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Abstract

We proof, using the minimization of functionals, the existence of hetero-
clinic solutions connecting equilibria —1 and 1 for a few number of non-
autonomous second order problems like

i(t) = g(t)V'(2(t)).

We consider for the function ¢ the following cases: constant, periodic,
asymptotically periodic or coercive. Besides that, we treat a special condi-
tion for the problem depending on a parameter.

Introduction

Considering equations such as

T = f(t,x), (1)

an interesting question to be treated is if there are trajectories connecting
equilibria of the equation: by equilibria we understand constant solutions
of (1). Such trajectories are called heteroclinics when it connects two
distinct equilibria of the equation. Hence, if p and ¢ are equilibria of (1),

x is a heteroclinic trajectory connecting p and ¢ when t lim x(t) = p and
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Here we are interested in heteroclinics solutions for the particular case
f(t,z) = g(t)V'(x(t)), and we can write the problem as follows:

i(t) = g(t)V'(x(t), Vt €R, (2)
r(t) > —1ift - —oco and z(t) —» 1if t — oo, (3)
where V' : R — R is a function satistying properties
)V e C*(R);
V) V(t)>0,VteR and V(-1)=V(1)=0;
Va)V(t) > 0,Vt e (—1,1);
Vy) VI(=1),V"(1) > 0,

and g : R — R is a continuos function that belongs to one of the following
classes:

Class 1: g is identically a positive constant;

Class 2: g is a continuos pertodic function with

inf g(t) = gg > 0;
teRg() 90

Class 3: g is asymptotically periodic, i. e., there is a continuos periodic function

gp : R — R such that
lg(t) — gp(t)] = 0 when [t| — o0
and

0 < inf g(¢) < g(t) < gp(t), VI € R;
teR

Class 4: g is coercive, 1. e.,

0 < tinf&g(t) and ¢(t) = oo when [t| = o0;
€

Class 5: g € L°°(R) and

liminf g(t) = goo > inf g(t) = g(0) > 0.
|t|—00 teR

First of all, notice that —1 and 1 are equilibria of equation (2) since
V'(=1) = V'(1) = 0. Then it makes sense to look for heteroclinic tra-
jectories connecting them. The main theorem is stated as follows:

Theorem 1. Let V' with conditions (V1) — (Vy). Then problem (2)-(3)
haslg solution U € H110C(R) N C?*(R). Moreover, U(t) € (—1,1) for all
t € R.

The Functional Associated

We will use variational methods in order to guarantee the existence of het-
eroclinic solutions for the problem. To be more precise, associated to the
equation we consider the functional J : H lloc(R) — 10, 00| given by

)= [ (Go0R + gViate)) 4

— OO

and our main goal is to minimize it in the set
W ={x € Hlloc(R) lz+1€ H'(—00,0) and 2 — 1 € H'(0,00)},

obtaining in that way solutions for the problem (2)-(3).

Note that besides W is not a Banach space, we can proof in a natural way
that .J is differentiable and .J’ is given by

J(x) v = /OO E(t)o(t) + gtV (z(t)v(t)] dt, Vo e W ewv € HY(R)

— OO

and it is one of the keys to conclude that minimizers are solutions (critical
points of J are solutions).

In this direction, denoting B = inf{J(x) | x € W} > 0, we have:

Lemma 2. [f x € W is such that J(x) = B, then x is solution of
problem (2)-(3) and, besides that, z € C*(R) with x(t) € (—=1,1) for
all t € R.

In order to obtain the result in Theorem 1 we have the following lemmas
(which hold in case function g is bounded: g in classes 1, 2, 3 or 5):

Lemma 3. Let x € Hll()c(]R) such that J(x) < co. Then

r(t) = —1 or x(t) = 1 whent - —o0

and
r(t) = —1 or x(t) — 1 when t — oo.
Moreover
r+1e H (—00,0) or 2 —1¢€ H'(—o0,0)
and

r+1¢e HY0,00) or z—1¢e HY(0,00).

Lemma 4. If A > 0 and (xy) C Hllac(R) satisfy J(xp) < A for all
n € N, then there exists subsequence of (xy), still denoted by (zy), and
a function x € Hll()c(R) such that for all T > 0,

Ty — x uniformly in |=T,T] and
Ty — x in HY(=T,T) '

General Idea for the Main Theorem

For all the cases of g we follow almost the same way: and that is to work
with minimizers sequences for J in the set W. For that, let (uy,) C W be
a minimizer sequence for J, i. e., J(up) — B when n — oo. First of all,
we can take for each n € N, —1 < wup(t) <1, forall t € R.

Now, for each particular case of g, we obtain for £y > 0 (small and conve-
niently chosen for geometry and properties of V') a new minimizer sequence
(Up) € W, and sequences (sp), (tn) C R, with s, < t, such that

J(Uy) — B when n — o0,
Un(t) € [—1,—1+ gg], Vt € (—00, sp],
Un(t) € [1 —ep, 1], YVt € [tp, 00), (5)
Un(t) € [=1+¢e0,1 —egl, Vt € [sp, tn],
Un(sn) = —1+¢p e Un(tp) =1— g,
(tn — Sn)penN 1s bounded in R.

For A = sup J(Uy) we obtain by Lemma 4 that there exists subsequence
neN

of (Uy), still denoted by (Uy), and a function U € H lloc(]R) such that for
all T > 0,

Uy, — U uniformly in [-T,T] and

U, — U in H'(=T,T) | (6)

We can note that J(U) < B. Hence to finish we just have to proof that
UelW.

The point now is guarantee that the sequence (sy) is bounded in R (what
implies (t,) bounded too) and in that way obtain limits for subsequences
of (sp) and (ty), apply the uniformly convergence described soon, the esti-
matives for Uy, in (5) and conclude with Lemma 3. Furthermore, U € W.

But to have the certain that sequence (sy,) is indeed bounded, it depends
a lot of the class that function g belongs. In the first case, when we have
a positive constant, the functional represented in (4) is invariant under
translations, and this is the fundamental property that allows us to choose
sp = 0 for all n € N. In the case that g is a 7-periodic function, the
functional is only invariant under certain translations. But we can choose
sp € 10, 7| for all n € N, and hence (sy,) is bounded.

Now let g be an asymptotically periodic function and let gp be periodic as
in the hypothesis. For gp we consider

©.@)
Jp(x) = / (1:1:(15)2 + gp(t)V(:z:(t))> dt and Bp = inf Jp(x).
oo \ 2 reW

By hypothesis we note B < Bp and hence there is 0 > 0 such that
B + 6 < Bp. In order to proof that (sy) is bounded, we proceed by con-
tradiction and work with estimatives for |g — gp|; also estimatives for V
exploring its geometry and the choice of g(; and finally facts in (5). After
those calculations we are able to find B + 0 > Bp, which is an absurd.

If g is coercive, things change a bit because all the preliminaries results
were shown for g bounded (but of course that is not the case now). To
solve that and can proceed as before using the results already done (such
as Lemmas 2, 3 and 4) we introduce the sets:

Hj(R) = {v c H\(R) | /O:O g(t)v(t)? dt < oo}

endowed with the norm

iy = </ P /0;9<t)v(t>2dt> :

— 00

and
Wy = {ZC S Hll()C(R) lx+1¢€ Hgl(—oo,()) and x — 1 € Hgl((),oo)} .
We have the continuos embeddings
Hj(R) < H'(R), Hy(—00,0) — H'(—00,0) and H(0,00) — H'(0,00)

and the previous results can be formulated in terms of these new point of
VIEW.

Example of one of the modifications to obtain a new mini-
mizer sequence.
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