequently occurs is that an empirical distribution function is a 

step function. A solution to this problem is to smooth the empirical distribution function 

through replacing it a with continuous linear function . There are several algorithms )(ˆ yF

available which are well described in Handl (2000) and more in detail with an evaluation 

of the different algorithms and their efficiency in computer packages in Hyndman and 

Fan (1996). Only with smoothed cumulative function can one apply any division into 

quantiles of the data set as suitable for the purpose of the analysis.  

 

Smooth the cumulative function 

 

2. Quantile regression 

QR essentially transforms a conditional distribution function into a conditional quantile 

function by slicing it into segments. These segments describe the cumulative distribution 
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of a conditional dependent variable Y given the explanatory variable xi with the use of 

quantiles as defined in eq. (*). 

For a dependent variable Y given the explanatory variable X = x and fixed τ, 0 < τ < 1, the 

conditional quantile function is defined as the τth quantile Q (τ | x)Y | X  of the conditional 

distribution function F (y | x)Y | X .  

One can nicely illustrate QR when comparing it with OLS. In OLS, modeling a 

conditional distribution function of a random sample (y ,..., y1 n) with a parametric function 

µ(x ,β)i  where xi represents the independent variables, β the corresponding estimates and µ 

the conditional mean, OLS is formulated as: 

( ) min),(
2

1
→−∑

=

n

i
ii xy βµ  

QR can be formulated in a similar fashion. Central feature thereby becomes ρτ, which 

serves as an indicator function: 

⎪
⎩

⎪
⎨

⎧

<•−

>•
=

0)1(

0

xifx

xifx

τ

τ
ρτ  

This indicator-function ensures that: (1) all ρτ are positive, (2) the scale is according to 

the probability τ. In QR we minimize now following function: 

( ) min),(
1

→−∑
=

n

i
ii xy βξρτ  

Here, as opposed to OLS, the minimization is done for each subsection defined by ρτ, 

where the estimate of the τth quantile function is achieved with the parametric function 

ξ(x ,β)i .  

Features that characterize QR and differentiate it from other regression methods are 

following: 
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(1) The entire conditional distribution of the dependent variable Y can be characterized 

through different values of τ. 

(2) Heteroscedasticity can be detected. If the data is heteroscedastic, median regression 

estimators can be more efficient than mean regression estimators. 

(3) The minimization problem as illustrated in the above equation can be solved 

efficiently by linear programming methods, making estimation easy. 

(4) Quantile functions are also equivariant to monotone transformations. That is 

Qh(Y|X)(xτ) = h(Q(Y | X)(xτ)), for any function. 

(5) Quantiles are robust in regards to outliers. 

 

A graphical illustration of Quantile Regression 

Consider Fig. 1. For a given explanatory value of xi the density for a conditional 

dependent variable Y is indicated by the size of the balloon. The bigger the balloon, the 

higher is the density, with the mode, i.e. where the density is the highest, for a given xi 

being the biggest balloon. QR essentially connects the equally sized balloons, i.e. 

probabilities, across the different values of xi, thereby allowing one to focus on the 

interrelationship between the explanatory variable xi and the dependent variable Y for the 

different quantiles, as can be seen in Fig. 2. These subsets, marked by the quantile lines, 

reflect the probability density of the dependent variable Y given xi. 

 

Fig. 1. Probabilities of occurrence for individual explanatory variables 

Fig. 2 shows the relationship between household income and household food 

expenditure, across a spectrum of quantiles: τ∈{0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}, 
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indicated by the thin blue lines that separate the different color sections, are 

superimposed on the data points. The conditional median (τ = 0.5) is indicated by a thick 

dark blue line, the conditional mean by a light white line. The color sections thereby 

represent the subsections of the data as generated by the quantiles. 

 

Figure 2 can be understood as a contour plot representing a 3-D graph, with food 

expenditure and income on the respective y and x axis. The third dimension arises from 

the probability density of the respective values. The density of a value is thereby 

indicated by the darkness of the shade of blue, the darker the color, the higher is the 

probability of occurrence. For instance, on the outer bounds, where the blue is very light, 

the probability density for the given data set is relatively low, as they are marked by the 

quantiles 0.05 to 0.1 and 0.9 to 0.95. It is important to notice that Fig. 2 represents for 

each subsections the individual probability of occurrence, however, quantiles utilize the 

cumulative probability of a conditional function. For example, τ of 0.05 means that 5% of 

observations are expected to fall below this line, a τ of 0.25 for instance means that 25% 

of the observations are expected to fall below this and the 0.1 line. 

The graph in Fig. 2 suggests that the error variance is not constant across the distribution. 

The dispersion of food expenditure increases as household income goes up. Also the data 

is skewed to the left, indicated by the spacing of the quantile lines that decreases above 
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the median and also by the relative position of the median which lies above the mean. 

This suggests that homoscedasticity is violated. 

R implementation: rq in package quantreg. Install it and run the example ! 

 
3. A QR application 

The Boston Housing example, first analyzed by Belsley et al. (1980). The original data 

comprised 506 observations for 14 variables stemming from the census of the Boston 

metropolitan area. 

This analysis utilizes as the dependent variable the median value of owner occupied 

homes (a metric variable, abbreviated with H) and investigates the effects of 4 

independent variables as shown in table 1. These variables were selected as they best 

illustrate the difference between OLS and QR. A simple multiple linear regression model 

is assumed.  

Table1: The explanatory variables 

Name Short What it is type 

NonrTail T Proportion of non-retail business acres metric 

NoorOoms O Average number of rooms per dwelling metric 

Age A Proportion of owner-built dwellings prior to 1940 metric 

PupilTeacher P Pupil-teacher ratio metric 

 

In the following an OLS model was first estimated: 

E[Hi | Ti,Oi,Ai,Pi] = α + βTi + δOi + γAi + λPi

The results are: 

Table2: OLS estimates 
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36.459 0.021 38.010 0.001 -0.953

 

Analyzing this data set via QR, utilizing the τth quantiles: τ∈{0.1, 0.3, 0.5, 0.7, 0.9}, the 

model is characterized as follows: 

QH[τ | Ti,Oi,Ai,Pi] = ατ + βτTi + δτOi + γτAi + λτPi

As an illustrative example, the equation for the 0.1th quantile is given below: 

min)](..)()([ 1.0221.0111.0 →−++−+− nn xyxyxy βρβρβρ  
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Table3: Quantile Regression estimates 

τ      

0.1 23.442 0.087 29.606 -0.022 -0.443

0.3 15.7130 -0.001 45.281 -0.037 -0.617

0.5 14.8500 0.022 53.252 -0.031 -0.737

0.7 20.7910 -0.021 50.999 -0.003 -0.925

0.9 34.0310 -0.067 51.353 0.004 -1.257

 

Comparing Tables 1 and 2, we can find that QR method can make much more subtle 

inferences of the effect of the explanatory variables on the dependent variable. Of 

particular interest are quantile estimates that are relatively different as compared to other 

quantiles for the same estimate. 

Probably the most interesting result and most illustrative in regards to an understanding 

of the functioning of QR and pointing to the differences with OLS are the results for the 
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independent variable of the proportion of non-retail business acres (Ti). OLS indicates 

that this variable has a positive influence on the dependent variable, the value of homes, 

with an estimate of , i.e. the value of houses increases as the proportion of non-021.0ˆ =β

retail business acres (Ti) increases. 

From Table 2 we find a more differentiated picture. For the 0.1 quantile, we find an 

estimate of  which would suggest that for this low quantile the effect seems to 087.0ˆ =β

be even stronger than is suggested by OLS. Here house prices go up when the proportion 

of non-retail businesses (Ti) goes up, too. However, considering the other quantiles, this 

effect is not quite as strong anymore, for the 0.7th and 0.9th quantile this effect seems to 

be even reversed indicated by the parameter  and . These values 021.0ˆ −=β 062.0ˆ −=β

indicate that in these quantiles the house price is negatively influenced by an increase of 

non-retail business acres (Ti). The influence of non-retail business acres (Ti) seems to be 

obviously very ambiguous on the dependent variable of housing price, depending on 

which quantile one is looking at. The general recommendation from OLS that if the 

proportion of non-retail business acres (Ti) increases, the house prices would increase can 

obviously not be generalized. A policy recommendation on the OLS estimate could 

therefore be grossly misleading. 

One would intuitively find the statement that the average number of rooms of a property 

(Oi) positively influences the value of a house, to be true. This is also suggested by OLS 

with an estimate of . Now QR also confirms this statement, however, it also 099.38ˆ =δ

allows for much subtler conclusions. 

This analysis makes clear, that QR allows one to make much more differentiated 

statements than OLS. Sometimes OLS estimates can even be misleading what the true 

relationship between an explanatory and a dependent variable is as the effects can be very 

different for different subsection of the sample. 
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