LER

&
EDMONTON-ALBERTA-CANADA

Statistical Methods for Neuroimaging Data Analysis

ICSA Canada Chapter 2015 Lecture 2
Brain Connectivity Analysis

Linglong Kong
University of Alberta

ICSA Canada Chapter August 4, 2015 @ Calgary, AB

Special Thanks to Professor Hongtu Zhu at UNC

UNIVERSITY of ALBERTA



EDMONTON-ALBERTA-CANADA

Reading materials:
Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science
326, 399-403.
Rubinov, M. and Sporns, O. (2010). Complex network measures of brain connectivity:
Uses and interpretations. Neurolmage 52, 1059-1069.
Buckner, R. L., Andrews-Hanna, J. R. and Schacter, D. L. (2008). The brain’s default
network anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci. 1124: 1-38.
Honey, C.J., Thivierge, J.P., and Sporns, O. (2010). Can structure predict function in the
human brain? Neurolmage 52,766-776.
Buckner, R. L., Andrews-Hanna, J. R. and Schacter, D. L. (2008). The brain’s default
network anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci. 1124: 1-38.
Van Dijk, K. R. A,, ..., Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for
human connectomics: theory, properties, and optimization. J. Neurophysiol. 103,
297-321.

Acknowledgement: Multiple slides were copied from Drs.
Lindquist, Rowe, and Huettel, FSL, and SPM training materials.

UNIVERSITY of ALBERTA



Brain Connectivity
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» Functional Segregation: Human brain mapping has been
primarily used to provide maps that show which regions of the

brain are activated by specific tasks.

» Recently, there has been an interest in augmenting this type of
analysis with brain connectivity studies which describe how
various regions interact and how interactions depend on
experimental conditions.
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» The current fashion is to call any
set of regions activated in a task a
network.

> But what does it mean to be a
network?

» Set of interconnected regions;

information transfer among regions.

Color key
Whole-brain search
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» Functional connectivity is a statement about observed
associations among regions and/or performance and
physiological variables.

» |t does not comment on how these associations are mediated.

» Functional connectivity analysis is usually performed using data-
driven transformation methods which make no assumptions
about the underlying biology.

UNIVERSITY of ALBERTA
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» Methods:

< Seed analyses

<> Psychophysiological interaction analyses
< Principle Components Analysis

< Partial Least Squares

< Independent Components Analysis

UNIVERSITY of ALBERTA
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» Effective connectivity analysis is performed using statistical
models which make anatomically motivated assumptions and
restricts inference to networks comprising of a number of pre-
selected regions of interest.

» These methods are hypothesis driven rather than data-driven
and most applicable when it is possible to specify the relevant
functional areas.

UNIVERSITY of ALBERTA
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» Methods:

< Structural Equation Modeling

< Granger Causality

< Dynamic Causal Modeling

* Note that Granger causality does not rely on an a priori
specified structural model.
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Functional connectivity can be applied at different levels of
analysis, with different interpretations at each.

Connectivity across time can reveal networks that are
dynamically activated across time.

Connectivity across trials can identify coherent networks of task
related activations.

Connectivity across subjects can reveal patterns of coherent
individual differences.

Connectivity across studies can reveal tendencies for studies to
co-activate within sets of regions.

UNIVERSITY of ALBERTA



» Simple functional connectivity
< Region A is correlated with Region B.
< Provides information about relationships among regions.

<> Can be performed on time series data within a subject, or
individual differences (contrast maps, one per subject).

UNIVERSITY of ALBERTA
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» Calculate the cross-correlation between time series from two
separate brain regions.

Subject 1 r——> 7

Subject D n T, — e . -

Subject n /Nt s T F— -
Group Analysis
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Seed Analysis
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» In seed analysis the cross-correlation is computed between the
time course from a predetermined region (seed region) and all
other voxels.

» This allows researchers to find regions correlated with the
activity in the seed region.
seed voxel

» The seed time course can also be a performance or
physiological variable. N
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Finger-tapping task:

all voxels (p<0.005,
uncorrected) that
showed changed
functional connectivity
with the left ant.
cerebellum in
schizophrenic patients
after medication with
olanzapine.

p<0.005, uncorrected

Stephan et al., Psychol. Med. (2001)
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ime Series Connectivity
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Brain Heart rate
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Group Analysis
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» One of the main problems with time series connectivity is the
fact that there may be different hemodynamic lags in different
regions:

< Time series from different regions may not match up, even if
neural activity patterns match up.

< If lags are estimated from data, temporal order may be

caused by vascular (uninteresting) or neural (interesting)
response.

UNIVERSITY of ALBERTA
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» The beta series approach can be used to minimize issues of
inter-region neurovascular coupling.

> Procedure:

< Fit a GLM to obtain separate parameter estimates for each
individual trial.

<> Compute the correlation between these estimates across
voxels.

UNIVERSITY of ALBERTA
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» Meta-analysis can be used to reveal patterns of co-activated
regions.

> If two regions are co-activated, studies that activate one region
are more likely to activate the other region as well.

» Co-activation is thus a meta-analytic analogue to functional
connectivity analyses in individual neuroimaging studies.

UNIVERSITY of ALBERTA



Frontal-subcortical co-activation in emotion tasks

Frontal co-activations with amygdala

Frontal co-activations
with periaqueductal gray

Thal

SPM Anatomy Toolbox

Frontal co-activations
with hypothalamus
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Co-activated regions show
a tendency to be activated
in the same studies, as
assessed with Kendall's tau.
Arrows show significant co-
activation.

Wager et al.
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» Mediation (Baron & Kenny, 1986)
< The relationship between regions A and B is mediated by M
< Can identify functional pathways spanning > 2 regions

<> Can be performed on time series data within a subject, or
individual differences (contrast maps, one per subject)

<~ Also: Test of whether task-related activations in B are
mediated, or explained, by M.

TJask ——> M ——— B

UNIVERSITY of ALBERTA
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Full model, with mediator Reduced model, without mediator

/N
. Ny X —- Y
C’

m=i,+ax+e,
y=i,+bm+cx+e, y=ltex+e,

Baron and Kenny (1986) — conjunction of 3 effects:

1) c effect: There is a relationship to be mediated
2) a effect: initial variable related to mediator
3) b effect: mediator relates to outcome

UNIVERSITY of ALBERTA
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» The mediation framework allows us to decompose the total effect
of x on y as follows:

Total effect = Direct effect + Mediated effect

» Does m explain some of the x-y relationship?

< Test ¢ — c’, which is equivalent to significance of a*b product.

UNIVERSITY of ALBERTA
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> Sobel test:
ab

B (b°se(a)” + a’se(b)*)"”

< Z ~ N(0, 1), standard normal distribution
<> Assumes a, b are normally distributed
< Usually conservative (p-values higher than needed)

« Bootstrap test

UNIVERSITY of ALBERTA
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» Moderation (Baron & Kenny, 1986)

< The relationship between regions A and B is moderated by M
< Connectivity between A and B depends on state (level) of M

< Can be performed on time series data within a subject, or individual
differences (contrast maps, one per subject)

<> M can be task state or other variable

» In SPM, on time series data: “Psychophysiological interaction” (PPI)

UNIVERSITY of ALBERTA



m=i,+ax+e,
y =i,+bm + c'x + d(mo*x) + €',
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» We often use multivariate methods to study functional
connectivity.

» When using multivariate methods observations at each voxel
are considered jointly.

» This has the potential to allow for better understanding of how
different brain regions interact with one another.

UNIVERSITY of ALBERTA



» Principal components analysis involves finding spatial modes, or
elgenimages, in the data.

» Spatial modes are the patterns that account for most of the
variance-covariance structure in the data.

» The eigenimages are obtained using singular value
decomposition (5VD), which decomposes the data into two sets
of orthogonal vectors that correspond to patterns in space and
time.

UNIVERSITY of ALBERTA
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X =USV’

Time courses Eigenimages

Voxels —»

«— [ime

T T T
Each column of U correspond to the time-dependent profiles

associated with each eigenimage.

Each column of V defines a distributed brain region that can be
displayed as an image (cigenimages).
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» Independent Components Analysis (ICA) is a family of
techniques used to extract independent signals from some

source signal.

> |ICA provides a method to blindly separate the data into spatially
independent components.

» The key assumption is that the data set consists of p spatially
independent components, which are linearly mixed and spatially

fixed.

UNIVERSITY of ALBERTA



EDMONTON-ALBERTA-CANADA

Two people are talking simultaneously in a room with two microphones

]
% Speakers: s, (t) and s,(t).
. % Microphones: x,(t) and x,(t)
X (£) = ayy5, (1) + a;,5, (1) X = AS

X, (1) = ay8, (1) + a8, (1)
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fMRI data is assumed to
be a linear mixture of
statistically independent
sources, S.

fMRI data

Source 1 Time course 1

NN

Source 2 Time course 2

Vince Calhoun
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> We want to solve:

X =AS
where A is the mixing matrix, S is the source matrix and X is the
data matrix. Both A and S are unknown.

» Assume that Cov(X)=l and A is orthogonal.

> Find A such that S=ATX.

UNIVERSITY of ALBERTA
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» ICA is able the solve this problem by exploiting some key
assumptions.

» Assumptions:
< Linear mixing of sources.
< The components s; are statistically independent.

< The components s, are non-Gaussian.

UNIVERSITY of ALBERTA
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» One approach is to minimize the mutual information between
different components.

» This is equivalent to minimizing the Kullback-Leibler divergence
between the joint density and the product of the marginal
densities.

» The Kullback-Leibler divergence is a measure of similarity
between two density functions.

UNIVERSITY of ALBERTA
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» Itis assumed that the fMRI data can be modeled by identifying
sets of voxels whose activity both vary together over time and
are maximally different from the activity in other sets.

» Decompose the data set into a set of spatially independent
component maps with a set of corresponding time-courses.

UNIVERSITY of ALBERTA
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Time Courses Spatially independent
Components

Voxels —

) _—
- — _
— —
v
Data Mixir)g Components
Matrix
X = AS where the matrix S contains statistically

independent maps in its rows each with
an internally consistent time-course
contained in the associated column of
the mixing matrix A.

Use an ICA algorithm to find A and S.

UNIVERSITY of ALBERTA
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» Unlike PCA which assumes an orthonormality constraint, ICA
assumes statistical independence among a collection of spatial
patterns.

» Independence is a stronger requirement than orthonormality.

» However, in ICA the spatially independent components are not
ranked in order of importance as they are when performing
PCA.

UNIVERSITY of ALBERTA



Types of ICA

» An ICA that decomposes the
original data into spatially
statistically independent
components is called

» ltis possible to switch the order
and make the temporal dynamics
independent. This is called

» Spatial ICA is more common in
fMRI data analysis.
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» Using ICA to analyze fMRI data from multiple subjects raises several
questions.

< How should components be combined across subjects?
<> How should the final results be thresholded and/or presented?

» There are several approaches:

< Stack time courses (forces time courses to be the same)

< Stack images and back-reconstruct (allows time courses to vary,
allows some flexibility in images)

< Stack into a cube (forces images and time courses to be the same)

UNIVERSITY of ALBERTA
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» Group |CA is based on temporal concatenation.

» |t decomposes the group matrix, and estimates through back-
reconstruction the spatial weights for each subject for a component
of interest.

» For each subject the spatial weights at each voxel are treated as
random variables, and a one-sample t-test is used to test whether
that voxel loaded significantly on that component in the group.

UNIVERSITY of ALBERTA
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Data CA Back-reconstruction
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» lensor [CA decomposes a three-way data set into a
set of independent spatial maps together with
associated time courses and subject modes.

» This allows us to characterize the signal variation
across the temporal, spatial and subject/session
domain for each component.

UNIVERSITY of ALBERTA
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» Effective connectivity is the influence one neuronal system
exerts over another.

» Effective connectivity depends on two models:

< A neuroanatomical model that describes which areas are
connected.

<> A mathematical model that describes how areas are
connected.

UNIVERSITY of ALBERTA
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» Structural equation Modeling (SEM) was first applied to imaging
data by MclIntosh and Gonzalez-Lima (1991).

» SEM allows for the analysis of more complicated models
consisting of many different ROls.

» Instead of considering variables individually the emphasis in
SEM lies on the variance-covariance structure of the data.

UNIVERSITY of ALBERTA
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Structural Equation Models comprise a set of
regions and a set of directed connections

A causal relationship is attributed to the connections. An
arrow from A to B implies A causes B.

Note: Causal relationships are assumed aprior.

UNIVERSITY of ALBERTA
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Further define path coefficients between the various nodes.

@ bac : @
b /bm:

* The coefficients imply a set of correlations among the
regions.

A path coefficient is the expected change in activity of one
region given a unit change in the region influencing it.

* The path coefficient indicates the average influence across
the time interval measured.

UNIVERSITY of ALBERTA
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» The covariance of the data represents how the activities in two
or more regions are related.

> In SEM we seek to minimize the difference between the

observed covariance matrix and the one implied by the
structure of the model.

» The parameters of the model are adjusted to minimize the
difference between the observed and modeled covariance
matrix.

UNIVERSITY of ALBERTA
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Consider a network consisting of N different regions, where the
activity at time t is given by the vector y, which is of length N.

Further suppose the data consists of T separate time points.

We can write the full data as Y = (yl 9o yT)

Next, assume that the network activity is independent from
sample to sample, i.e. y; is independent of y; for all i=.

This is not particularly realistic, but heuristic corrections exist.

UNIVERSITY of ALBERTA
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Under this assumption we can write the likelihood of the data
as T
p(Y6) = ]_‘[p(yt 10)
f=

where 0 are the parameters of the SEM.

Further suppose that
Y, ~ N(0,2(0))

The covariance matrix is a function of the connectivity
parameters contained in 6.

UNIVERSITY of ALBERTA
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The form of X(0) is specified by how the activity in
various regions are related to one another, i.e.

Yy =Myt + €,

where M now describes the set of path coefficients.

The M, term of the matrix represents a connection between
regions i and j.

The noise term e, is normally distributed with mean 0 and
covariance matrix R=diag{o/, ..... 0,7}

UNIVERSITY of ALBERTA
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@@

Y, =Myt + €,

'y [0 0 O]fy.MD] [ed]
Vi (2) = b12 O 0 Vi (2) + | € (2)
Vi (3)_ _b13 b, O B (3)_ | & (3)_
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We can rewrite y, as
Vi = (I_M)_let
Hence, we can write the covariance matrix of y, as
2(6)= - My R -Mm)"f

The parameters 0 are the unknown elements of the matrices
M and R.

Find the parameters 0 that maximize the likelihood function:

Vi~ N(O,Z(@))

This gives us the desired path coefficients.

UNIVERSITY of ALBERTA
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All inference regarding the path coefficients rests on the use of
nested or stacked models.

A more complex model is compared to a simpler model nested
within the first model.

If the complex model fits a particular dataset significantly better,
then the additional parameters of this model are needed in the
subsequent analyses.

Given a constrained model, which is defined by the omission of a
pathway, hypothesis testing may be construed as evidence for or
against the pathway by nesting it in a free model where the
pathway is included.

If the difference in goodness of fit is highly unlikely to have
occurred by chance, the connection can be declared active.

UNIVERSITY of ALBERTA
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» The likelihood ratio test (LRT) is a statistical test of the
goodness-of-fit between two models.

» A relatively more complex model is compared to a simpler
model to determine whether it fits the dataset significantly
better.

» If so, the additional parameters in the more complex model need
to be included.

UNIVERSITY of ALBERTA



EDMONTON-ALBERTA-CANADA

» We can take a similar approach to making inference about
changes in effective connectivity between different experiment
conditions.

» First partition the data according to the different experimental
conditions.

» Next create a null-model where path coefficients are constrained
to be equal between conditions and an aliernative model where
certain coefficients of interest are allowed to vary.

UNIVERSITY of ALBERTA



Null-model Condition 1 Condition 2

(o) () o —(w)
O O

Alternative model

Condition 1 Condition 2
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Use the LRT to test whether there are significant differences
between the models.

If a significant difference exists we reject the hypothesis that the
path coefficients are equal in both conditions.

SEM discounts temporal information. Hence, permuted data
sets produce the same path coefficients as the original data.

We can compensate for temporal autocorrelation by using
corrected degrees of freedom.

However, models that include the temporal order of the data
may be more appropriate.

UNIVERSITY of ALBERTA



e
‘tEEEf

‘ Neuronal Interactions
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» ltis important to note that the measurements used in each of
the connectivity studies we have described so far are
hemodynamic in nature and this limits an interpretation of the
results at the level of neuronal interactions.

» Dynamic Casual Modeling (Friston et. al.) is an attempt to move
the connectivity analysis to the neuronal level.

» The modelled neuronal dynamics (z) is transformed into area-
specific BOLD signals (y) by a hemodynamic forward model (A). Z

» The aim of DCM is to estimate parameters at the neuronal
level (computed separately for each area) such that the modelled
BOLD sighals are maximally similar to the experimentally
measured BOLD signals.

y

UNIVERSITY of ALBERTA



Dynamic Casual Modeling
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» Dynamic Causal Modeling (DCM) is an attempt to model
neuronal interactions using hemodynamic time series.

» DCM treats the brain as a deterministic nonlinear dynamic
system that is subject to inputs and produces outputs.

» It makes inference about the coupling among brain areas and
how the coupling is influenced by changes in experimental

context.
.‘<;> 4} >

Input u(?) / X, X“>’.
Q<\> %’/

connectivity parameters 6

System = a set of elements
which interact in a spatially and
temporally specific fashion

System state z(t) z = ['(z,u,6)

UNIVERSITY of ALBERTA
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» DCM is based on a neuronal model of interacting cortical
regions, supplemented with a forward mode! of how neuronal
activity is transformed into a measured response.

» Effective connectivity is parameterized in terms of the coupling
among unobserved neuronal activity in different regions.

» We can estimate these parameters by perturbing the system
and measuring the response.

UNIVERSITY of ALBERTA
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A\

DCM is a state-space model.

A\

The initial formulation of DCM did not consider noise and was

therefore a deterministic state-space model stated in terms of

ordinary differential equations.

> More recent versions of DCM have been in terms of stochastic

differential equations.

State changes of a system are
dependent on:

— the current state

— external inputs

— its connectivity

— time constants & delays

System state z(1)

‘Z’ = F(z,u,0)

UNIVERSITY of ALBERTA
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In DCM a distinction is made between the neuronal level and the

hemodynamic level.

Experimental inputs cause changes in effective connectivity
expressed at the neuronal level which in turn cause changes in
the observed hemodynamics.

External Inputs

Changes in

neuronal activity

Changes in

BOLD signal

UNIVERSITY of ALBERTA
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» DCM uses a bilinear mode! for the neuronal level and an
extended Balloon model for the hemodynamic level.

» In a DCM model we have J experimental inputs and N outputs
(one for each region).

» Each region has five state variables, four corresponding to the
hemodynamic model and a fifth corresponding to neuronal
activity.

UNIVERSITY of ALBERTA
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Define the neuronal states as:

T
Z = (Zl,...ZN)
The effective connectivity model is described by:

z=F(z,u,0)

where F is a non-linear function describing the influences that ; and u
exert upon changes in the neuronal states.

UNIVERSITY of ALBERTA
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The model consists of a bivariate nonlinear function.

We can approximate such a function using a bilinear
approximation:

f(x,u)=ax+bxu+cu

where
A )

¢ Ox  Oxdu du

UNIVERSITY of ALBERTA



LER

Lo ]

‘!EEEf

EDMONTON-ALBERTA-CANADA

The effective connectivity model

z=F(z,u,0)
can be rewritten in bilinear form as:
J .
° _ ° J
z =| A+ Eut(])B z, +Cu,
7=1

where z, is the neuronal activity at time ¢ (latent) and u,(j) is
the jth of J inputs at time 7 (known).

UNIVERSITY of ALBERTA
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» The matrix A represents the first order connectivity among
regions in the absence of input. It specifies which regions are
connected and whether these connections are uni- or
bidirectional.

» The matrix C represents the extrinsic influence of inputs on
neuronal activity. It specifies which inputs are connected to
which regions.

» The matrices B, represent the change in coupling induced by the
jth input. It specifies which intrinsic connections are changed by
which inputs.

UNIVERSITY of ALBERTA
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» The units of connection are per unit time and therefore
correspond to rates.

» A strong connection means an influence that is expressed
quickly or with a small time constant.

UNIVERSITY of ALBERTA
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Integration of a first-order linear differential equation gives an

exponential
%w» 2(¢) = z, exolar)
dt —

180

The coupling parameter a
Coupling parameter a is inversely  « thus describes the speed of
proportional to the half life © of z(t): = the exponential change in z(t)

.
(=}

N
(=]

57 oren
z(1) =0.5z, Zo
=z, exp(ar) i
» a=In2/7 " rimdia T T

UNIVERSITY of ALBERTA



LER

L]

‘.EEEF

EDMONTON-ALBERTA-CANADA

Example:
linear
dynamic
system

z=Az+Cu

0=4$4,C}

,\<—l\ LG = lingual gyrus

Z, |eﬂ nght Z, FG = fusiform gyrus
Visual input in the
- left (LVF)
- right (RVF)
» Ieft nght 2 visual field.
U, Uy
RVF LVF

Zy = Q)2 T A2y T Q)24 T 0,
Zy = Ay 2 +ApZy +AyZy T 0yl
Z3 = Ay 2yt U2 T Ay Zy

Zy = Qply T AyZs T Ay,

UNIVERSITY of ALBERTA
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l FG  : FG

<3 |eft right <4
Extension:
bilinear = % &
::(,:tae r::c 21 left right 22
‘ f_b\j k

RVF CONTEXT LVF

u;
Intrinsic cqnnectivity Moc?ulation o)

Z= (A+Zuj.Bj)z+ Cu

J=1

U, .
connectivity

Direct inputs

UNIVERSITY of ALBERTA




haemodynamic
model

heuronal
states

modulatory
input u,(f)

sssnsnnnndP N

integration

driving
input u,(f)

H H “ “ “ ‘ ||“ intrinsic connectivity ——

>t modulation of
connectivity

direct inputs ———

Stephan & Friston (2006),
Handbook of Connectvity
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» The neuronal activities in each region cause changes in
blood volume and deoxyhmoglobin that, in turn, cause
changes in the observed BOLD response.

» The hemodynamics are described using an exiended Balloon
model, which involves a set of hemodynamic state variables,
state equations and hemodynamic parameters 6".

UNIVERSITY of ALBERTA



Activity-dependent signal:

Flow induction:

Changes in volume:

Changes in dHb:

Hemodynamic response

w = fE(f,p)/p-v'*q/v

y=AV,q)

UNIVERSITY of ALBERTA



The hemodynamic “Balloon” model |
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5 hemodynamic parameters:

6]1 = {Iclﬂ}/ﬂfﬂaﬂp}

important for model fitting, but
of no interest for statistical
inference

Empirically determined
a priori distributions.

Computed separately for
each area (like the neural
parameters)

— region-specific HRFs!

activity

Z(It)

vasodilatory signal
§=z-k5—)(f-1)
S

A
Sflow induction

Jes
f

A

A 4

changes in volume

changes in dHb

T vefove [ lg=fE(p)p- qu/ﬂ
v q

BOLD signal
y(@) = A(v,q)

Friston et al. 2000, Neurolmage

UNIVERSITY of ALBERTA
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black: observed BOLD signal
red: modelled BOLD signal
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Neuronal state:

Neuronal activity - z, with parameters 6°.

Hemodynamic states:

Vasodilatory signal - s,
Inflow - f,
Blood volume - v,

Deoxygenation content - g,

The observed data: y,=\(q,,v;) with parameters 6".

UNIVERSITY of ALBERTA
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Combining the neuronal and hemodynamic states x={z,s,f,v,q}
gives us the following model:

x = f(x,u,o)
y = A(x)

All neurodynamic and hemodynamic parameters are
contained in g _ (9c 3h)

To generate data from a DCM, one integrates the
neurodynamics together with the hemodynamics.

UNIVERSITY of ALBERTA
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Normal priors are placed on 6.

The posterior distribution of 6 is equal to the likelihood times the
prior divided by the evidence:

p(y|6,m)p(6|m)
p(y|m)

An optimization scheme is used to estimate parameters that
maximize the posterior probability.

p@|y,m)=

The posterior density is used to make inferences about the
connections

UNIVERSITY of ALBERTA
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« Bayesian parameter estimation in DCM: Gaussian assumptions about
the posterior distributions of the parameters

» Use of the cumulative normal distribution to test the probability by
which a certain parameter (or contrast of parameters c’ Ngyy) is @bove a

chosen threshold

03

Yy can be chosen as zero ("does the effectoe>o<1isf’2?") oorj aog eT fJnction of the
expected half life T of the neural process: y=In2/1

UNIVERSITY of ALBERTA
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Different models can be compared using the evidence for each
model.

Given models m=i and m=j, the Bayes factor is

_ p(y|m=i)
p(y|m=j)

ij

When B;>1, the data favors model / over model ;.
When B;<1, the data favors model j over model .

UNIVERSITY of ALBERTA
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» DCM models interactions at the neuronal rather than the
hemodynamic level.

» |t is therefore more biologically accurate than the other models
described today.

» However, it is quite computationally demanding. It is limited to 8
regions in SPM.

UNIVERSITY of ALBERTA
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» Granger causality is a technique that was originally developed in
economics that has recently been applied to connectivity
studies.

» It does not rely on the a priori specification of a structural model,
but rather is an approach for quantifying the usefulness of past
values from various brain regions in predicting current values in
other regions.

» Granger causality provides information about the temporal
nrecedence of relationships among two regions, but it is in some
sense a misnomer because it does not actually provide
information about causality.

UNIVERSITY of ALBERTA
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» Let x and y be two time courses of length N extracted from two
brain regions.

» Each time course is modeled using a linear autoregressive

model of the Mt order
M

xln]= ") alilx|[n —-m]+ ¢ _|n]

3
[

=

yin]= ) Dlilyln-m]+¢,[n]

3
I

» Here g, and ¢, are both white noise, while a and b are model
parameters.

UNIVERSITY of ALBERTA
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> Next, expand each model using the autoregressive terms from
the other signal.

M

x[n] = fa[i]x[n ~m]+ Y bli]y{n —m] + & [n]

1 m=1

yln] = E bli]yln —m]+ 2 alilxln—mle [n]

» The current value depends both on the past M values its own
time course, but also the past M values of the other time course.

UNIVERSITY of ALBERTA
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» Using these models one can test whether the history of x has
any predictive value on the current value of y (and vice versa).

» If the model fit is significantly improved by the inclusion of the
cross-autoregressive terms, it provides evidence that the history
of one of the time courses can be used to predict the current
value of the other and a "Granger-causal” relationship is
inferred.

UNIVERSITY of ALBERTA
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» Geweke has proposed a measure of linear dependence F, ,
between x[n] and y[n] which implements Granger causality in
terms of vector autoregressive models.

» The term F, , can be decomposed into the sum of three
components:

F =F _ + F . F
» F,, isa measure of tF\e total linear dependence

between xandy.

< If nothing about the current value of x (or y) can be
explained by a model containing all values of y (or x) then
F,, will be 0.

UNIVERSITY of ALBERTA
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» F,_.,and F,_,, are measures of linear directed influence

from x to y and y to x, respectively.

< If past values of x improve the prediction of the current value of
y, then ery > (0.

< A similar interpretation holds for F,_,,.

» F,., is a measure of the undirected instantaneous
influence between the series.
< The improvement in the prediction of the current value of x (or

y) by including the current value of y (or x) in a linear model
already containing the past values of x and .

UNIVERSITY of ALBERTA
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Null model
M

x[n] = E A [m]x[n—-m]+ ¢ [n] var(e [n]) =X

i mly[n-m]+ ¢ [n] Var(gy[n]) =T,

x[n]

Further, let q[n] = [
yln]

} where

=2Aq mlq[n—-m]+ ¢ [n] Var(e [n]) = [i; TC}

UNIVERSITY of ALBERTA
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Total linear dependence between x and y:

Fo,=F_,+F_ +F

x%y y—>x X'y
where

F =In(Z |"|T,|/|Y]) F_, =In(T|/|T,|)

X,y X—=y

F., =In(Z, || T,|/|Y]) F,_, =In(E[/|Z,])

Xy y—Xx

UNIVERSITY of ALBERTA
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» If past values of x improve on the prediction of the current value
of y, then F,_,, is large.

» A similar interpretation, but in the opposite direction, holds for
F

y—x

» The difference between the two terms can be used to infer
which regions history is more influential on the other. This
difference is referred to as Granger Causality.

UNIVERSITY of ALBERTA
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» A Granger Causality Map (GCM) is computed with respect to a
single selected reference region (e.g., seed region).

» It maps both sources of influence to the reference region and
targets of influence from the reference region over the brain.

UNIVERSITY of ALBERTA



% ALBERTA

EDMONTON-ALBERTA-CANADA

Granger Causality Mapping

Reference
region

Voxel

UNIVERSITY of ALBERTA
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dGCM = Ref2Vox — Vox2Ref

Reference Reference
region region

Granger Causality Mapping

Voxel Voxel

UNIVERSITY of ALBER¥Aeproeck



