PHYS 485: Problem Set 5

If the answer is shown, all the marks will be given for the derivation not for writing down the answer.

1. [3] Griffiths Problem 7.3.
2. [2] Griffiths Problem 7.5.
3. [4] Griffiths Problem 7.20.
4. [5] Griffiths Problem 7.27.
5. [2] Prove the following without using an explicit representation for the γ matrices.
(a) $\operatorname{Tr}[\phi b]=4 a \cdot b$
(b) $\operatorname{Tr}\left[\gamma^{5}\right]=0$
6. [10] If we go to a system moving with speed βc in the x-direction, a Dirac spinor transforms according to

$$
\psi \rightarrow \psi^{\prime}=S \psi
$$

where S is given by

$$
S=a_{+}+a_{-} \gamma^{0} \gamma^{1},
$$

with $a_{ \pm}= \pm \sqrt{\frac{1}{2}(\gamma \pm 1)}$ and $\gamma=\left(1-\beta^{2}\right)^{-1 / 2}$, as usual.
(a) Calculate S^{\dagger}.
(b) Show that the inverse of S is $S^{-1}=a_{+}-a_{-} \gamma^{0} \gamma^{1}$.
(c) Calculate $S^{\dagger} S$ in terms of γ and β.
(d) Show that $\gamma^{0} S^{\dagger} \gamma^{0}=S^{-1}$.
(e) Show that $S^{-1} \gamma^{\mu} S=\gamma^{\mu}$ for $\mu=2,3$ and $S^{-1} \gamma^{\mu} S=\gamma^{\mu} S^{\dagger} S$ for $\mu=0,1$.
(f) Show that $\bar{\psi} \gamma^{\mu} \psi$ is a four-vector by confirming that its components transform as a vector according to a special Lorentz transformation.
(g) Check that it transforms as a (polar) vector under parity (that is, the time component is invariant, whereas the spatial components change sign).

