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Abstract
In this paper, we discuss a family of robust, high-dimensional regression models
for quantile and composite quantile regression, both with and without an adaptive
lasso penalty for variable selection. We reformulate these quantile regression prob-
lems and obtain estimators by applying the alternating direction method of multipliers
(ADMM), majorize-minimization (MM), and coordinate descent (CD) algorithms.
Our new approaches address the lack of publicly available methods for (compos-
ite) quantile regression, especially for high-dimensional data, both with and without
regularization. Through simulation studies, we demonstrate the need for different algo-
rithms applicable to a variety of data settings, which we implement in the cqrReg
package for R. For comparison, we also introduce the widely used interior point (IP)
formulation and test our methods against the IP algorithms in the existing quantreg
package. Our simulation studies show that each of our methods, particularly MM
and CD, excel in different settings such as with large or high-dimensional data sets,
respectively, and outperform the methods currently implemented in quantreg. The
ADMM approach offers specific promise for future developments in its amenability
to parallelization and scalability.

Keywords Adaptive lasso · Alternating direction method of multipliers · Coordinate
descent · Interior point · Majorize minimization

1 Introduction

With recent rising interest in sparse regression for high-dimensional data, least
squares regression with regularization—often via lasso penalty (Tibshirani 1996)—
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has become a focal point of computing scientists and statisticians in model selection
procedures (He et al. 2016; Vidaurre et al. 2013). Furthermore, quantile regression has
emerged as an alternative to traditional ordinary least squares methods with numer-
ous advantages, including but not limited to higher efficiency with heavy-tailed error
distributions, robustness against outlying data, and more informative insights into the
distribution of the response under study (Koenker 2005).

Oracle model selection theory, introduced by Fan and Li (2001), illustrates optimal
behaviour during model selection but is limited to the case where error variance is
finite. In response, Zou and Yuan (2008) established composite quantile regression—
a method to simultaneously model multiple quantile levels—that maintains desirable
oracle properties even in the case of non-finite error variance. Beyond oracle model
selection and the simultaneous modelling of multiple quantile levels, composite quan-
tile regression also achieves a lower variance on estimated effects relative to quantile
regression. These properties of composite quantile regression have proven attractive
to many researchers who have widely applied this technique to improve the processing
capabilities of artificial neural networks (Xu et al. 2017), provide an alternative to local
polynomial regression (Kai et al. 2010), and smooth Harris chain stochastic processes
(Li and Li 2016).

Applying existing optimization algorithms to (composite) quantile regression
requires a non-trivial reformulation of the problem due to the non-linearity and non-
differentiability of the loss and regularization terms of the objective function. The
well-known quantreg package for R (Koenker 2017) uses an interior point (IP)
approach for quantile and composite quantile regression, with native support for l1
(lasso) regularization in only the former. Advanced IP algorithms in quantreg,
e.g., using prediction-correction (Mehrotra 1992) for non-regularized quantile regres-
sion, have greatly improved upon earlier simplex methods. However, the time spent
on matrix inversion in IP approaches (Chen and Wei 2005) motivates us to seek
faster algorithms for quantile and composite quantile regression, particularly for
high-dimensional data where regularization is required. Zou (2006), following the
conjectures of Fan and Li (2001), showed lasso variable selection—currently the most
commonly implemented penalty for quantile regression—to be inconsistent in certain
situations and presented adaptive lasso regularization as a solution. Our work in the
present paper is thus motivated by both a search for faster quantile regression algo-
rithms as well as the lack of publicly available methods for adaptive lasso regularized
quantile and composite quantile regression, particularly for high-dimensional data.

Our work in this paper is novel in its approach to quantile regression, compos-
ite quantile regression, and corresponding versions regularized by an adaptive lasso
penalty using three different algorithms. First, we present an alternating direction
method of multipliers (ADMM) approach that breaks up the model estimation prob-
lem into simpler convex optimization problems that can be solved in parallel (Boyd
et al. 2011). Second, we give a majorize-minimization (MM) approach that iteratively
minimizes a majorization, a particular differentiable approximation of the objective
function containing both the quantile loss and penalty terms (Hunter and Lange 2000).
Third, we detail a coordinate descent (CD) method that uses observations in a greedy
algorithm to iteratively select and update individual model parameters while holding
others constant (Wu and Lange 2008). For the sake of comparison, we also discuss
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an IP formulation of the problem that seeks to minimize both loss and regularization
functions after starting within rather than on the boundary of the feasible set (Koenker
2005). In numerical simulations, we compare our approaches to the advanced IPmeth-
ods present in thequantreg package.We implement the proposedmethods using the
publicly availablecqrReg package for R (Gao andKong 2015), which performs com-
putations in C++ and links back to R via the Rcpp (Eddelbuettel and François 2011)
and RcppArmadillo (Eddelbuettel and Sanderson 2014) packages for increased
computational efficiency. The results of these simulations suggest that our approaches
generally improve upon quantreg’s computation time with roughly the same level
of estimation error for the range of quantile regression problems considered. We find
that the MM approach to non-regularized composite quantile regression greatly out-
performs the other threemethods in terms of computation time and that the CDmethod
excels in regularized (composite) quantile regression with high-dimensional data. Our
ADMM approach was at least comparable (in terms of computation time and estimate
error) in most simulations performed but holds the promise of further improvement
and scalability with distributed computing and parallelization. Indeed, ADMM has
recently been explored in the context of penalized quantile regression for big data as
well as in sparse settings (Yu and Lin 2017; Gu et al. 2018). Our new implementations
provide users with new algorithms for quantile and composite quantile regression
with competitive runtime in different data settings, all with comparable estimation
error.

The rest of this article is structured as follows. Section 2 presents quantile regres-
sion, starting with relevant notation in Sect. 2.1, followed by the description of our
approaches to quantile regression using the ADMM, MM, and CD algorithms in
Sect. 2.2 through 2.4. Sect. 3 continues with composite quantile regression, including
relevant notation and commentary on the extension from quantile to composite quan-
tile regression for our ADMM, MM, and CD methods. Numerical simulation results
are presented in Sect. 4 and discussed in Sect. 5.

2 Quantile regression

In this section, we present the proposed ADMM, MM, and CD methods for quan-
tile regression with adaptive lasso regularization. We refer interested readers to the
online supplementary appendix for implementations of the non-regularized problems
and further details (omitted for brevity) on our proposed methods. For complete-
ness in the upcoming simulations, a basic IP formulation is also given in the online
appendix.

2.1 Background and notation

We first introduce the necessary background and notation to be used throughout this
paper regarding quantile regression, both with and without adaptive lasso regulariza-
tion (Wu and Liu 2009; Zou 2006). We are concerned with the linear model
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y = b0 + xxxTβββ + ε,

where we wish to estimate the level τ (for some τ ∈ (0, 1)) conditional quantile of
y ∈ R given xxx ∈ R

p, given by b0 + xxxTβββ + bε
τ , where b

ε
τ is the (assumed unique) level

τ quantile of the error distribution of ε, independent of xxx (Zou and Yuan 2008).
For a fixed quantile level τ ∈ (0, 1), define the quantile loss function, for any

t ∈ R, by ρτ (t) = τ t+ + (1 − τ)t−, where t+ = max{t, 0} and t− = max{−t, 0}.
Given a design matrix XXX = [xxx1| . . . |xxxn]T ∈ R

n×p and response variable vector
YYY = (y1, . . . , yn)T ∈ R

n , adaptive lasso regularized quantile regression estimates are
obtained as

(b̂0, β̂ββ) = argmin
b0∈R, βββ∈Rp

n∑

i=1

ρτ (yi − b0 − xxxTi βββ) + pλ(|βββ|),

where λ > 0 is a regularization parameter, pλ(|βββ|) = λ
∑p

j=1
|β j |/|βQR

j |2 is the adaptive

lasso penalty, and βββQR = (β
QR
1 , . . . , β

QR
p )T ∈ R

p is the estimator (without inter-
cept) obtained from non-regularized quantile regression (Koenker and Bassett 1978;
Koenker 2005)—that is, the estimator in the problem with λ = 0.

Define the residuals for quantile regression by ri = ri (b0,βββ) = yi − b0 − xxxTi βββ, for
i = 1, . . . , n. For the ease of notation throughout this section, we sometimes assume
that a design matrix XXX has an appropriate column for the intercept term of the model.
Where intercepts are accounted for in the designmatrix, the parameter vectorβββ will be
taken to include the corresponding intercept terms such thatβββ = (b0, β1, . . . , βp)

T ∈
R

p+1. This will be made clear by the dimension of βββ. Throughout this paper, p will
always refer to the number of covariate parameters and β j , for j = 1, . . . , p, will
always refer to a covariate effect and never an intercept term.

2.2 Alternating directionmethod of multipliers algorithm

Although developed in the 1960s and 1970s (Hestenes 1969; Gabay and Mercier
1976), interest in the ADMM algorithm was renewed with the findings of Boyd et al.
(2011) and Lin et al. (2010). These studies demonstrate the ADMM algorithm’s rel-
ative efficiency in solving optimization problems with large data sets, particularly
when non-smooth terms are present in the objective function. This method has found
notable use in quantile regression where the quantile loss and regularization term
(if present) are not differentiable (Boyd et al. 2011; Kong et al. 2015; Zhang et al.
2017). For brevity, a general formulation of the ADMM algorithm is available in the
online supplementary appendix. We apply the ADMM algorithm (Boyd et al. 2011)
by reformulating regularized quantile regression as the convex optimization problem

min
βββ∈Rp+1

n∑

i=1

ρτ (ri ) + pλ(|βββ|)

subject to XXXβββ + rrr = YYY ,
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where rrr is a vector of residuals and where the intercept term is accounted for in both
βββ and XXX . We solve this problem using the ADMM iteration scheme (Boyd et al. 2011)

rrr (t+1) = argmin
rrr∈Rn

n∑

i=1

ρτ (ri ) + ρ

2
||YYY − rrr − XXXβββ(t) + uuu(t)/ρ||22

βββ(t+1) = argmin
βββ∈Rp+1

ρ

2
||YYY − rrr (t+1) − XXXβββ + uuu(t)/ρ||22 + pλ(|βββ|)

uuu(t+1) = uuu(t) + ρ(YYY − rrr (t+1) − XXXβββ(t+1)),

where uuu is the rescaled Lagrange multiplier and ρ > 0 is a penalty parameter. For
reference, ρ is chosen to be 1.2 by Boyd et al. (2011). The update for rrr can be written
in a closed form as S1/ρ

(
ccc − (2τττ n×1 −111n×1)/ρ

)
where ccc = YYY − XXXβββ(t) +uuu(t)/ρ and,

for a ∈ R, the soft thresholding operator Sa : Rm → R
m is defined component-wise

via (Sa(vvv))i = (vi − a)+ − (−vi − a)+. Similarly, the update for βββ does not have a
closed form but can be viewed as a least squares optimization problem with adaptive
lasso penalty. We implement existing numerical methods to solve this problem and
update βββ.

Let XXX∗ and βββ∗ be XXX and βββ with the intercept term removed and bbb a vector of
intercepts (b0)n×1. A generic stopping condition for the algorithm can be defined in
terms of the primal and dual residualsrrr (t+1)

primal andrrr
(t+1)
dual , respectively, with the stopping

conditions ||rrr (t+1)
primal||2 ≤ εprimal and ||rrr (t+1)

dual ||2 ≤ εdual. In this regularized setting, we
have (from the general ADMM algorithm) that

rrr (t+1)
primal = YYY − XXXβββ(t+1) − rrr (t+1)

rrr (t+1)
dual = ρXXXT∗ (rrr (t+1) − rrr (t))

εprimal = √
nεabs + εrel max{||XXX∗βββ(t+1)∗ ||22, ||rrr (t+1)||22, ||bbb − YYY ||22},

εdual = √
pεabs + εrel||XXXTuuu(t+1)||22,

with possible tolerance values εabs = 10−4 and εrel = 10−2, respectively (Boyd et al.
2011).

2.3 Majorize-minimization algorithm

The use of majorizing functions to solveminimization problems has been well-studied
in the statistical literature for many years since Ortega and Rheinboldt (1970). It was
not until a later time, however, that the general MM framework was put forward
by Hunter and Lange (2000). In general, MM can refer to majorize-minimization
or minorize-maximization, depending on whether the problem at hand is a mini-
mization or maximization problem, respectively. MM algorithms operate iteratively
by constructing an auxiliary function gt (·|βββ(t)) using a solution βββ(t) for the current
iteration that will simultaneously optimize the original objective function f . In the
case of a minimization problem, this function is called a majorizer and must satisfy
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gt (βββ|βββ(t)) ≥ f (βββ) for all βββ of interest and gt (βββ(t)|βββ(t)) = f (βββ(t)). Arguably, the
most well-known application of an MM method is in the expectation-maximization
(EM) algorithm (Dempster et al. 1976) for maximum likelihood estimation. MM has
also been applied in various areas of research, e.g., regression, survival analysis, dis-
criminant analysis, and quantile regression (Hunter and Lange 2004). We use the MM
algorithm developed by Hunter and Lange (2000) and Hunter and Li (2005) to solve
the quantile regression problem with adaptive lasso regularization.

We first construct a function ρε
τ (r) based on some perturbation parameter ε > 0 to

approximate the fidelity portion
∑n

i=1 ρτ (ri ) of the objective function. For any r ∈ R,
define ρε

τ (r) = ρτ (r) − ε
2 ln(ε + |r |) so that the fidelity can be approximated by

∑n
i=1 ρε

τ (ri ). At the t-th iteration, for each residual value r (t)
i = r (t)

i (βββ(t)), we have
that ρε

τ (r) is majorized by the quadratic function

ξε
τ (r |r (t)

i ) = 1

4

[
r2

ε + |r (t)
i |

+ (4τ − 2)r + c

]
,

for some solvable constant c that satisfies the equation ξ(r (t)
i |r (t)) = ρε

τ (r
(t)). Given

λ,βββQR, and an initial value βββ(0) = (β
(0)
1 , . . . , β

(0)
p ) for βββ, we can locally approximate

the penalty pλ(|βββ|) as a quadratic function. This yields a majorizer of the objective
function (Hunter and Li 2005),

Qε(βββ|βββ(t)) =
n∑

i=1

ξε
τ (ri |r (t)

i ) + λ

p∑

j=1

1

|βQR
j |2

[
|β(t)

j | +
(
β2
j − (β

(t)
j )2

)
sgn(β(t)

j )

2|β(t)
j + ε|

]
.

For the t-th iteration of the algorithm, given an updated value βββ(t) for βββ, we mini-
mize the quadratic function Qε(·|βββ(t)) using a Newton-Raphson iterative method. The
argument minimum is used to updateβββ(t) and can be used to decide when to terminate
the algorithm. For our purposes, we use tolerance 10−3.

2.4 Coordinate descent algorithm

Coordinate descent (CD) algorithms are iterative procedures that generally fix some
components of the argument vector in an optimization problem and solve the resulting
subproblem in terms of the unfixed components. CD methods have a long-standing
history (Ortega and Rheinboldt 1970) and their convergence properties are well-
documented (Luo andTseng 1992; Tseng 2001). The simplest CD algorithms allow for
exactly one unfixed variable per iteration and search for a subproblem solution along
a line, while others will search along a hyperplane by allowing multiple unfixed com-
ponents. Most implementations use the latter in a block coordinate descent method.
CDmethods have been developed extensively, particularly for non-differentiable, non-
convex objective functions, permitting the use of regularization functions such as lasso
(l1) and ridge (l2) penalties (Tseng 2001; Friedman et al. 2010).

To implement quantile regression with adaptive lasso regularization, we use an
extended version of the greedy CD method put forward by Edgeworth and, more
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recently, further developed by Wu and Lange (2008). This requires us to reformulate
the quantile objective function. In each iteration, for fixed βββ ∈ R

p, replace b0 by
the level-τ sample quantile of the residuals yi − XXXT

i βββ for i = 1, . . . , n: this will
necessarily drive the value of the objective function downwards. Define Θi = ρτ (ri )
for i = 1, . . . , n. For m = 1, . . . , p, rewrite the loss function as

L(b0,βββ) = Lm(b0,βββ) =
n∑

i=1

|xim |
∣∣∣∣
yi − b0 − ∑p

j=1, j �=m xi jβ j

xim
− βm

∣∣∣∣ · Θi + pλ(|βββ|)

and apply the CD algorithm. For each fixed m, define zi = 1
xim

(
yi − b0 −

∑p
j=1, j �=m xi jβ j

)
if ri ≥ 0 and zi = 0 if ri < 0. We sort zi , for i = 1, . . . , n,

and update βm to the value of the i∗-th order statistic z(i∗) satisfying

i∗−1∑

j=1

w( j) <
1

2

n∑

j=1

w( j) and
i∗∑

j=1

w( j) ≥ 1

2

n∑

j=1

w( j),

where wi = |xim | · θi if ri ≥ 0 and wi = λ/|βQR
m |2 if ri < 0. In other words, using the

weights wi , the selected z(i∗) is the weighted median of all zi (for the fixed value of
m). At the end of each iteration, check for the convergence of βββ using the selected
stopping criteria. Here, we use an absolute value difference threshold of 10−3.

3 Composite quantile regression

In this section, we present an extension from quantile to composite quantile regres-
sion for the proposed ADMM, MM, and CD algorithms. We only show results for
the case with adaptive lasso regularization. Readers interested in the non-regularized
case are referred to the online supplementary appendix where more details and a
similar extension for a basic IP formulation are given. With regards to the available
quantreg package for R (Koenker 2017), we note that non-regularized composite
quantile regression has only recently been implemented using an IP algorithm and that
a regularized version is currently not natively available without further reformulation
of the problem.

Composite quantile regression (Zou and Yuan 2008) simultaneously estimates a
sequence of K conditional quantiles of y given XXX at levels 0 < τ1 < τ2 < · · · <

τK < 1. Under the same linear model as before, these conditional quantiles are
given by b0 + XXXTβββ + bε

k , where b
ε
k is the (assumed unique) level τk quantile of the

error distribution of ε, again assumed independent to be independent of XXX . Unlike
K independent quantile regression models, the composite model assumes the same
covariate effects across the K quantile levels. Adaptive lasso regularized composite
quantile regression estimates are obtained as

(b̂1, . . . , b̂K , β̂ββ
CQR

) = argmin
b1,...,bK∈R, βββ∈Rp

K∑

k=1

n∑

i=1

ρτ (yi − bk − XXXT
i βββ) + pλ(|βββ|),
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where λ > 0 is a regularization parameter, pλ(|βββ|) = λ
∑p

j=1
|β j |/|βCQR

j |2, and βββCQR is
the solution (without intercepts) to the non-regularized composite quantile regression
problem. To extend the residual notation defined before, let rik = yi − bk − xxxTi βββ, for
i = 1, . . . , n and k = 1, . . . , K . Zou and Yuan (2008) impose regularity conditions
to ensure the asymptotic normality of the unregularized composite quantile estimates:
the authors note these are essentially the same as those in standard quantile regression
Koenker (2005).

The extension from quantile to composite quantile regression is relatively straight-
forward: we need only accommodate additional quantile levels and intercept terms.
Since the composite quantile case only adds more intercept parameters, the penalty
term remains unchanged. For explicit details on our methods for regularized compos-
ite quantile regression in the ADMM, MM, and CD approaches, refer to the online
supplementary appendix.

To extend the ADMMmethod, we generate a new design matrix XXX∗ ∈ R
nK×(p+K )

by “stacking” the designmatrices for each quantile level and adjusting all input accord-
ingly. Written formally,

XXX∗
nK×(p+K ) =

⎡

⎢⎢⎢⎢⎢⎣

[111 000 000 · · · 000] XXX
[000 111 000 · · · 000] XXX
[000 000 111 · · · 000] XXX
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

[000 000 000 · · · 111] XXX

⎤

⎥⎥⎥⎥⎥⎦
,YYY ∗

nK×1 =

⎡

⎢⎢⎢⎢⎢⎣

YYY
YYY
YYY
.
.
.

YYY

⎤

⎥⎥⎥⎥⎥⎦
,bbb∗ =

⎡

⎢⎢⎢⎢⎢⎣

(b1)n×1
(b2)n×1
(b3)n×1

.

.

.

(bK )n×1

⎤

⎥⎥⎥⎥⎥⎦
, τττ ∗ =

⎡

⎢⎢⎢⎢⎢⎣

(τ1)n×1
(τ2)n×1
(τ3)n×1

.

.

.

(τK )n×1

⎤

⎥⎥⎥⎥⎥⎦
,

where, for example, [111000000 · · · 000]denotes then×K matrixwith rows (1, 0, · · · , 0)T ∈
R

K . Themethods presented in Sect. 2.2 for quantile regression then apply after replac-
ing XXX , YYY , bbb, and τ with XXX∗, YYY ∗, bbb∗, and τττ ∗, respectively. After replacement, the
optimization problem becomes

min
β∈Rp+K

K∑

k=1

n∑

i=1

ρτk (rik) + pλ(|βββ|)

subject to XXX∗βββ + rrr = YYY ∗.

With these changes, the explicit update scheme for ADMM is given by

rrr (t+1) = argmin
rrr∈RnK

K∑

k=1

n∑

i=1

ρτk (rik) + ρ

2
||YYY ∗ − rrr − XXX∗βββ(t) + uuu(t)/ρ||22

βββ(t+1) = argmin
βββ∈Rp+K

ρ

2
||YYY ∗ − rrr (t+1) − XXX∗βββ + uuu(t)/ρ||22 + λ

p∑

j=1

|β j |/|βCQR
j |2

uuu(t+1) = uuu(t) + ρ(YYY ∗ − rrr (t+1) − XXX∗βββ(t+1)),
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where ccc = YYY ∗ − XXX∗βββ(t) + uuu(t)/ρ, with residuals

rrr (t+1)
primal = YYY ∗ − XXX∗βββ(t+1) − rrr (t+1)

rrr (t+1)
dual = ρXXX∗∗

T
(rrr (t+1) − rrr (t))

εprimal = √
nεabs + εrel max{||XXX∗∗βββ(t+1)∗ ||22, ||rrr (t+1)||22, ||bbb∗ − YYY ||22},

εdual = √
pεabs + εrel||XXX∗Tuuu(t+1)||22.

The extension of the remaining two methods is similar, although requiring a slight
change in the objective function. For the CD method, we modify our reformulation
Lm of the objective function, for m = 1, . . . , p, to include a second summation for
the additional quantile levels as

Lm(b1, . . . , bk,βββ) =
K∑

k=1

n∑

i=1

|xim |
∣∣∣∣
yi − bk − ∑p

j=1, j �=m xi jβ j

xim
− βm

∣∣∣∣ · Θik + pλ(|βββ|),

where Θik = ρτk (rik) is analogous to Θi defined previously. The MM approach is
similarly extended, yielding a final majorizer of the form

Qε(βββ|βββ(t)) =
K∑

k=1

n∑

i=1

ξε
τk

(rik |r (t)
ik ) + λ

p∑

j=1

1

|βCQR
j |2

[
|β(t)

j | +
(
β2
j − (β

(t)
j )2

)
sgn(β(t)

j )

2|β(t)
j + ε|

]
.

4 Numerical simulations

In this section, we evaluate the performance of the proposed ADMM, MM, and CD
methods against that of the IP methods in quantreg. Because quantreg does
not natively support regularized composite quantile regression, we do not make a
comparison with IP approaches in that setting. Lasso regularization is used in place
of adaptive lasso regularization for the IP method as the latter is not readily available
in quantreg. Throughout this section, data is generated according to the model

yi = b +
p∑

j=1

xi jβ j + εi ,

for i = 1, . . . , n, where the εi are i.i.d. standard normal random variables. We use a
convergence threshold of 10−4 to define our stopping criteria throughout.

We first focus on parameter estimation rather than variable selection and consider
cases with p = 5 variables and n = 200, 400, 600, 800, 1000, 2000 observations in
non-regularized quantile and composite quantile regression. In each simulation, the
true value of each β j is uniform randomly sampled from the interval [−1, 1]. In the
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Table 1 Simulation results for quantile regression without regularization

(n,p) IP ADMM MM CD

Error Time Error Time Error Time Error Time

(200,5) 0.08 0.002 0.063 0.002 0.060 0.0002 0.036 0.002

(400,5) 0.052 0.0022 0.055 0.0038 0.051 0.0004 0.046 0.003

(600,5) 0.043 0.0029 0.042 0.005 0.033 0.0005 0.043 0.0416

(800,5) 0.037 0.0048 0.035 0.006 0.031 0.0005 0.034 0.0046

(1000,5) 0.0336 0.0053 0.031 0.008 0.026 0.0006 0.031 0.0064

(2000,5) 0.0213 0.01 0.022 0.013 0.018 0.001 0.022 0.0096

Time measures the average computation time in seconds over 50 replications and Error measures the
average absolute value difference between the estimated and true parameter values. The IP column displays
the results from quantile regression using the IP method available in quantreg. The lowest Error and
Time values for each (n,p) are noted in bold

Table 2 Simulation results for composite quantile regression without regularization

(n,p) IP ADMM MM CD

Error Time Error Time Error Time Error Time

(200,5) 0.058 0.009 0.057 0.029 0.057 0.0008 0.058 0.008

(400,5) 0.043 0.021 0.043 0.057 0.047 0.001 0.040 0.011

(600,5) 0.035 0.03 0.034 0.088 0.034 0.0012 0.039 0.017

(800,5) 0.029 0.047 0.029 0.122 0.029 0.0014 0.031 0.018

(1000,5) 0.025 0.064 0.024 0.16 0.028 0.0015 0.024 0.025

(2000,5) 0.077 0.14 0.017 0.36 0.017 0.0026 0.018 0.044

Timemeasures the average computation time in seconds over 50 replications and Errormeasures the average
absolute value difference between the estimated and true parameter values. The IP column displays results
from composite quantile regression using the IP method available in quantreg. The lowest Error and
Time values for each (n,p) are noted in bold

quantile regression case, we set τ = 0.3 and in the composite quantile setting, we
use quantile levels 0.1, 0.2, . . . , 0.9. Tables 1 and 2 present the performance of each
method, averaged over 50 simulations.

We next consider variable selection for high-dimensional data using n =
100, 200, 500 and varying p from 1.5n to 5n. The performance of each algorithm
is summarized by the average number of false predictors selected, the average num-
ber of true predictors selected, and the average computation time in seconds over 25
replications. Simulation results in Table 3 are for regularized quantile regression with
quantile level τ = 0.3: here, the ADMM, MM, and CD methods use adaptive lasso
regularization as described in previous sections, while the IPmethod uses the lasso reg-
ularization available in quantreg. Table 4 gives results based on composite quantile
regression with adaptive lasso regularization using quantile levels 0.1, 0.2, . . . , 0.9:
we do not make a comparison against an IP approach here, however, as a comparable
method is not readily available in quantreg.
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Table 3 Simulation results for regularized quantile regression: the ADMM, MM, and CD methods use
adaptive lasso, while the IP method from quantreg uses lasso regularization

(n,p) IP ADMM MM CD

Time NT NF Time NT NF Time NT NF Time NT NF

(100,200) 0.074 4 0 0.017 4 0 0.1 4 0.1 0.014 4 0

(100,300) 0.024 4 0 0.041 4 0 0.25 4 0 0.02 4 0

(100,500) 0.98 4 0 0.152 4 0 0.812 3.9 0 0.035 4 0

(200,400) 0.627 4 0 0.088 4 0 0.58 4 0 0.048 4 0

(200,600) 1.96 4 0 0.161 4 0 1.64 4 0 0.054 4 0

(200,1000) 8.85 4 0 0.791 4 0 6.23 4 0 0.11 4 0

(500,750) 5.1 4 0 0.522 4 0 4.09 4 0 0.18 4 0

(500,1000) 11 4 0 0.852 4 0 10.3 4 0 0.24 4 0

(500,1500) 38 4 0 2.41 4 0 24 4 0 0.36 4 0

Time measures the average computation time in seconds over 25 replications; NT and NF give the average
number of true and false predictors selected, respectively. The lowest Time value for each (n,p) is noted in
bold

Table 4 Simulation results for composite quantile regression with adaptive lasso regularization for the
ADMM, MM, and CD algorithms

(n,p) ADMM MM CD

Time NT NF Time NT NF Time NT NF

(100,200) 0.043 4 0 0.11 4 0.8 0.13 4 0

(100,300) 0.089 4 0 0.29 4 0.6 0.18 4 0

(100,500) 0.21 4 0 1.01 4 0.64 0.32 4 0

(200,400) 0.22 4 0 0.75 4 0.64 0.47 4 0

(200,600) 0.452 4 0 1.9 4 0.72 0.676 4 0

(200,1000) 1.41 4 0 7.4 4 0.25 0.615 4 0

(500,750) 1.52 4 0 5.4 4 0.8 2.4 4 0

(500,1000) 2.43 4 0 10.3 4 0.8 2.6 4 0

(500,1500) 5.86 4 0 28.5 4 0 3.7 4 0

An IP method from quantreg is not available in this setting. Time measures the average computation
time in seconds over 25 replications; NT and NF give the average number of true and false predictors
selected, respectively

5 Discussion and conclusions

In this paperwe have presented three novel approaches to quantile and composite quan-
tile regression and variable selection.Motivated by the lack of variety in algorithms for
(composite) quantile regression, both with and without adaptive lasso regularization,
and a desire to improve run times over the existing IP methods, we reformulated four
types of quantile regression problems and presented estimators obtained using three
algorithms. Using our existing implementation of these methods in the cqrReg pack-
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age for R (Gao and Kong 2015), we used simulation studies to compare our methods
to the IP algorithms available in the quantreg package (Koenker 2017).

In the non-regularized quantile regression setting, we do not observe substantial
differences in the average estimation error between methods; the same is true of run
time except for the MM approach, which performs considerably better than the other
three methods in this setting. In non-regularized composite quantile regression, how-
ever, differences between the methods in terms of estimation error are more apparent,
as the IP method has larger average estimation error than the ADMM, MM, and CD
approaches, while MM and CD are faster and ADMM slower than the IP algorithm.
Comparisons between IP and ADMM methods for non-regularized quantile regres-
sion already exist in the literature (Koenker et al. 2018, Chapter 5). The results so
far suggest that the MM approach is the best suited for non-regularized (composite)
quantile regression among the four methods tested, especially for data sets with p
small relative to n. In regularized quantile regression, all of our approaches perform
similarly in terms of variable selection, but CD and ADMM show clear superiority in
run time, particularly relative to the IP and MM methods when p is large. In the case
of regularized composite quantile regression, CD and ADMM have run time supe-
rior to MM. Furthermore, MM shows a tendency to select irrelevant variables, likely
due to the algorithm’s matrix inversion and selection of an approximating parameter.
This second set of results suggests that our CD approach is best suited for regularized
(composite) quantile regression among the three methods tested, although care should
be taken with regards to its theoretical convergence properties, as noted by Tseng
(2001). In particular, since the penalty is not continuously differentiable in βββ [so that
the penalty is not separable as per Tseng (2001)], convergence results do not apply.
This situation is similar to that noted by Friedman et al. (2007) in the context of fused
lasso. In an example, CD is unable to achieve the global minimum of a strictly convex
objective function. The authors show this problem stems from CD not allowing two
particular components to be updated together, while no improvement to the value of
the objective function is possible in one-component subproblem updates. With some
specific modifications, however, Friedman et al. (2007) show that this CD approach
can be modified for highly competitive performance for the fused lasso problem.

Overall, our methods provide reliable and efficient algorithms to estimate solutions
to quantile and composite quantile regression problems, including those regularized
by an adaptive lasso penalty. Our methods, already implemented in the cqrReg
package for R, widen the variety of algorithms available for quantile and composite
quantile regression and greatly improve upon the run time of the existing advanced
IP methods, particularly for large or high-dimensional data sets. Our ADMMmethod
was competitive and is further amenable to parallelization, naturally lending itself
to distributed computing to handle data that is both high-dimensional and extremely
large in volume. ADMMmay have future application in training deep neural networks
through gains in estimation error and computation time. This is explored in greater
depth by Yu and Lin (2017) and Gu et al. (2018) for big data and in sparse, high-
dimensional settings.
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