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ABSTRACT
This paper proposes nonparametric estimation methods for functional lin-
ear semiparametric quantile regression, where the conditional quantile of
the scalar responses is modelled by both scalar and functional covariates
and an additional unknown nonparametric function term. The slope func-
tion is estimated using the functional principal component basis and the
nonparametric function is approximated by a piecewise polynomial func-
tion. The asymptotic distribution of the estimators of slope parameters
is derived and the global convergence rate of the quantile estimator of
unknown slope function is established under suitable norm. The asymp-
totic distribution of the estimator of the unknown nonparametric func-
tion is also established. Simulation studies are conducted to investigate
the finite-sample performance of the proposed estimators. The proposed
methodology is demonstrated by analysing a real data from ADHD-200
sample.
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1. Introduction

In the last two decades, there has been an increasing interest in regression models for functional
variables as more and more data have arisen where the primary unit of observation can be viewed
as a curve or in general a function, such as in biology, chemometrics, econometrics, geophysics, the
medical sciences,meteorology and neurosciences. As a natural extension of the ordinary regression to
the case where predictors include random functions and responses are scalars or functions, functional
linear regression analysis provides valuable insights into these problems. The functional linear model
has been extensively studied and successfully applied; see [1–10], among many others.

Engle et al. [11] introduced and applied the following semiparametric model:

Y = βTZ + f (T)+ ε

to study the effect of weather on electricity demand, where β is a vector of unknown parameters, Z
is a vector of random variables, f (·) is an unknown function to be estimated, T is a random variable
and ε is an unobserved disturbance. This model is muchmore flexible than the standard linear model
since it combines both parametric and nonparametric components. The semiparametric model has
been extensively investigated by many authors, such as Heckman [12], Carrol et al. [13], Zhang et al.
[14], He et al. [15], Fan and Li [16], Chen and Jin [17] and Tang [18].

In many applications, such as in the analysis of complex neuroimaging data [19] and the foetal
heart rate data [20], a response Y is usually related to some scalar covariates and some functional
covariates, and in addition the response Y may be nonlinearly related to certain scalar variable.
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Motivated by neuroimaging data analysis from ADHD-200 sample [19], we propose the following
functional linear semiparametric model:

Y = βTZ +
∫ 1

0
γ (s)X(s) ds + f (T)+ ε, (1)

where X(s) is a square integrable random function on [0, 1], γ (s) is a square integrable function on
[0, 1], Z = (Z1, . . . ,Zd)T is a d-dimensional vector of random variables, β is a d-dimensional vector
of regression coefficients, T is a random variable, f (t) is an unknown nonparametric function and ε is
a random error. Model (1) generalizes both the functional linear regression model and the semipara-
metric model which correspond to the cases β = 0, f (t) = 0 and γ (s) = 0, respectively. Moreover,
this model includes the partial functional linearmodel which corresponds to the case f (t) = 0, which
has been widely studied by many authors, see, for example, [7,8,21–23].

In this paper, we estimate the conditional quantile of the response instead of the usual condi-
tional mean. Quantile regression has several advantages over mean regression. For example, they can
be defined without any moment conditions. Plotting a set of quantiles would give us more complete
understanding of the data than plotting just themean.When the centre of the conditional distribution
of Y is of interest, the median regression, a special case of quantile regression, provides more robust
estimators than the mean regression. For a complete review on quantile regression, see [24]. Infer-
ence procedures based on quantile regression have been considered in the literature; see, for example,
[25–27], among others. In this paper, we first use a piecewise polynomial function to approximate the
unknown function f (t) and then estimate the quantile slope function γ (s) using the functional princi-
pal component analysis. Under some regularity conditions, we derive the asymptotic normality of the
estimator of β and establish the global convergence rate of the estimator of the quantile slope function
γ (s). It may not be appealing to use this piecewise polynomial directly as the estimate of the function
f (t), because it is only piecewise smooth. In order to estimate the function f (t) more efficiently, in
model (1), we replace β and γ (s) by their estimators and use local linear kernel smooth method to
estimate f (t). Under the general regularity conditions, we derive the asymptotic distribution of the
estimator of f (t).

The paper is organized as follows. Section 2 describes the estimation methods. Section 3 presents
the asymptotic theory of our estimator. In Section 4, we conduct simulation studies to examine
the finite sample performance of the proposed procedures. In Section 5, the proposed methods are
illustrated by a real data example from ADHD 200 sample. All proofs are relegated to the appendix.

2. Estimationmethod

In functional linear semiparametric quantile regression, for a given quantile level τ ∈ (0, 1), the
data (Zi,Xi(s),Ti,Yi), i = 1, . . . , n, which are independent and identically distributed (i.i.d.), are
generated from the model

qτ (Y |Z,X(s),T) = ZTβτ +
∫ 1

0
γτ (s)X(s) ds + fτ (T), (2)

where qτ (Y |Z,X(s),T) is the τ th conditional quantile of Y given (Z,X(s),T), both Y and T are
real-valued random variables defined on a probability space (�,F ,P), Z is a d-dimensional vector of
randomvariableswith finite secondmoments, {X(s) : s ∈ [0, 1]} is a zero-mean and second-order (i.e.
EX(s)2 < ∞ for all s ∈ [0, 1]) stochastic process defined on (�,F ,P)with sample paths in L2([0, 1]),
the set of all square integrable functions on [0, 1], βτ is a d × 1 coefficient vector to be estimated,
γτ (s) is an unknown square integrable function on [0, 1], fτ (t), t ∈ [t1, t2] is an unknown smooth
function. Let< ·, · > and ‖ · ‖ represent, respectively, the L2([0, 1]) inner product and norm.
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1344 T. QINGGUO AND K. LINGLONG

Define the covariance kernel S(s, t) = Cov(X(s),X(t)). Assume that S(s, t) is continuous on
[0, 1] × [0, 1]. Then, Mercer’s theorem implies that

S(s, t) =
∞∑
j=1

κjψj(s)ψj(t), κ1 ≥ κ2 ≥ · · · ≥ 0, (3)

where (κj,ψj) are (eigenvalue, eigenfunction) pairs for the linear operator with kernel S, and the func-
tions ψ1,ψ2, · · · form an orthonormal basis for L2([0, 1]). By the Karhunen–Lo ève representation,
X(s) and γτ (s) can be expanded in L2([0, 1]) as

X(s) =
∞∑
j=1

ηjψj(s), γτ (s) =
∞∑
j=1

γτ jψj(s),

where the ηj = ∫ 1
0 X(s)ψj(s) ds are uncorrelated random variables with mean 0 and variance Eη2j =

κj. Thus (2) can be written as

qτ (Y |Z,X(s),T) = ZTβτ +
∞∑
j=1

γτ jηj + fτ (T). (4)

The sample version of S is Ŝ(s, t) = (1/n)
∑n

i=1 Xi(s)Xi(t). Similar to the case of S, Ŝhas the spectral
expansion

Ŝ(s, t) =
∞∑
j=1

κ̂jψ̂j(s)ψ̂j(t), κ̂1 ≥ κ̂2 ≥ · · · ≥ 0.

where (κ̂j, ψ̂j) are (eigenvalue, eigenfunction) pairs and {ψ̂j}∞j=1 is an orthonormal basis for L2([0, 1]).
We set (κ̂j, ψ̂j) to be the estimator of (κj,ψj) and use

∑m
j=1 γjψ̂j(s) to approximate γτ (s), where m is

the truncation level that trade-off approximation error against variability, and m typically diverges
with n.

In order to approximate fτ (t) for t ∈ [t1, t2], we construct piecewise polynomial estimators of fτ (t)
of degree p.We split equally [t1, t2] intoMn subintervals. Then the length of every subinterval is 2h0 =
(t2 − t1)/Mn. Let Iν = [t1 + 2(ν − 1)h0, t1 + 2νh0, ) for 1 ≤ ν ≤ Mn − 1 and IMn = [t2 − 2h0, t2].
Let tν denote the centre of the interval Iν and χν denote the indicator function of Iν , so that χν(t)= 1
or 0 according to t ∈ Iν or t∈̄Iν . Denote

Aν(t) = (1, (t − tν)/h0, . . . , [(t − tν)/h0]p)T, ν = 1, . . . ,Mn,

A(t) = (χ1(t)A1(t)T, . . . ,χMn(t)AMn(t)
T)T.

Set θν = (θν0, . . . , θνp)T and θ = (θT1 , . . . , θ
T
Mn
)T.Weuse f̆ (t) = AT(t)θ to approximate fτ (t). Note

that f̆ (t) is a piecewise polynomial of degree p. Based on (Zi,Xi(t),Ti,Yi), i = 1, . . . , n, we solve the
following minimization problem:

min
n∑
i=1

ρτ (Yi − ZT
i β −

m∑
j=1

γjη̂ij − AT(Ti)θ) (5)

with respect to the β , γj, j = 1, . . . ,m and θ , where ρτ (t) = t(τ − I(t<0)) is the quantile loss function
and η̂ij = 〈Xi, ψ̂j〉. The solution to Equation (5) can be obtained numerically by linear program-
ming method. The quantile estimators of βτ and γτ (s) are denoted by β̂ and γ̂ (s) = ∑m

j=1 γ̂jψ̂j(s),
respectively.
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STATISTICS 1345

After estimating βτ and γτ (s), for a given t0 ∈ [t1, t2], for t in the neighbourhood of t0, we use
a0 + a1(t − t0) to approximate the unknown function fτ (t). Based on (Zi,Xi(s),Ti,Yi), i = 1, . . . , n,
we solve the following minimization problem:

min
n∑

i=1
ρτ (Yi − ZT

i β̂ −
m∑
j=1

γ̂jη̂ij − (a0 + a1(Ti − t0)))K
(
Ti − t0

h

)
(6)

with respect to a0, a1, whereK(·) is a given kernel function and h is a chosen bandwidth. The solution
to Equation (6) can also be obtained numerically by linear programming method. Let â0, â1 be the
minimizer of Equation (6). Then the estimator f̂ (t0) of fτ (t0) is f̂ (t0) = â0.

For the finite-sample case, smoothing parametersm,Mn and h need to be chosen. The parameters
m andMn can be chosen by information criteria BIC. The BIC criteria as a function ofm andMn is
given by

BIC(m,Mn) = log

⎧⎨
⎩

n∑
i=1

ρτ

⎛
⎝Yi − ZT

i β̂ −
m∑
j=1

γ̂jη̂ij − AT(Ti)θ̂

⎞
⎠
⎫⎬
⎭ + (m + Mn) log n

n
.

Large values of BIC indicate poor fits. The bandwidth h can be selected by leave-one-curve-out
cross-validation of the prediction error. Define CV function as

CV(h) =
n∑
i=1

ρτ

⎛
⎝Yi − ZT

i β̂
−i −

m∑
j=1

γ̂−i
j η̂ij − f̂−i(Ti)

⎞
⎠ ,

where β̂−i, γ̂−i
j and f̂−i are computed by removing the ith subject.

3. Theoretical properties

To establish asymptotic normality and rates of convergence for the proposed estimators, the following
assumptions are required.

(1) E(X |T) = 0 and E(ηkηj |T) = 0 for k 	= j. X has finite fourth moment, in that
∫ 1
0 E[X4(s)] ds <

∞, and for each j, E(η4j ) < C1κ
2
j and E(η2j |T) < C1κj for some constant C1. The density

function v(t) of T is continuous and bounded away from zero and infinity over [t1, t2].
(2) The eigenvalues κj in the spectral decomposition (3) satisfy

C−1
2 j−a ≤ κj ≤ C2j−a, κj − κj+1 ≥ C2j−(a+1), j ≥ 1,

where a> 1 and C2 is a positive constant.
(3) The coefficients γτ j of γ (s) satisfy that |γτ j| ≤ C3j−b for all j ≥ 1, where b > 1 + a/2 and C3 is

a positive constant.
(4) fτ (t) is a p-times continuously differential function such that |f (p)τ (t′)− f (p)τ (t)| ≤ C4|t′ − t|ς , for

t1 ≤ t, t′ ≤ t2, where 0 < ς ≤ 1 and C4 is a positive constant. Think of p̃ = p + ς as a measure
of the smoothness of the function fτ (t), p̃ > (a + 2b − 1)/2.

(5) m = O(n1/(a+2b)) andMn = O(n1/(a+2b)).
(6) Let ετ = Y − ZTβτ − ∫ 1

0 γτ (s)X(s) ds − fτ (T), the conditional density function g(u |X,T) of
ετ has a continuous and uniformly bounded derivative in the neighbourhood of zero and sat-
isfies that 0 < c0 ≤ g(0 |X,T) ≤ c1 < ∞, where c0 and c1 are two positive constants. �(t) =
E(g(0 |X,T) |T = t) is continuous in a neighbourhood of t0.

(7) E(Z4
r ) < +∞ for r = 1, . . . , d.
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1346 T. QINGGUO AND K. LINGLONG

(8) The bandwidth h satisfies thath ≤ C5n−1/5 for somepositive constantC5 and (nh)−1/2m1/2 → 0
as n → ∞.

(9) The kernel K(·) ≥ 0 is a bounded symmetric function with a compact support [−M,M].

Assumption 2 prevents the spacings among eigenvalues being too small and Assumption 3
requests that the regression weight function is sufficiently smooth relative to covariance kernel S.
Assumptions 1–3 are typically used in functional linear regressionmodel (see [2,4]). Assumption 4 is
equivalent to suppose that fτ (t) is p̃-Hölder continuous and the quantity p̃ is the order of smoothness
of the function fτ (t). Assumptions 6 is standard assumption used in quantile regression and similar
assumption can be found in [28].

One complicating issue for the functional linear semiparametricmodel is the dependence between
Z and X and T. To this end, we assume the relationship

Zir =
∞∑
j=1

wrjηij + fr(Ti)+ εir , r = 1, . . . , d, (7)

where thewrj satisfying Assumption 3, that is, |wrj| ≤ C3j−b for all j ≥ 1, and fr(t) satisfying assump-
tion 4, the εi = (εi1, . . . , εid)T are zero-mean vectors of random variables and independent of the ηij,
Ti and ετ i. Let B = E(εiεTi ). We have the following results.

Theorem 3.1: Under the assumptions 1–8, if B is invertible, then,

√
n(β̂ − βτ ) →d N

(
0,
τ(1 − τ)

� 2 B−1
)
, (8)

where� = E[g(0 |X,T)] and →d means convergence in distribution.

Theorem 3.2: Assume that Assumptions 1–7 hold. Then,∫ 1

0
[γ̂ (s)− γτ (s)]2 ds = Op(n−(2b−1)/(a+2b)). (9)

The result of Theorem 3.2 indicates that the estimator γ̂ (s) obtain the same rate of convergence as
for the estimators of Hall and Horowitz [4] and [28], which are optimal in the minimax sense.

Let μk = ∫
ukK(u) du, νk = ∫

ukK2(u) du for k = 0, 1, . . .. The following Theorem 3.3 gives the
asymptotic distribution of the estimator of fτ (t0).

Theorem 3.3: Suppose that assumptions 1–9 hold. If t0 is an interior point of [t1, t2], then, as n → ∞,

√
nh

(
f̂ (t0)− fτ (t0)− μ2h2

2μ0
f ′′τ (t0)

)
→d N

(
0,

ν0τ(1 − τ)

μ2
0v(t0)�2(t0)

)
, (10)

Remark 3.1: In practical application,X(s) is only discretely observed.Without loss of generality, sup-
pose for each i = 1, . . . , n, Xi(s) is observed at ni discrete points 0 = si1 < · · · < sini = 1. Typically,
dn = maximax1≤j≤ni−1(si(j+1) − sij) → 0 as n → ∞ is also assumed. Linear interpolation functions
or spline interpolation functions can be used for the estimators of Xi(s). For example, we can use the
following linear interpolation function:

X̂i(s) = Xi(sij)+ (Xi(si(j+1))− Xi(sij))
si(j+1) − sij

(s − sij), for s ∈ [sij, si(j+1)], j = 0, . . . , ni − 1

as the estimator of Xi(s). Furthermore, under Assumptions 1–9 and the assumptions that dn =
O(n−1/2) and the covariance function S(s, t) is twice continuously differentiable, by arguments sim-
ilar to those used in the proof of Lemma D.1 of Kato [28], we can prove that the conclusions of
Theorems 3.1–3.3 still hold.
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STATISTICS 1347

Remark 3.2: We note that Li et al. [29] studied statistical inference in functional quantile regression
for scalar response and a functional covariate. Under the conditions that the functional covariate
Xi(s) is contaminated with noise and the number of eigenvalues of the covariance function S(s, t) is
finite, they derived the asymptotic normality of the quantile regression estimators. We assume that
the number of eigenvalues of S(s, t) is infinite. The corresponding quantile regression problem is ill-
posed and the estimator of the slope function can not achieve the root-n rate as shown by Kato [28].
We instead established the global convergence rate of the slope function estimation in Theorem 3.2.

Remark 3.3: Condition (7) is needed to derive the asymptotic distribution of the estimator of
unknown parametric vector βτ in functional linear semiparametric quantile regression. Similar con-
ditions can be found in [15,21]. In fact, the assumption that |wrj| ≤ C3j−b for j ≥ 1 is weaker than
condition (15) in [21].

4. Simulation studies

To illustrate the numerical performance of the proposed method, some simulation study was
conducted. We generated the data sets from the following model:

qτ (Yi |Zi1,Zi2,Xi(s),Ti) = β1Zi1 + β2Zi2 +
∫ 1

0
γτ (s)Xi(s) ds + fτ (Ti), (11)

where β1 = 3, β2 = −2, γτ (s) = ∑50
j=1 γ̃τ jψj(s) with γ̃τ1 = 1.5 and γ̃τ j = 2(−1)j+1j−2 for j ≥ 2,

Xi(s) = ∑50
j=1 ηijψj(s) with ψ1(s) ≡ 1 and ψj(s) = 21/2 cos((j − 1)πs) for j ≥ 2 and the ξij’s were

independent and normal N(0, j−1.5). We chose fτ (t) = 1.6t3 − 2.5t2 − 2t + 3. The Ti’s were uni-
formly distributed on [0, 1]. We let Zi1 = 2ηi1 + ηi2 − Ti + 2 + εi1 and Zi2 = ηi2 − 2ηi3 + 2Ti −
1 + εi2, where εi = (εi1, εi2)T are independent and normal N(0,�) with � = (σij)2×2 and σ11 = 1,
σ12 = σ21 = 1/2 and σ22 = 2. εi were independent of the ηij and Ti. The errors ετ i = εi − F−1(τ )
with F being the distribution function of εi. Here, F−1(τ ) is subtracted from εi to make the τ th
quantile of ετ i zero for identifiability purpose.

We conducted 500 trials from model (11) with sample size n= 100 and n= 200, respectively. In
each trial the estimators of β1, β2 and γτ (s)were computed by solvingminimization problem (5) with
fτ (t) being approximated by piecewise local linear functions. The tuning parameterm and the number
of subintervalsMn were determined by BIC criterion as described in Section 2. The estimators of fτ (t)
was computed by minimizing (6) and using Epanechnikov kernel. The bandwidth h was chosen by
leave-one-curve-out cross-validation. We first consider the case that the error εi ∼ N(0, 1). Table 1
reports the biases and standard deviations (sd) of the estimators β̂k for k= 1,2 and integrated squared
biases (Bias2) and integrated variances (Var) of the estimators γ̂ (s) and f̂ (t) computed on a grid of

Table 1. Simulation results for quantile estimators under normal error.

β̂1 β̂2 γ̂ (s) f̂ (t)

n τ bias sd bias sd Bias2 Var Bias2 Var

100 0.05 −0.0009 0.2386 −0.0034 0.1655 0.0303 0.8442 0.0102 0.3237
0.25 0.0156 0.1536 −0.0095 0.1120 0.0309 0.3838 0.0013 0.1499
0.5 −0.0076 0.1381 0.0033 0.1004 0.0302 0.2958 0.0001 0.1171
0.75 −0.0101 0.1556 0.0038 0.1111 0.0305 0.3496 0.0003 0.1474
0.95 −0.0120 0.2300 −0.0019 0.1626 0.0305 0.8426 0.0104 0.3048

200 0.05 −0.0051 0.1759 0.0002 0.1154 0.0301 0.4199 0.0031 0.1733
0.25 0.0036 0.1063 −0.0055 0.0772 0.0306 0.1627 0.0001 0.0704
0.5 0.0069 0.1027 −0.0022 0.0676 0.0304 0.1510 0.0003 0.0646
0.75 0.0106 0.1058 −0.0038 0.0740 0.0305 0.1605 0.0009 0.0727
0.95 −0.0054 0.1541 0.0034 0.1166 0.0304 0.4005 0.0029 0.1561
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1348 T. QINGGUO AND K. LINGLONG

100 equally spaced points on [0, 1], based on quantile levels τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. We see
from Table 1 that the standard deviations of the estimators β̂1 and β̂2 and the integrated variances of
γ̂ (s) and f̂ (t) decrease as the sample size n increases from 100 to 200, but increase as the quantile level
τ departs from 0.5. These indicate that the median estimators are more efficient than the estimators
of other quantile levels. Table 1 also shows that changes of n and quantile level τ have little influence
on the biases of β̂1 and β̂1 and the integrated squared biases of γ̂ (s) and f̂ (t).

To investigate the effect of data contamination on the quantile estimators, we consider the situ-
ation of model (11) with non-normal errors εi ∼ 0.9N(0, 1)+ 0.1N(0, 82), that is, εi come from a
contaminated normal distribution. N(0, 82) can be interpreted as an outlier distribution. The simu-
lation results under this contaminated normal error are reported in Table 2. We see from Table 2 that
the estimators under quantile levels 0.5 and 0.75,0.25 are more efficient than the estimators under
quantile levels 0.1,0.05 and 0.9,0.95. Comparing Table 2 with Table 1, we see that outliers in the data
have little influence on the estimators under quantile levels 0.5 and 0.75,0.25, but have large influence
on the estimators under quantile levels 0.1,0.05 and 0.9,0.95.

In the following, we consider another situation of model (11) with non-normal errors εi ∼
0.9N(0, 1)+ 0.1N(μ, 1). Tables 3 and 4 give the simulation results withμ = −10 andμ = 10, respec-
tively, which correspond to adding outliers on the left end and right end, respectively. Table 3 shows
that outliers on the left end have large influence on the estimators under lower quantile levels 0.05
and 0.1, but have little influence on the estimators under larger quantile levels 0.95 and 0.9. This is
because of the fact that outliers on the left end mainly focus on the left end of the data, which has
little influence on the estimators of large quantile levels. Similarly, Table 4 shows that the estimators
under lower quantile levels are affected less by the outliers on the right end than the estimators under
larger quantile levels.

Table 2. Simulation results for quantile estimators under contaminated normal error.

β̂1 β̂2 γ̂ (s) f̂ (t)

n τ bias sd bias sd Bias2 Var Bias2 Var

100 0.05 −0.0358 0.8106 0.0325 0.5727 0.0336 9.9817 3.7361 6.7977
0.1 0.0144 0.3707 −0.0009 0.2612 0.0317 1.9736 0.3121 1.5031
0.25 −0.0055 0.1842 0.0014 0.1342 0.0303 0.4942 0.0061 0.2138
0.5 −0.0004 0.1560 −0.0006 0.1071 0.0300 0.3752 0.0001 0.1616
0.75 −0.0036 0.1861 −0.0054 0.1336 0.0305 0.4871 0.0098 0.2114
0.9 0.0147 0.3470 −0.0084 0.2731 0.0316 1.9345 0.2390 1.2172
0.95 0.0515 0.8051 −0.0284 0.5843 0.0491 9.7863 3.5268 5.2692

200 0.05 0.0073 0.5905 0.0008 0.4242 0.0325 5.2496 2.9602 3.9100
0.1 −0.0004 0.2278 0.0082 0.1564 0.0300 0.7470 0.1341 0.4209
0.25 0.0005 0.1228 −0.0020 0.0848 0.0303 0.2249 0.0062 0.0926
0.5 0.0007 0.1037 −0.0061 0.0765 0.0307 0.1659 0.0001 0.0678
0.75 −0.0026 0.1193 0.0018 0.0885 0.0300 0.2162 0.0065 0.0892
0.9 −0.0007 0.2218 −0.0063 0.1536 0.0300 0.7472 0.1269 0.4082
0.95 0.0217 0.5778 0.0295 0.4026 0.0368 5.0164 2.5157 3.4262

Table 3. Simulation results for quantile estimators with outliers on the left end.

β̂1 β̂2 γ̂ (s) f̂ (t)

τ bias sd bias sd Bias2 Var Bias2 Var

0.05 −0.1773 1.3133 0.0091 0.9898 0.2274 32.6601 37.3243 9.2052
0.1 −0.1046 1.2599 0.0257 0.9148 0.1074 23.4066 18.9613 9.3544
0.25 −0.0184 0.2547 0.0043 0.1782 0.0311 0.9061 0.1509 0.5515
0.5 −0.0077 0.1626 −0.0071 0.1109 0.0322 0.3654 0.0223 0.1617
0.75 −0.0005 0.1601 −0.0025 0.1168 0.0307 0.3922 0.0119 0.1648
0.9 −0.0024 0.2074 0.0030 0.1493 0.0302 0.6085 0.0140 0.2525
0.95 −0.0105 0.2387 0.0048 0.1707 0.0314 0.8997 0.0227 0.3200
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Table 4. Simulation results for quantile estimators with outliers on the right end.

β̂1 β̂2 γ̂ (s) f̂ (t)

τ bias sd bias sd Bias2 Var Bias2 Var

0.05 −0.0186 0.2498 −0.0050 0.1825 0.0313 0.9058 0.0355 0.3327
0.1 −0.0018 0.2016 −0.0072 0.1363 0.0319 0.5845 0.0158 0.2465
0.25 0.0130 0.1581 −0.0006 0.1183 0.0321 0.3964 0.0089 0.1650
0.5 0.0124 0.1692 −0.0123 0.1182 0.0311 0.3829 0.0172 0.1556
0.75 0.0009 0.2421 −0.0014 0.1704 0.0307 0.9244 0.1728 0.5553
0.9 0.2046 1.1093 −0.0923 0.8159 0.2466 23.6445 16.9080 6.8469
0.95 0.7120 1.1999 −0.1867 1.0283 2.4930 29.7720 27.6573 6.8513

5. Application

We apply our proposedmethod to a dataset on attention deficit hyperactivity disorder (ADHD) from
the ADHD-200 Sample Initiative Project. Yu et al. [19] described the dataset in detail. ADHD is the
most commonly diagnosed behavioural disorder of childhood, and can continue through adolescence
and adulthood. The symptoms include lack of attention, hyperactivity, and impulsive behaviour. The
dataset we use is the filtered preprocessed resting state data from New York University (NYU) Child
Study Center using the Anatomical Automatic Labeling (AAL) atlas. AAL contains 116 Regions of
Interests (ROI) fractionated into functional space using nearest-neighbour interpolation. After clean-
ing the raw data that failed in quality control or has missing data, we include 120 individuals in the
analysis. The response of interest Y is the ADHD index, Conners’ parent rating scale-revised, long
version (CPRS-LV), a continuous behaviour score reflecting the severity of the ADHD disease. In the
AAL atalas data, the mean of the grey scale in each region is calculated for 172 equally spaced time
points. We consider the most important part of the brain cerebelum which contain at least 4 ROIs.
The functional predictorX(s) is computed by taking the average grey scale of the ROIs corresponding
to this part. The scalar covariates of primary interest include gender (Z1), age (T), handedness (Z2),
continuous between −1 and 1, diagnosis status (Z3,Z4, categorical with 3 levels: ADHD-combined,
ADHD-inattentative and typically developing children), medication status (Z5), Verbal IQ (Z6), Full4
IQ (Z7) and Performance IQ (Z8). Yu et al. [19] used partial functional linear quantile regression to
analyse these data. We find that there is no explicit linear relation between the ADHD index and age
and it is very likely that Y is related nonlinearly to T. We then take age (T) as the nonlinear variable
and construct the following functional linear semiparametric quantile regression:

qτ (Yi |Zi,Xi(s),Ti) =
8∑

j=1
Zijβτ j +

∫ 1

0
γτ (s)Xi(s) ds + fτ (Ti), (12)

where Zi1 = 1 for female and Zi1 = 0 for male, Zi2 = −1 denotes totally left-handed and Zi2 = 1
denotes totally right-handed, Zi3 = 0,Zi4 = 0 for typically developing children, Zi3 = 1,Zi4 = 0 for
ADHD-combined and Zi3 = 0,Zi4 = 1 for ADHD-inattentative, Zi5 = 1 for medication naïve and
Zi5 = 0 for not medication naïve. Since the value of functional predictor cerebelum is too small,
Xi(s) is chosen as the standardization of functional predictor cerebelum so that E[Xi(s)] = 0 and
E(‖Xi(s)‖2) = 1.

In order to examine the impacts of the covariates on the high or low ADHD index, we study quan-
tile regression (12) under τ = 0.25, 0.5 and 0.75. The quantile estimators of unknown parameters and
functions in model (12) are computed by the procedure given in Section 2. Table 5 displays the esti-
mated quantile coefficient parameters and Figure 1 shows the estimated quantile curves. We see from
Table 5 that the scalar covariate effects on ADHD index under different τ ’s appear quite different in
magnitude, butmostly are of the same signs. TheADHD index formale is greater than that for female.
The ADHD index for typically developing children is much less than that for ADHD-combined and
ADHD-inattentative children and the ADHD index for ADHD-inattentative children is less than that
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1350 T. QINGGUO AND K. LINGLONG

Table 5. The parametric estimators for model (12).

τ βτ1 βτ2 βτ3 βτ4 βτ5 βτ6 βτ7 βτ8

0.25 −3.6872 −1.6626 26.8228 22.2464 2.4665 0.3136 −0.6275 0.3445
0.5 −2.9848 1.2263 30.1245 23.4713 2.5050 0.2178 −0.4732 0.2705
0.75 −4.6426 −2.9909 33.2756 25.7632 5.8309 0.2859 −0.6324 0.4690
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Figure 1. (a) is the estimated curve for γτ (s) and (b) is the estimated curve for fτ (t) in model (12). - - - is the estimated curve for
τ = 0.25,— is the estimated curve for τ = 0.5 and . . . is the estimated curve for τ = 0.75.

for ADHD-combined children. The ADHD index for medication naïve is greater than that for not
medication naïve. Verbal IQ and Performance IQ have positive effects, while Full4 IQ has negative
effect. Figure 1 shows that the slope curve γτ (s) and the curve fτ (t) under different τ ’s appear similar
shapes, but are different in magnitude. We see from Figure 1(b) that the ADHD index through the
function fτ (t) increases with age for small t and then tend to stable for large t, which shows that the
ADHD index is nonlinearly related age. Figure 1(b) also shows that the stable point tends to increase
as the quantile τ increases, for example, the stable point is about 9 for τ = 0.5 and is about 12.5 for
τ = 0.75. These findings are helpful to uncover and understand the underlying relationship of the
ADHD index with gender, age and so on.

To assess how well the model (12) fits the data, we consider the following model assessment tool
by comparing the empirical distribution of Y with the simulated distribution from this model. We
first generate τ from U(0, 1). We randomly choose a observation from the data, denote by Y∗ the Y
of this observation. Let β̂∗

τ , γ̂ ∗
τ (s) and f̂ ∗τ (t) be the estimated τ th quantile estimators. The simulated

40 50 60 70 80 90
40

50

60

70

80

90

Y

Y
*

Figure 2. The Q–Q plot of the empirical sample against the model-based simulated data. The diagonal line is y = x.
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STATISTICS 1351

Y∗ is obtained by substituting the corresponding values of the chosen observation and the estimated
quantile estimators into the model under assessment. Repeating this procedure many times, we can
obtain a simulated sample. If the model fits data well, the marginal distribution of the simulated Y∗
should match that of the observed Y . Figure 2 shows the Q–Q plots of the empirical Y and simulated
Y∗. The Q–Q plot shows that the method proposed performs well and model (12) fits the data well.
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Appendix. Proofs
Let C> 0 denote a generic constant of which the value may change from line to line. Let ηi = (ηi1, . . . , ηim)T,
η̂i = (η̂i1, . . . , η̂im)T, γ τ = (γτ1, . . . , γτm)T, γ = (γ1, . . . , γm)T, Di = ∑∞

j=m+1 γτ jηij and

Fτ = (fτ (t1), . . . , h
p
0f
(p)
τ (t1)/p!, . . . , fτ (tMn ), . . . , h

p
0f
(p)
τ (tMn )/p!)

T,

Fr = (fr(t1), . . . , h
p
0fr
(p)(t1)/p!, . . . , fr(tMn ), . . . , h

p
0fr
(p)(tMn )/p!)

T, r = 1, . . . , d.

Set F = (F1, . . . , Fd)T, Wrm = (wr1, . . . ,wrm)
T, Wm = (W1m, . . . ,Wdm)

T, Sir = ∑∞
j=m+1 wrjηij,

Si = (Si1, . . . , Sid)T and Ai = A(Ti), f ∗τ (t) = fτ (t)− AT(t)Fτ , f ∗r (t) = fr(t)− AT(t)Fr , F∗
i = (f ∗1 (Ti), . . . , f ∗d (Ti))

T.
Then Equation (5) can be written as

min
n∑

i=1
ρτ ((εi + Wmηi + FAi + Si + F∗

i )
T(βτ − β)+ ηTi γ τ − η̂

T
i γ + AT

i (Fτ − θ)+ Di + f ∗τ (Ti)+ ετ i).

Let En = ∑n
i=1 g(0 |Xi,Ti)εiε

T
i , H = diag(κ1, . . . , κm), α1 = E1/2n (β − βτ ), α2 = n1/2H1/2[(γ − γ τ )+ WT

m
(β − βτ )], α3 = (n/Mn)

1/2[(θ − Fτ )+ FT(β − βτ )], Vi1 = E−1/2
n εi, Vi2 = n−1/2H−1/2η̂i, Vi3 = (Mn/n)1/2Ai, and

α = (αT1 ,α
T
2 ,α

T
3 )

T,Vi = (VT
i1,V

T
i2,V

T
i3)

T, ei = (ηi − η̂i)
Tγ τ + (ηi − η̂i)

TWT
m(βτ − β)+ Di + (Si + F∗

i )
T(βτ − β)+

f ∗τ (Ti). Then we have the following new optimization problem:

α̂ = Argminα
n∑

i=1
[ρτ (ei + ετ i − VT

i α)− ρτ (ei + ετ i)]. (A1)

Obviously,

α̂1 = E1/2n (β̂ − βτ ), α̂2 = n1/2H1/2[(γ̂ − γ τ )+ WT
m(β̂ − βτ )]. (A2)

Lemma A.1: There are positive constants K1 and K2 such that, except on an event whose probability tends to zero, all the
eigenvalues of

∑n
i=1 Vi3VT

i3 fall between K1 and K2, and consequently,
∑n

i=1 Vi3VT
i3 is invertible.

Proof: Observe that
∑n

i=1 Vi3VT
i3 can be denoted by diag(�1, . . . ,�Mn ), where �ν = (φνkl)(p+1)×(p+1), φνkl =

(Mn/n)
∑n

i=1[(Ti − tν)/h0]k+lI{|Ti−tν |≤h0}, k, l = 0, 1, . . . , p; ν = 1, 2, . . . ,Mn. Let �̃ν = (φ̃νkl)(p+1)×(p+1), φ̃νkl =
((t2 − t1)/2)

∫
|t|≤1 t

k+lv(tν + h0t) dt. Since for any ε > 0, by Assumption 5

∞∑
n=1

m∑
ν=1

P{|φνkl − φ̃νkl| > ε} ≤ C
∞∑
n=1
(nM4

n + n2M3
n)/(ε

4n4) < +∞,

so by Borel–Cantelli ’s lemma, it holds that have

φνkl − φ̃νkl → 0 a.s., ν = 1, . . . ,Mn; k, l = 0, . . . , p. (A3)

Let �̌ = (φ̌kl)(p+1)×(p+1) with φ̌kl = ∫
|t|≤1 t

k+l dt. It is easy to prove that �̌ is positive definite. Hence, by assump-
tion 1, there exist two positive constants K1 and K2 such that all the eigenvalues of �̃ν , ν = 1, 2, . . . ,Mn fall between
K1 and K2. So Lemma A.1 follows from Equation (A3). �

Lemma A.2: Under Assumptions 1, 2, 5 and 7, it holds that

m1/2(log n)max
i

‖Vi‖ = op(1).
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Proof: By Assumptions 1 and 7 and Lemma E.1 of Kato [28], it holds that

max
i

‖Xi‖ = Op(n1/4), max
i

‖εi‖ = Op(n1/4), max
i

|ηij| = Op(κ
1/2
j n1/4) (A4)

uniformly for j = 1, 2, . . .. Since En/n →P �B, then

max
i

‖Vi1‖ = E−1/2
n max

i
‖εi‖ = Op(n−1/4). (A5)

Note that

‖Vi2‖2 ≤ 2n−1

⎡
⎣ m∑

j=1
κ−1
j η2ij +

m∑
j=1

κ−1
j 〈Xi, ψ̂j − ψj〉2

⎤
⎦ .

By (5.21) and (5.22) of Hall and Horowitz [4], it holds that ‖ψ̂j − ψj‖2 = Op(n−1j2) uniformly for 1 ≤ j ≤ m.
Hence, by Assumption 2 and (A4), we get maxi ‖Vi2‖ = Op(m1/2n−1/4 + mα/2+3/2n−3/4). Since ‖Ai‖ is bounded, we
have maxi ‖Vi3‖ = Op(M

1/2
n n−1/2). Hence, by Assumption 5, we obtain

m1/2(log n)max
i

‖Vi‖ ≤ m1/2(log n)max
i
(‖Vi1‖ + ‖Vi2‖ + ‖Vi3‖) = op(1).

The proof of Lemma A.2 is finished. �

Denote A = {(Zi,Xi,Ti), i = 1, . . . , n}, Gni(α) = ρτ (ei + ετ i − VT
i α)− ρτ (ei + ετ i), Gn(α) = ∑n

i=1 Gni(α),
�ni(α) = E(Gni(α) |A), �n(α) = ∑n

i=1�ni(α) and ϒni(α) = Gni(α)−�ni(α)+ VT
i αϕτ (ετ i), where ϕτ (t) = τ −

I(t<0) is the derivative of ρτ (t), ϒn(α) = ∑n
i=1 ϒni(α). Then, we have

Gn(α) = �n(α)−
n∑

i=1
VT
i αϕτ (ετ i)+ϒn(α). (A6)

Lemma A.3: Assume that Assumptions 1–7 hold, then, for any sufficient large L, we have

sup
‖α‖≤L

m−1|ϒn(m1/2α)| = op(1).

Proof: Let Un = sup‖α‖≤L |ϒni(m1/2α)|, then by Lemma A.2, it holds that

(log n)Un ≤ C(log n)m1/2 max
i

|VT
i α| ≤ CL(log n)m1/2 max

i
‖Vi‖ = op(1). (A7)

By Assumption 6, we get

n∑
i=1

Var(ϒni(m1/2α) |A) ≤
n∑

i=1
E

⎛
⎝{∫ ei−m1/2VT

i α

ei
[ϕτ (ετ i + t)− ϕτ (ετ i)] dt

}2

|A
⎞
⎠

≤
n∑

i=1
m1/2|VT

i α|
∫ ei+m1/2|VT

i α|

ei−m1/2|VT
i α|

E(I(−|t|<ετ i<|t|)|A) dt

≤ Cm1/2 max
i

|VT
i α|

n∑
i=1

g(0 |Xi,Ti)[e2i + m(VT
i α)

2][1 + op(1)]. (A8)

Let� = Ŝ − S. Since supj≥1 |κ̂j − κj| ≤ |‖�‖| = Op(n−1/2), then by Assumption 2, we have

1
2κj[1 + op(1)] ≤ κ̂j ≤ 3

2κj[1 + op(1)], j = 1, . . . ,m. (A9)

Using Assumption 6, Lemma A.1 and Equation (A9), we get

n∑
i=1

g(0 |Xi,Ti)(VT
i α)

2 ≤ 3
n∑

i=1
g(0|Xi,Ti)[(VT

i1α1)
2 + (VT

i2α2)
2 + (VT

i3α3)
2] ≤ C‖α‖2[1 + op(1)]. (A10)
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Using the fact that ‖ψ̂j − ψj‖2 = Op(n−1j2) uniformly for 1 ≤ j ≤ m, we obtain

n∑
i=1

[(ηi − η̂i)
Tγ τ ]

2 ≤ m
n∑

i=1

m∑
j=1
(ηij − η̂ij)

2γ 2
τ j

≤ m
n∑

i=1
‖Xi‖2

m∑
j=1

‖ψj − ψ̂j‖2γ 2
τ j = Op(m). (A11)

Since β − βτ = E−1/2
n α1 and E−1/2

n = Op(n−1/2), similar to the proof of Equation (A11), we have

n∑
i=1

[(ηi − η̂i)
TWT

m(βτ − β)]2 = Op(n−1m) = op(m). (A12)

By Assumptions 2, 3 and 5, we have E(
∑n

i=1 D
2
i ) = n

∑∞
j=m+1 γ

2
τ jκj ≤ Cnm−(a+2b)+1 ≤ Cm and

∑n
i=1[S

T
i (βτ −

β)]2 = Op(n−1m) = op(m). By Assumptions 4 and 5 and using the fact that p̃ ≥ (a + 2b − 1)/2, it holds that∑n
i=1 f

∗
τ
2(Ti) = Op(nM

−2p̃
n ) = Op(m) and

∑n
i=1[F

∗
i
T(βτ − β)]2 = Op(n−1m) = op(m). Hence, by Assumption 6

and Equations (A11) and (A12), we get
n∑

i=1
g(0 |Xi,Ti)e2i = Op(m). (A13)

Set Kn = ∑n
i=1 sup‖α‖≤L Var(ϒni(m1/2α) |A). Using Equations (A8), (A10) and (A13), we conclude that

Kn ≤ Cm3/2 max
i

|VT
i α|[1 + op(1)] ≤ CLm3/2 max

i
‖Vi‖[1 + op(1)]. (A14)

Set D = {α : ‖α‖ ≤ L}. Let |c| = max1≤i≤m |ci| for a vector c = (c1, . . . , cm)T. Let D be divided into Jn disjoint
parts D1, . . . ,DJn such that for any dk ∈ Dk, 1 ≤ k ≤ Jn and any sufficient small ε > 0, except on an event whose
probability tends to zero,

sup
α∈Dk

|ϒn(m1/2α)− ϒn(m1/2dk)|

= sup
α∈Dk

∣∣∣∣∣
n∑

i=1

(∫ ei−m1/2VT
i α

ei−m1/2VT
i dk

[ϕτ (ετ i + t)− ϕτ (ετ i)] dt

−E

(∫ ei−m1/2VT
i α

ei−m1/2VT
i dk

[ϕτ (ετ i + t)− ϕτ (ετ i)] dt |A
))∣∣∣∣∣

≤ 4c−1
0 sup

α∈Dk

n∑
i=1

m1/2g(0 |Xi,Ti)|VT
i (α − dk)|

≤ C sup
α∈Dk

m1/2n1/2
( n∑

i=1
f (0|Xi)(VT

i (α − dk))2
)1/2

≤ C sup
α∈Dk

m1/2n1/2‖α − dk‖ ≤ C sup
α∈Dk

mn1/2|α − dk| < ε/2,

where the third inequality follows fromEquation (A10). This can be done with Jn = (4CLn1/2m/ε)d+m+(p+1)Mn . Using
Assumption 5, Equations (A7), (A14), Lemma A2 and the Bernstein inequality, we have

P

(
sup

‖α‖≤L
m−1|ϒn(m1/2α)| ≥ ε |A

)
≤

Jn∑
k=1

P(|ϒn(m1/2dk)| ≥ mε/2|A)

≤ 2Jn exp(−ε2m2/(8Kn + 4mεUn)) = op(1).

Therefore

P

(
sup

‖α‖≤L
m−1|ϒn(m1/2α)| ≥ ε

)
= o(1).

This finishes the proof of Lemma A.3. �
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Lemma A.4: Suppose that assumptions 1–8 hold, then we have

‖α̂‖ = Op(m1/2).

Proof: By Assumption 6, Equation (A9) and Lemma A.1, we have

�n(m1/2α) =
n∑

i=1

∫ ei−m1/2VT
i α

ei
E(ϕτ (ετ i + t) |A) dt

= 1
2

n∑
i=1

g(0 |Xi,Ti)[(ei − m1/2VT
i α)

2 − e2i ][1 + op(1)]

≥ c0m[c∗0‖α‖2 +
n∑

i=1
(VT

i1α1V
T
i2α2 + VT

i1α1V
T
i3α3

+ VT
i2α2V

T
i3α3)− m−1

n∑
i=1

e2i ][1 + op(1)], (A15)

where c∗0 is a positive constant. Let V̄i2 = n−1/2H−1/2ηi. Using Assumptions 1 and 5 and the fact that ‖Ai‖ is bounded,
we get

E

⎛
⎝[ n∑

i=1
V̄T
i2α2V

T
i3α3

]2
⎞
⎠ ≤ Mn‖α2‖2‖α3‖2E(‖V̄i2‖2‖Ai‖2) ≤ Cn−1mMn = o(1).

Similar to the proof of Equation (A11) and using Assumption 6, we get
∣∣∣∣∣

n∑
i=1
(Vi2 − V̄i2)

Tα2VT
i3α3

∣∣∣∣∣ ≤
( n∑

i=1
‖Vi2 − V̄i2‖2

)1/2

‖α2‖
[ n∑
i=1
(VT

i3α3)
2

]1/2

= op(1).

Hence
∑n

i=1 V
T
i2α2V

T
i3α3 = op(1). Similarly,

∑n
i=1 V

T
i1α1V

T
i2α2 = op(1). Note that

∑n
i=1 V

T
i1α1V

T
i3α3 =

n−1/2M1/2
n E−1/2

n
∑n

i=1 εTi α1A
T
i α3 and E([

∑n
i=1 εTi α1A

T
i α3]

2) = O(n). Hence
∑n

i=1 V
T
i1α1V

T
i3α3 = Op(n−1/2M1/2

n ) =
op(1) and by Equations (A15), (A13), for sufficient large L, it holds that

inf
‖α‖=L

�n(m1/2α) ≥ c0c∗0L
2m[1 + op(1)]. (A16)

Since

E

⎛
⎝(m1/2

n∑
i=1
(VT

i α)ϕτ (ετ i)

)2

|A
⎞
⎠ ≤ 3m[

n∑
i=1

[(VT
i1α1)

2 + (VT
i2α2)

2 + (VT
i3α3)

2]

≤ Cm‖α‖2[1 + op(1)].

Hence, sup‖α‖≤L m
1/2|∑n

i=1(V
T
i α)ϕτ (ετ i)| = Op(m1/2). Combining Equations (A6), (A16) and Lemma A.3, for

sufficiently large L, we have

inf
‖α‖=L

Gn(m1/2α) ≥ c0c∗0L
2m[1 + op(1)],

which implies, by the convexity of ρτ , that

P

(
inf

‖α‖≥L

( n∑
i=1

[ρτ (ei + ετ i − m1/2VT
i α)− ρτ (ei + ετ i)]

)
> 0

)
→ 1.

Hence, P(‖α̂‖ ≤ Lm1/2) → 1. This completes the proof of Lemma A.4. �

Proof of Theorem 3.1.: Let α̃1 = ∑n
i=1 Vi1ϕτ (ετ i). By central limit theorem, we have α̃1 →d N(0, (τ (1 − τ)/�)Id),

where Id is a d × d identity matrix. By Equation (A2), to prove Equation (8), it suffices to prove that for any ε > 0,
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1356 T. QINGGUO AND K. LINGLONG

P(‖α̂1 − α̃1‖ < ε) → 1. We need only to show that

P

{
inf

‖α1−α̃1‖≥ε

n∑
i=1
(ρτ (ei + ετ i − VT

i1α1 − VT
i2α̂2 − VT

i3α̂3)

− ρτ (ei + ετ i − VT
i1α̃1 − VT

i2α̂2 − VT
i3α̂3)) > 0

}
→ 1.

Set G̃n(α1,α2,α3) = ∑n
i=1(ρτ (ei + ετ i − VT

i1α1 − VT
i2α2 − VT

i3α3)− ρτ (ei + ετ i − VT
i2α2 − VT

i3α3)), By
Lemma A.4, ‖α̂2‖ = Op(m1/2) and ‖α̂3‖ = Op(m1/2). Since ‖α̃1‖ = Op(1), so by the convexity of ρτ , it suffices to
show that for any sufficient large L > 0, L′ > 0

P
({

inf
‖α1−α̃1‖=ε,‖α2‖≤Lm1/2,‖α3‖≤Lm1/2

(G̃n(α1,α2,α3)− G̃n(α̃1,α2,α3)) > 0
}

∩ {‖α̃1‖ ≤ L′}
)

→ 1. (A17)

Set �̃n(α1,α2,α3) = E(G̃n(α1,α2,α3) |A), and ϒ̃n(α1,α2,α3) = G̃n(α1,α2,α3)− �̃n(α1,α2,α3)+ ∑n
i=1

VT
i1α1ϕτ (ετ i). Then

G̃n(α1,α2,α3) = �̃n(α1,α2,α3)−
n∑

i=1
VT
i1α1ϕτ (ετ i)+ ϒ̃n(α1,α2,α3). (A18)

Using arguments similar to those used in the proof of Equation (A16), we get

�̃n(α1,α2,α3) =
n∑

i=1
g(0 |Xi,Ti)

[
1
2
(VT

i1α1)
2 + VT

i1α1(V
T
i2α2 + VT

i3α3 − ei)
]
[1 + op(1)]

= 1
2
‖α1‖2 + op(1). (A19)

By Equations (A18) and (A19), we obtain

G̃n(α1,α2,α3) = 1
2 (α1 − α̃1)

T(α1 − α̃1)− 1
2 α̃

T
1 α̃1 + ϒ̃n(α1,α2,α3)+ op(1). (A20)

By Equation (A20), we have G̃n(α̃1,α2,α3) = − 1
2 α̃

T
1 α̃1 + ϒ̃n(α̃1,α2,α3)+ op(1). Hence, using the fact that ‖α1 −

α̃1‖ = ε, we obtain that

G̃n(α1,α2,α3)− G̃n(α̃1,α2,α3) ≥ 1
2
ε2 − 2 sup

‖α1‖≤L′ ,‖α2‖≤Lm1/2,‖α3‖≤Lm1/2
|ϒ̃n(α1,α2,α3)| + op(1).

Using arguments similar to those in the proof of Lemma A.3, it holds that

sup
‖α1‖≤L′ ,‖α2‖≤Lm1/2,‖α3‖≤Lm1/2

|ϒ̃n(α1,α2,α3)| = op(1).

Now Equation (A17) follows and the proof of Theorem 3.1 is finished. �

Proof of Theorem 3.2.: Using Lemma A.4, we obtain ‖α̂1‖ = Op(m1/2) and ‖α̂2‖ = Op(m1/2). Using Equation (A2),
we get ‖β̂ − βτ ‖ = Op(n−1/2m1/2). By assumption 2, we have ‖H1/2WT

m‖ = Op(1). Hence, n1/2‖H1/2WT
m(β̂ −

βτ )‖ = Op(m1/2). So by Equation (A2), it holds that n1/2‖H1/2(γ̂ − γ τ )‖ = Op(m1/2). Using assumptions 2, 3 and
5 and using the fact that ‖ψ̂j − ψj‖2 = Op(n−1j2) uniformly for 1 ≤ j ≤ m, we obtain that

∫ 1

0
[γ̂ (s)− γτ (s)]2 ds ≤ 3

m∑
j=1
(γ̂j − γτ j)

2 + 3
∫ 1

0

⎡
⎣ m∑

j=1
γτ j(ψ̂j(s)− ψj(s))

⎤
⎦
2

ds + 3
∞∑

j=m+1
γ 2
τ j

≤ 3n−1κ−1
m ‖H1/2(γ̂ − γ τ )‖2 + 3m

m∑
j=1

γ 2
τ j‖ψ̂j − ψj‖2 + 3

∞∑
j=m+1

γ 2
τ j

= Op(n−1ma+1 + n−1m + m−2b+1) = Op(n−(2b−1)/(a+2b)).

This completes the proof of Theorem 3.2. �

Proof of Theorem 3.3.: By Taylor expansion, we have fτ (Ti) = fτ (t0)+ f ′τ (t0)(Ti − t0)+ 1
2 f

′′
τ (ξi)(Ti − t0)2 for |Ti −

t0| ≤ Mh, where |ξi − t0| < |Ti − t0|. Let Ri = (nh)−1/2(1, h−1(Ti − t0))T, u = (nh)1/2(a0 − fτ (t0), h(a1 − f ′τ (t0)))T,
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Ṽi1 = n−1/2Zi, q1 = n1/2(β − βτ ), q2 = n1/2H1/2(γ − γ τ ) and ẽi = (ηi − η̂i)
Tγ τ + Di + 1

2 f
′′
τ (ξi)(Ti − t0)2. We

consider the following new optimization problem:

min
u

n∑
i=1

[ρ(ετ i + ẽi − RTi u − ṼT
i1q̂1 − VT

i2q̂2)− ρ(ετ i + ẽi − ṼT
i1q̂1 − VT

i2q̂2)]K
(
Ti − t0

h

)
.

We then have

û = (nh)1/2(â0 − fτ (t0), h(â1 − f ′τ (t0)))
T. (A21)

Let G∗
ni(u, q1, q2) = ρ(ετ i + ẽi − RTi u − ṼT

i1q1 − VT
i2q2)− ρ(ετ i + ẽi − ṼT

i1q1 − VT
i2q2)]K((Ti − t0)/h), G∗

n(u, q1,
q2) = ∑n

i=1 G
∗
ni(u, q1, q2) and �

∗
n(u, q1, q2) = ∑n

i=1 E(G
∗
ni(u, q1, q2) |Zi,Xi,Ti). Using arguments similar to those

used in the proof of Equation (A16), we have

�∗
n(u, q1, q2) =

n∑
i=1

g(0 |Xi,Ti)

[
1
2
(RTi u)

2

+ RTi u(Ṽ
T
i1q1 + VT

i2q2 − ẽi)
]
K
(
Ti − t0

h

)
+ op(1). (A22)

Since

n∑
i=1

|(ηi − η̂i)
Tγ τ | ≤ m1/2

n∑
i=1

‖Xi‖
⎛
⎝ m∑

j=1
‖ψj − ψ̂j‖2γ 2

τ j

⎞
⎠

1/2

= Op(m1/2),

then by assumption 8, it holds that
∑n

i=1 g(0 |Xi,Ti)(ηi − η̂i)
Tγ τRiK((Ti − t0)/h) = op(1). By assumptions 5 and 7,

we obtain

(nh)−1/2E

∣∣∣∣∣
n∑

i=1
g(0 |Xi,Ti)Di

∣∣∣∣∣ ≤ C(nh)−1/2n(E(D2
i ))

1/2 ≤ C(nh)−1/2nm−(a+2b)+1 = o(1).

Hence, by the law of large numbers, we get

n∑
i=1

g(0 |Xi,Ti)(RTi u)
2K

(
Ti − t0

h

)
= v(t0)�(t0)uT�u + op(1), (A23)

n∑
i=1

g(0|Xi,Ti)RTi uẽiK
(
Ti − t0

h

)
= 1

2
(nh)1/2h2v(t0)�(t0)f ′′τ (t0)�

Tu + op(1), (A24)

where � = diag(μ0,μ2) and� = (μ2, 0)T. By assumption 1, we have

E

[∣∣∣∣∣
n∑

i=1
g(0 |Xi,Ti)RTi uV̄

T
i2q2K

(
Ti − t0

h

)∣∣∣∣∣
]

≤ C(nh)−1/2
n∑
i=1

‖u‖E
[
(E((V̄T

i2q2)
2|Ti))

1/2K
(
Ti − u0

h

)]
= O(h1/2) = o(1).

Since ‖Vi2 − V̄i2‖ ≤ n−1/2‖Xi‖(
∑m

j=1 κ
−1
j ‖ψ̂j − ψj‖2)1/2, then by Assumption 5, we get

∣∣∣∣∣
n∑

i=1
g(0|Xi,Ti)RTi u(Vi2 − V̄i2)

Tq2K
(
Ti − t0

h

)∣∣∣∣∣
≤ Cn−1h−1/2‖u‖‖q2‖

⎛
⎝ m∑

j=1
κ−1
j ‖ψ̂j − ψj‖2

⎞
⎠

1/2
n∑

i=1
‖Xi‖K

(
Ti − t0

h

)
= op(1).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

lb
er

ta
] 

at
 0

8:
27

 2
6 

O
ct

ob
er

 2
01

7 



1358 T. QINGGUO AND K. LINGLONG

Hence,
∑n

i=1 g(0 |Xi,Ti)RTi uV
T
i2q2K((Ti − t0)/h) = op(1). Using the fact that

n∑
i=1

g(0 |Xi,Ti)RTi uV
T
i1q1K

(
Ti − t0

h

)
= Op(h1/2) = op(1)

and combining Equations (A22)–(A24), we conclude that

�∗
n(u, q1, q2) = 1

2v(t0)�(t0)u
T�u − 1

2n
1/2h5/2v(t0)�(t0)f ′′τ (t0)�

Tu + op(1).

Let u∗ = 1
2n

1/2h5/2f
′′
τ (t0)�∗ and ũ = u∗ + (1/v(t0)�(t0))�−1∑n

i=1 Riϕ(ετ i)K((Ti − t0)/h), where �∗ =
(μ−1

0 μ2, 0)T. Similar to the proof of Theorem 3.1, we have û − ũ = op(1). By central limit theorem, we have∑n
i=1 Riϕ(ετ i)K((Ti − t0)/h) →d N(0, τ(1 − τ)v(t0)�̃) with �̃ = diag(ν0, ν2). Now Equation (10) follows from

Equation (A21). The proof of Theorem 3.3 is finished. �
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