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Brain Connectivity 

Ø  Functional Segregation: Human brain mapping has been 
primarily used to provide maps that show which regions of the 
brain are activated by specific tasks. 

Ø  Recently, there has been an interest in augmenting this type of 
analysis with brain connectivity studies which describe how 
various regions interact and how interactions depend on 
experimental conditions. 

? 
? 
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Brain Networks 

Ø  The current  fashion is to call any 
set of regions activated in a task a 
network. 

Ø  But what does it mean to be a 
network? 

Ø  Set of interconnected regions; 
information transfer among regions. 

q < .01 FDR, P < .0004 
P < .001 

q < .05 FDR, P < .0046 

Color key 
Whole-brain search 

+ - 
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Functional Connectivity 

Ø  Functional connectivity is a statement about observed 
associations among regions and/or performance and 
physiological variables. 

Ø  It does not comment on how these associations are mediated. 

Ø  Functional connectivity analysis is usually performed using data-
driven transformation methods which make no assumptions 
about the underlying biology. 
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Functional Connectivity 

Ø Methods: 

²  Seed analyses 

²  Psychophysiological interaction analyses 

²  Principle Components Analysis 

²  Partial Least Squares 

²  Independent Components Analysis 
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Effective Connectivity 

Ø  Effective connectivity analysis is performed using statistical 
models which make anatomically motivated assumptions and 
restricts inference to networks comprising of a number of pre-
selected regions of interest. 

Ø  These methods are hypothesis driven rather than data-driven 
and most applicable when it is possible to specify the relevant 
functional areas. 
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Effective Connectivity	  

Ø Methods: 

²  Structural Equation Modeling 

²  Granger Causality 

²  Dynamic Causal Modeling 

•  Note that Granger causality does not rely on an a priori 
specified structural model. 
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Functional Connectivity 
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Levels of Analysis 

Ø  Functional connectivity can be applied at different levels of 
analysis, with different interpretations at each. 

Ø  Connectivity across time can reveal networks that are 
dynamically activated across time. 

Ø  Connectivity across trials can identify coherent networks of task 
related activations. 

Ø  Connectivity across subjects can reveal patterns of coherent 
individual differences. 

Ø  Connectivity across studies can reveal tendencies for studies to 
co-activate within sets of regions. 
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Bivariate Connectivity 

Ø Simple functional connectivity 

²  Region A is correlated with Region B. 

²  Provides information about relationships among regions. 

²  Can be performed on time series data within a subject, or 
individual differences (contrast maps, one per subject). 

A B 
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Time Series Connectivity 

Ø  Calculate the cross-correlation between time series from two 
separate brain regions. 

Region 1 Region 2 

Subject 1 

Subject 2 

Subject n 

… 

Group Analysis 

r  Z 

r  Z 

r  Z 

Z 

Z 

Z 
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Seed Analysis 

Ø  In seed analysis the cross-correlation is computed between the 
time course from a predetermined region (seed region) and all 
other voxels. 

Ø  This allows researchers to find regions correlated with the 
activity in the seed region. 

Ø  The seed time course can also be a performance or 
physiological variable. 

seed voxel 
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SVCA example 

Finger-tapping task:  
all voxels (p<0.005, 
uncorrected) that 
showed changed 
functional connectivity 
with the left ant. 
cerebellum in 
schizophrenic patients 
after medication with 
olanzapine.  

Stephan et al., Psychol. Med. (2001) 

p<0.005, uncorrected 
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Group Analysis 

Time Series Connectivity 

Brain Heart rate 

Subj 1 

Subj 2 

Subj 3 

r  Z 

r  Z 

r  Z 
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Correlations between brain activity  
and heart-rate increases 

Time (TRs, 2 s) 

Average within-subject correlation (r) 

Threshold: p < .005 
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Issues 

Ø  One of the main problems with time series connectivity is the 
fact that there may be different hemodynamic lags in different 
regions: 

²  Time series from different regions may not match up, even if 
neural activity patterns match up. 

²  If lags are estimated from data, temporal order may be 
caused by vascular (uninteresting) or neural (interesting) 
response. 
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Beta Series 

Ø  The beta series approach can be used to minimize issues of 
inter-region neurovascular coupling. 

Ø  Procedure: 

²  Fit a GLM to obtain separate parameter estimates for each 
individual trial. 

²  Compute the correlation between these estimates across 
voxels. 
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Region 1 Region 2 

Subject 1 

Subject 2 

Subject n 

… 

Group Analysis 

r  Z

r  Z

r  Z
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Individual Differences 

…
…

..  

Subject Contrast 
Image 

1 

2 

N 

Seed Value 
 

1x

2x

Nx

Group Results 
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Co-activation across Studies 

Ø  Meta-analysis can be used to reveal patterns of co-activated 
regions.  
 

Ø  If two regions are co-activated, studies that activate one region 
are more likely to activate the other region as well.  

Ø  Co-activation is thus a meta-analytic analogue to functional 
connectivity analyses in individual neuroimaging studies. 
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Co-activated regions show 
a tendency to be activated 
in the same studies, as 
assessed with Kendall's tau. 
Arrows show significant co-
activation. 

Wager et al. 
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Mediation 

Ø  Mediation (Baron & Kenny, 1986) 
²  The relationship between regions A and B is mediated by M 
²  Can identify functional pathways spanning > 2 regions 
²  Can be performed on time series data within a subject, or 

individual differences (contrast maps, one per subject) 
²  Also: Test of whether task-related activations in B are 

mediated, or explained, by M. 

A B M 

Task B M 
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Demonstrating Mediation 

x y 

m a b 

c’ 

x y 
c 

Full model, with mediator Reduced model, without mediator 

m = im + ax + em 
y = iy + bm + c'x + e’y y = iy’ + cx + ey 

1)  c effect: There is a relationship to be mediated 
2)  a effect: initial variable related to mediator 
3)  b effect: mediator relates to outcome 

Baron and Kenny (1986) – conjunction of 3 effects: 
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Decomposition of Effects 

Ø  The mediation framework allows us to decompose the total effect 
of x on y as follows: 

Ø  Does m explain some of the x-y relationship? 

²  Test c – c’, which is equivalent to significance of a*b product. 

c = c' + ab Total effect = Direct effect + Mediated effect 
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Test of Mediation 

Ø  Sobel test: 

²  Z ~ N(0, 1), standard normal distribution 
²  Assumes a, b are normally distributed 
²  Usually conservative (p-values higher than needed) 

•  Bootstrap test 

� 

Z =
ab

(b2se(a)2 + a2se(b)2)1/ 2
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Moderation 

Ø Moderation (Baron & Kenny, 1986) 
²  The relationship between regions A and B is moderated by M 
²  Connectivity between A and B depends on state (level) of M 
²  Can be performed on time series data within a subject, or individual 

differences (contrast maps, one per subject) 
²  M can be task state or other variable 

Ø  In SPM, on time series data: “Psychophysiological interaction” (PPI) 

M 

B 

A 
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A Simple Path Model 

x y 

m a b 

c’ 

Full model, with mediator and moderator 

m = im + ax + em 
y = iy + bm + c'x + d(mo*x) + e’y 

mo 

d 
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Functional Mediation 

X 
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Temperature Pain Rating 

Brain Response 

pathway function 

α pathway function β pathway function 
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Multivariate Methods 

Ø  We often use multivariate methods to study functional 
connectivity.  

Ø  When using multivariate methods observations at each voxel 
are considered jointly.  

Ø  This has the potential to allow for better understanding of how 
different brain regions interact with one another. 
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Principal Components Analysis 

Ø  Principal components analysis involves finding spatial modes, or 
eigenimages, in the data. 

Ø  Spatial modes are the patterns that account for most of the 
variance-covariance structure in the data. 

Ø  The eigenimages are obtained using singular value 
decomposition (SVD), which decomposes the data into two sets 
of orthogonal vectors that correspond to patterns in space and 
time. 
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TUSVX =

Voxels 

Ti
m

e 

= 

Eigenimages Time courses 

T
NNN

TT sss vuvuvuX +++= …222111

Each column of V defines a distributed brain region that can be 
displayed as an image (eigenimages). 

Each column of U correspond to the time-dependent profiles 
associated with each eigenimage. 
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Independent Components Analysis 

Ø  Independent Components Analysis (ICA) is a family of 
techniques used to extract independent signals from some 
source signal. 

Ø  ICA provides a method to blindly separate the data into spatially 
independent components. 

Ø  The key assumption is that the data set consists of p spatially 
independent components, which are linearly mixed and spatially 
fixed. 
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Two people are talking simultaneously in a room with two microphones. 

Cocktail Party Problem 

Speakers: s1(t) and s2(t). 
 
Microphones: x1(t) and x2(t) 

)()()(
)()()(

2221212

2121111

tsatsatx
tsatsatx

+=

+= ASX =
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ICA of fMRI 

+ 

A[ ]1 2
Ts s=s

fMRI data 

fMRI data is assumed to 
be a linear mixture of 
statistically independent 
sources, s. 

×

×

Source 1 

Source 2 

Time course 1 

Time course 2 

Vince Calhoun 

× 

× 
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ASX =

Problem Formulation 

Ø  We want to solve: 
 

 where A is the mixing matrix, S is the source matrix and X is the 
data matrix. Both A and S are unknown. 

 
Ø  Assume that Cov(X)=I and A is orthogonal. 

Ø  Find A such that S=ATX. 
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Assumptions 

Ø  ICA is able the solve this problem by exploiting some key 
assumptions. 

Ø  Assumptions:  

²  Linear mixing of sources. 

²  The components si are statistically independent. 

²  The components si are non-Gaussian. 
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Mutual Information 

Ø  One approach is to minimize the mutual information between 
different components. 

Ø  This is equivalent to minimizing the Kullback-Leibler divergence 
between the joint density and the product of the marginal 
densities.  

Ø  The Kullback-Leibler divergence is a measure of similarity 
between two density functions. 
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ICA for fMRI 

Ø  It is assumed that the fMRI data can be modeled by identifying 
sets of voxels whose activity both vary together over time and 
are maximally different from the activity in other sets. 

Ø  Decompose the data set into a set of spatially independent 
component maps with a set of corresponding time-courses. 
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Voxels 

Ti
m

e 

= 

Mixing 
Matrix 

Components Data 

Spatially independent 
Components 

Time Courses 

ASX =

Use an ICA algorithm to find A and S. 

Overview 

where the matrix S contains statistically 
independent maps in its rows each with 
an internally consistent time-course 
contained in the associated column of 
the mixing matrix A. 
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Comments 

Ø  Unlike PCA which assumes an orthonormality constraint, ICA 
assumes statistical independence among a collection of spatial 
patterns. 

Ø  Independence is a stronger requirement than orthonormality. 

Ø  However, in ICA the spatially independent components are not 
ranked in order of importance as they are when performing 
PCA. 
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Types of ICA 

Ø  An ICA that decomposes the 
original data into spatially 
statistically  independent 
components is called spatial ICA 
(sICA). 

Ø  It is possible to switch the order 
and make the temporal dynamics 
independent. This is called 
temporal ICA (tICA) 

Ø  Spatial ICA is more common in 
fMRI data analysis. 
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Multi-subject Analysis 

Ø  Using  ICA to analyze fMRI data from multiple subjects raises several 
questions. 

²  How should components be combined across subjects? 
²  How should the final results be thresholded and/or presented?  

Ø  There are several approaches: 

²  Stack time courses (forces time courses to be the same) 
²  Stack images and back-reconstruct (allows time courses to vary, 

allows some flexibility in images) 
²  Stack into a cube (forces images and time courses to be the same) 
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Overview 

Vince Calhoun 
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Group ICA 

Ø Group	  ICA	  is based on temporal concatenation. 

Ø  It decomposes the group matrix, and estimates through back-
reconstruction the spatial weights for each subject for a component 
of interest.   

Ø  For each subject the spatial weights at each voxel are treated as 
random variables, and a one-sample t-test is used to test whether 
that voxel loaded significantly on that component in the group.   
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Group ICA 

        X 

Subject 1 

Subject N 

Data 

 A   S_agg 

ICA 

A1 

AN 

= ×

Subject i 

Back-reconstruction 

×
1−

=Ai Si 
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Tensor ICA 

Ø  Tensor ICA decomposes a three-way data set into a 
set of independent spatial maps together with 
associated time courses and subject modes. 

Ø  This allows us to characterize the signal variation 
across the temporal, spatial and subject/session 
domain for each component.  
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Tensor ICA 
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Effective Connectivity 
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Effective Connectivity 

Ø  Effective connectivity is the influence one neuronal system 
exerts over another. 

Ø  Effective connectivity depends on two models: 

²  A neuroanatomical model that describes which areas are 
connected. 

²  A mathematical model that describes how areas are 
connected. 
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Structural Equation Modelling 

Ø  Structural equation Modeling (SEM) was first applied to imaging 
data by McIntosh and Gonzalez-Lima (1991). 

Ø  SEM allows for the analysis of more complicated models 
consisting of many different ROIs. 

Ø  Instead of considering variables individually the emphasis in 
SEM lies on the variance-covariance structure of the data. 
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SEM 

Structural Equation Models  comprise a set of 
regions and a set of directed connections. 

A causal relationship is attributed to the connections. An 
arrow from A to B implies A causes B.  

Note: Causal relationships are assumed apriori. 

A C 

B 
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SEM 

•  The coefficients imply a set of correlations among the 
regions. 
•  A path coefficient is the expected change in activity of one 
region given a unit change in the region influencing it. 
•  The path coefficient indicates the average influence across 
the time interval measured. 
  

A C

B

Further define path coefficients between the various nodes.  

bAC 

bAB bBC 
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SEM 

Ø  The covariance of the data represents how the activities in two 
or more regions are related. 

Ø  In SEM we seek to minimize the difference between the 
observed	  covariance matrix and the one implied	  by the 
structure of the model. 

Ø  The parameters of the model are adjusted to minimize the 
difference between the observed and modeled covariance 
matrix.  
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Set-Up 

Ø  Consider a network consisting of N different regions, where the 
activity at time t  is given by the vector  yt which is of length N.  

Ø  Further suppose the data consists of T separate time points.  

Ø  We can write the full data as 

Ø  Next, assume that the network activity is independent from 
sample to sample, i.e. yi is independent of yj for all i≠j.  

Ø  This is not particularly realistic, but heuristic corrections exist. 

),( 1 Tyy …=Y
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))(,0(~ θΣNyt

The covariance matrix is a function of the connectivity 
parameters contained in θ. 

Further suppose that 

∏
=

=
T

t
typYp

1

)|()|( θθ

Under this assumption we can write the likelihood of the data 
as 

where θ are the parameters of the SEM. 

Set-Up 
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The form of Σ(θ) is specified by how the activity in 
various regions are related to one another, i.e.  

where M now describes the set of path coefficients.  
 
The Mij term of the matrix represents a connection between 
regions i and j.  

ttt eMyy +=

The noise term et is normally distributed with mean 0 and 
covariance matrix R=diag{σ1

2,….. σN
2}. 
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We can rewrite yt as 

The parameters θ are the unknown elements of the matrices 
M and R. 

tt eMIy 1)( −−=
Hence, we can write the covariance matrix of yt as 

( ) ( )TMIRMI 11 )()( −− −−=Σ θ

))(,0(~ θΣNyt
This gives us the desired path coefficients. 

Find the parameters θ that maximize the likelihood function: 
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Inference 

Ø  All inference regarding the path coefficients rests on the use of 
nested or stacked models.  

Ø  A more complex model is compared to a simpler model nested 
within the first model.  

Ø  If the complex model fits a particular dataset significantly better, 
then the additional parameters of this model are needed in the 
subsequent analyses. 

Ø  Given a constrained model, which is defined by the omission of a 
pathway, hypothesis testing may be construed as evidence for or 
against the pathway by nesting it in a free model where the 
pathway is included.  

Ø  If the difference in goodness of fit is highly unlikely to have 
occurred by chance, the connection can be declared active. 
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y(1) 
b13 

b12 b23 y(2) 

y(3) 

y(1) 
b13 

b12 
y(2) 

y(3) 

Example 

Fixed 

Constrained 

0: 230 =bH
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Likelihood Ratio Test 

Ø  The likelihood ratio test (LRT) is a statistical test of the 
goodness-of-fit between two models.  

Ø  A relatively more complex model is compared to a simpler 
model to determine whether it fits the  dataset significantly 
better.  

Ø  If so, the additional parameters in the more complex model need 
to be included.  
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Comparing Conditions 

Ø  We can take a similar approach to making inference about 
changes in effective connectivity between different experiment 
conditions. 

Ø  First partition the data according to the different experimental 
conditions.  

Ø  Next create a null-model where path coefficients are constrained 
to be equal between conditions and an alternative model where 
certain coefficients of interest are allowed to vary. 
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y(1) 
b13 

b12 b23 y(2) 

y(3) 

Example 

Null-model 

Alternative model 

y(1) 
b’13 

b’12 b’23 y(2) 

y(3) 

y(1) 
b13 

b12 b23 y(2) 

y(3) y(1) 
b’13 

b’12 y(2) 

y(3) 

23
~b

Condition 1 Condition 2 

Condition 1 Condition 2 

23230
~: bbH =
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Comparing Conditions 

Ø  Use the LRT to test whether there are significant differences 
between the models.  

Ø  If a significant difference exists we reject the hypothesis that the 
path coefficients are equal in both conditions.  

Ø  SEM discounts temporal information. Hence, permuted data 
sets produce the same path coefficients as the original data. 

Ø  We can compensate for temporal autocorrelation by using 
corrected degrees of freedom. 

Ø  However, models that include the temporal order of the data 
may be more appropriate. 
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Neuronal Interactions 

Ø  It is important to note that the measurements used in each of 
the connectivity studies we have described so far are 
hemodynamic in nature and this limits an interpretation of the 
results at the level of neuronal interactions. 

Ø  Dynamic Casual Modeling (Friston et. al.) is an attempt to move 
the connectivity analysis to the neuronal level. 

Ø  The modelled neuronal dynamics (z) is transformed into area-
specific BOLD signals (y) by a hemodynamic forward model (λ). 

Ø  The aim of DCM is to estimate parameters at the neuronal 
level (computed separately for each area)	  such that the modelled 
BOLD signals are maximally similar to the experimentally 
measured BOLD signals. 

λ 

z 

y 
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Dynamic Casual Modeling 

Ø  Dynamic Causal Modeling (DCM) is an attempt to model 
neuronal interactions using hemodynamic time series. 

Ø  DCM treats the brain as a deterministic nonlinear dynamic 
system that is subject to inputs and produces outputs.  

Ø  It makes inference about the coupling among brain areas and 
how the coupling is influenced by changes in experimental 
context. 

 
	   Input u(t) 

connectivity parameters θ 

System state z(t) 

System =  a set of elements 
which interact in a spatially and 
temporally specific fashion 

),,( θuzFz =!
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Ø  DCM is based on a neuronal model of interacting cortical 
regions, supplemented with a forward model of how neuronal 
activity is transformed into a measured response. 

Ø  Effective connectivity is parameterized in terms of the coupling 
among unobserved neuronal activity in different regions.  

Ø  We can estimate these parameters by perturbing the system 
and measuring the response. 
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State-space Model 

Ø  DCM is a state-space model. 
Ø  The initial formulation of DCM did not consider noise and was 

therefore a deterministic state-space model stated in terms of 
ordinary differential equations. 

Ø  More recent versions of DCM have been in terms of stochastic 
differential equations. 

System state z(t) State changes of a system are 
dependent on: 

–  the current state 
–  external inputs 
–  its connectivity 
–  time constants & delays 

),,( θuzFz =!
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Dynamic Casual Modeling 

In DCM a distinction is made between the neuronal level and the 
hemodynamic level. 
 
Experimental inputs cause changes in effective connectivity 
expressed at the neuronal level which in turn cause changes in 
the observed hemodynamics. 

External Inputs Changes in 
neuronal activity 

Changes in 
BOLD signal 
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Dynamic Casual Modeling 

Ø  DCM uses a bilinear model for the neuronal level and an 
extended Balloon model for the hemodynamic level. 

Ø  In a DCM model we have J experimental inputs and N outputs 
(one for each region). 

Ø  Each region has five state variables, four corresponding to the 
hemodynamic model and a fifth corresponding to neuronal 
activity. 
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Neurodynamics 

( )TNzzz …,1=

),,( θuzFz =!

where F is a non-linear function describing the influences that z and u 
exert upon changes in the neuronal states. 

Define the neuronal states as: 

The effective connectivity model is described by: 
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Bilinear form 

u
fc
∂

∂
=

ux
fb
∂∂

∂
=

2

cubxuaxuxf ++≈),(

The model consists of a bivariate nonlinear function. 
 
We can approximate such a function using a bilinear 
approximation: 

x
fa
∂

∂
=

where 
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Neurodynamics 
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where zt is the neuronal activity at time t (latent) and ut(j) is 
the jth of J inputs at time t (known). 

The effective connectivity model  
 
 
 
 
can be rewritten in bilinear form as:  

),,( θuzFz =!
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Ø  The matrix A represents the first order connectivity among 
regions in the absence of input. It specifies which regions are 
connected and whether these connections are uni- or 
bidirectional.  

Ø  The matrix C represents the extrinsic influence of inputs on 
neuronal activity. It specifies which inputs are connected to 
which regions.  

Ø  The matrices Bj represent the change in coupling induced by the 
jth input. It specifies which intrinsic connections are changed by 
which inputs.  



UNIVERSITY of ALBERTA 

Interpretation 

Ø  The units of connection are per unit time and therefore 
correspond to rates. 

Ø  A strong connection means an influence that is expressed 
quickly or with a small time constant. 
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DCM parameters=rate constants 

az
dt
dz

= )exp()( 0 atztz =

The coupling parameter a  
thus describes the speed of 
the exponential change in z(t) 

)exp(
5.0)(

0

0

τ

τ

az
zz

=

=

Integration of a first-order linear differential equation gives an 
exponential function: 

τ/2ln=a

05.0 z

a/2ln=τ

Coupling parameter a is inversely 
proportional to the half life τ of z(t): 
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Example:  
linear  
dynamic  
system 

LG 
left 

LG 
right 

FG 
right 

FG 
left 

LG = lingual gyrus 
FG = fusiform gyrus 
 
Visual input in the   
 - left (LVF) 
 - right (RVF) 
visual field. z1 z2 

z4 z3 

RVF LVF 

u2 
RVF 
 

u1 
LVF 
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Extension:  
bilinear  
dynamic  
system 

LG 
left 

LG 
right 

RVF LVF 

FG 
right 

FG 
left 

z1 z2 

z4 z3 

u2 u1 

CONTEXT 
u3 

     Intrinsic connectivity Direct inputs Modulation of connectivity 
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Hemodynamics 

Ø  The neuronal activities in each region cause changes in 
blood volume and deoxyhmoglobin that, in turn, cause 
changes in the observed BOLD response. 

Ø  The hemodynamics are described using an extended Balloon 
model, which involves a set of hemodynamic state variables, 
state equations and hemodynamic parameters θh. 
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)1( −−−= fszs γκ!
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Extended Balloon Model 

Activity-dependent signal: 

Flow induction: 

Changes in volume: 

Changes in dHb: 

Hemodynamic response 



UNIVERSITY of ALBERTA 

sf
tionflow induc

=!
 

s

v

f

v
q q/vvf,Efqτ /α

 dHbchanges in
1)( −= ρρ!/αvfvτ

 volumechanges in
1−=!

f

q

)1( −−−= fγszs
ry signalvasodilato

κ!

},,,,{ ρατγκθ =h

important for model fitting, but 
of no interest for statistical 
inference 

( )  ,)(  
signal BOLD
qvty λ=

The hemodynamic “Balloon” model 

)(
activity  

tz•  5 hemodynamic parameters: 

•  Empirically determined 
a priori distributions. 

•  Computed separately for 
each area (like the neural 
parameters) 
→ region-specific HRFs! 

Friston et al. 2000, NeuroImage 
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LG 
left 

LG 
right 

RVF LVF 

FG 
right 

FG 
left 

Example: modelled BOLD signal 

black:  observed BOLD signal 
red:  modelled BOLD signal 
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States Equations 

Neuronal state: 
 

  Neuronal activity - zt with parameters θc. 
 
Hemodynamic states: 
 

Vasodilatory signal - st 
Inflow - ft 
Blood volume - vt 
Deoxygenation content - qt 

The observed data: yt=λ(qt,vt) with parameters θh. 
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Combining the neuronal and hemodynamic states x={z,s,f,v,q} 
gives us the following model: 

),,( θuxfx =!
)(xy λ=

All neurodynamic and hemodynamic parameters are 
contained in  
 
To generate data from a DCM, one integrates the 
neurodynamics together with the hemodynamics. 

( )hc θθθ ,=
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Normal priors are placed on θ. 
 
The posterior distribution of θ is equal to the likelihood times the 
prior divided by the evidence: 

)|(
)|(),|(),|(

myp
mpmypmyp θθ

θ =

An optimization scheme is used to estimate parameters that 
maximize the posterior probability. 
 
The posterior density is used to make inferences about the 
connections 
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•  Bayesian parameter estimation in DCM: Gaussian assumptions about 
the posterior distributions of the parameters 

•  Use of the cumulative normal distribution to test the probability by 
which a certain parameter (or contrast of parameters cT ηθ|y) is above a 
chosen threshold γ: 
 

γ can be chosen as zero ("does the effect exist?") or as a function of the 
expected half life τ of the neural process: γ = ln 2 / τ  

⎟⎟
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⎜⎜
⎜

⎝

⎛ −
=

cCc

c
p

y
T

y
T

N

θ

θ γη
φ

 γ ηθ|y 



UNIVERSITY of ALBERTA 

Different models can be compared using the evidence for each 
model. 
 
Given models m=i and m=j, the Bayes factor is 
 
 
 
 
 
When Bij>1, the data favors model i over model j. 
When Bij<1, the data favors model j over model i. 

)|(
)|(
jmyp
imypBij =

=
=
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Comments 

Ø  DCM models interactions at the neuronal rather than the 
hemodynamic level.  

Ø  It is therefore more biologically accurate than the other models 
described today. 

Ø  However, it is quite computationally demanding. It is limited to 8 
regions in SPM. 
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Granger Causality 

Ø  Granger causality is a technique that was originally developed in 
economics that has recently been applied to connectivity 
studies. 

Ø  It does not rely on the a priori specification of a structural model, 
but rather is an approach for quantifying the usefulness of past 
values from various brain regions in predicting current values in 
other regions. 

Ø  Granger causality provides information about the temporal 
precedence of relationships among two regions, but it is in some 
sense a misnomer because it does not actually provide 
information about causality. 
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Set Up 

Ø  Let x and y be two time courses of length N extracted from two 
brain regions.  

Ø  Each time course is modeled using a linear autoregressive 
model of the Mth order 

Ø  Here εx and εy are both white noise, while a and b are model 
parameters. 
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Ø  Next, expand each model using the autoregressive terms from 
the other signal. 

Ø  The current value depends both on the past M values its own 
time course, but also the past M values of the other time course. 
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Ø  Using these models one can test whether the history of x has 
any predictive value on the current value of y (and vice versa).  

Ø  If the model fit is significantly improved by the inclusion of the 
cross-autoregressive terms, it provides evidence that the history 
of one of the time courses can be used to predict the current 
value of the other and a “Granger-causal” relationship is 
inferred. 
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Measuring Influence 

Ø  Geweke has proposed a measure of linear dependence Fx,y 
between x[n] and y[n] which implements Granger causality in 
terms of vector autoregressive models. 

Ø  The term Fx,y can be decomposed into the sum of three 
components: 
   

Ø  Fx,y is a measure of the total linear dependence 
between x and y.  
²  If nothing about the current value of x (or y) can be 

explained by a model containing all values of y (or x) then 
Fx,y will be 0.  

	  

yxxyyxyx FFFF ⋅→→ ++=,
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Ø  Fx→y and Fy→x are measures of linear directed influence 
from x to y and y to x, respectively.  
²  If past values of x improve the prediction of the current value of 

y, then Fx→y > 0.  
²  A similar interpretation holds for Fy→x.  

Ø  Fx⋅y is a measure of the undirected instantaneous 
influence between the series.  
²  The improvement in the prediction of the current value of x (or 

y) by including the current value of y (or x) in a linear model 
already containing the past values of x and y. 
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( )||/||||ln 11, YTΣ ⋅=yxF ( )||/||ln 21 TT=→yxF

( )||/||ln 21 ΣΣ=→xyF( )||/||||ln 22 YTΣ ⋅=⋅yxF

yxxyyxyx FFFF ⋅→→ ++=,

Total linear dependence between x and y: 

where 
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Ø  If past values of x improve on the prediction of the current value 
of y, then Fx→y is large.  

Ø  A similar interpretation, but in the opposite direction, holds for 
Fy→x .  

Ø  The difference between the two terms can be used to infer 
which regions history is more influential on the other.  This 
difference is referred to as Granger Causality. 
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Granger Causality Map 

Ø  A Granger Causality Map (GCM) is computed with respect to a 
single selected reference region (e.g., seed region). 

Ø  It maps both sources of influence to the reference region and 
targets of influence from the reference region over the brain. 
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Granger Causality Mapping 

Roebroeck 
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Granger Causality Mapping 

Roebroeck 


