PHYS 590: Problem Set 1

1. Show that the matrices $L_{\mu}{ }^{\nu}$ corresponding to proper Lorentz transformations form a group.
2. We have seen that the Lorentz boost can be represented in terms of the relativistic scale factor $\gamma(\beta)$ or the rapidity using $\beta=\tanh \theta$. An alternative expression for the Lorentz boost uses the relativistic Doppler factor $\lambda(\beta)$ defined by

$$
\lambda(\beta)=\sqrt{\frac{1+\beta}{1-\beta}} .
$$

(a) Derive the relationship between λ and γ.
(b) Derive an expression for β in terms of λ.
(c) Derive an expression for λ in terms of the hyperbolic functions of the rapidity parameter, and
(d) in terms of the exponential as a function of the rapidity parameter.
(e) Show that the following identities are satisfied:

$$
\lambda(\beta) \lambda(-\beta)=1, \quad \lambda(\beta)+\lambda(-\beta)=2 \gamma(\beta), \quad \lambda(\beta)-\lambda(-\beta)=2 \beta \gamma(\beta)
$$

3. Choose some direction (usually the beam direction) for the z-axis; then the energy and momentum of a particle can be written as

$$
E=m_{T} \cosh y, \quad p_{x}, \quad p_{y}, \quad p_{z}=m_{T} \sinh y
$$

where m_{T} is the transverse mass

$$
m_{T}^{2}=m^{2}+p_{x}^{2}+p_{y}^{2},
$$

and the rapidity y is defined by

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\ln \left(\frac{E+p_{z}}{m_{T}}\right)=\tanh ^{-1}\left(\frac{p_{z}}{E}\right) .
$$

Under a boost in the z-direction to a frame with velocity β, show that $y \rightarrow y-\tanh ^{-1} \beta$. Hence the shape of the rapidity distribution $d N / d y$ is invariant.
Show that the invariant cross section may also be rewritten as

$$
E \frac{d^{3} \sigma}{d^{3} p}=\frac{d^{3} \sigma}{d \phi d y p_{T} d p_{T}} .
$$

For $p \gg m$, show that the rapidity may be approximated as

$$
y \approx-\ln \tan (\theta / 2) \equiv \eta
$$

where $\cos \theta=p_{z} / p$. The pseudorapidity η is approximately equal to the rapidity y for $p \gg m$ and $\theta \gg 1 / \gamma$, and in any case can be measured when the mass and momentum of the particles is unknown.
From the definition of pseudorapidity obtain the following identities.

$$
\sinh \eta=\cot \theta, \quad \cosh \eta=1 / \sin \theta, \quad \tanh \eta=\cos \theta .
$$

4. Problem B. 1 in Cottingham and Greenwood
5. Problem B. 2 in Cottingham and Greenwood
