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Abstract

We proof, using the minimization of functionals, the existence of hetero-
clinic solutions connecting equilibria −1 and 1 for a few number of non-
autonomous second order problems like

ẍ(t) = g(t)V ′(x(t)).

We consider for the function g the following cases: constant, periodic,
asymptotically periodic or coercive. Besides that, we treat a special condi-
tion for the problem depending on a parameter.

Introduction

Considering equations such as

ẍ = f (t, x), (1)

an interesting question to be treated is if there are trajectories connecting
equilibria of the equation: by equilibria we understand constant solutions
of (1). Such trajectories are called heteroclinics when it connects two
distinct equilibria of the equation. Hence, if p and q are equilibria of (1),
x is a heteroclinic trajectory connecting p and q when lim

t→−∞
x(t) = p and

lim
t→∞

x(t) = q.

Here we are interested in heteroclinics solutions for the particular case
f (t, x) = g(t)V ′(x(t)), and we can write the problem as follows:

ẍ(t) = g(t)V ′(x(t)), ∀ t ∈ R, (2)

x(t)→ −1 if t→ −∞ and x(t)→ 1 if t→∞, (3)

where V : R→ R is a function satisfying properties

(V1) V ∈ C2(R);

(V2) V (t) ≥ 0,∀ t ∈ R and V (−1) = V (1) = 0;

(V3) V (t) > 0,∀ t ∈ (−1, 1);

(V4) V ′′(−1), V ′′(1) > 0,

and g : R→ R is a continuos function that belongs to one of the following
classes:

Class 1: g is identically a positive constant ;

Class 2: g is a continuos periodic function with

inf
t∈R

g(t) = g0 > 0;

Class 3: g is asymptotically periodic, i. e., there is a continuos periodic function
gP : R→ R such that

|g(t)− gP (t)| → 0 when |t| → ∞

and
0 < inf

t∈R
g(t) ≤ g(t) < gP (t), ∀ t ∈ R;

Class 4: g is coercive, i. e.,

0 < inf
t∈R

g(t) and g(t)→∞ when |t| → ∞;

Class 5: g ∈ L∞(R) and

lim inf
|t|→∞

g(t) = g∞ > inf
t∈R

g(t) = g(0) > 0.

First of all, notice that −1 and 1 are equilibria of equation (2) since
V ′(−1) = V ′(1) = 0. Then it makes sense to look for heteroclinic tra-
jectories connecting them. The main theorem is stated as follows:

Theorem 1. Let V with conditions (V1)− (V4). Then problem (2)-(3)
has a solution U ∈ H1

loc(R) ∩ C2(R). Moreover, U(t) ∈ (−1, 1) for all
t ∈ R.

The Functional Associated

We will use variational methods in order to guarantee the existence of het-
eroclinic solutions for the problem. To be more precise, associated to the
equation we consider the functional J : H1

loc(R)→ [0,∞] given by

J(x) =

∫ ∞
−∞

(
1

2
ẋ(t)2 + g(t)V (x(t))

)
dt, (4)

and our main goal is to minimize it in the set

W = {x ∈ H1
loc(R) | x + 1 ∈ H1(−∞, 0) and x− 1 ∈ H1(0,∞)},

obtaining in that way solutions for the problem (2)-(3).

Note that besides W is not a Banach space, we can proof in a natural way
that J is differentiable and J ′ is given by

J ′(x) · v =

∫ ∞
−∞

[
ẋ(t)v̇(t) + g(t)V ′(x(t))v(t)

]
dt, ∀x ∈ W e v ∈ H1(R)

and it is one of the keys to conclude that minimizers are solutions (critical
points of J are solutions).

In this direction, denoting B = inf{J(x) | x ∈ W} > 0, we have:

Lemma 2. If x ∈ W is such that J(x) = B, then x is solution of
problem (2)-(3) and, besides that, x ∈ C2(R) with x(t) ∈ (−1, 1) for
all t ∈ R.

In order to obtain the result in Theorem 1 we have the following lemmas
(which hold in case function g is bounded: g in classes 1, 2, 3 or 5):

Lemma 3. Let x ∈ H1
loc(R) such that J(x) <∞. Then

x(t)→ −1 or x(t)→ 1 when t→ −∞

and
x(t)→ −1 or x(t)→ 1 when t→∞.

Moreover

x + 1 ∈ H1(−∞, 0) or x− 1 ∈ H1(−∞, 0)

and
x + 1 ∈ H1(0,∞) or x− 1 ∈ H1(0,∞).

Lemma 4. If A > 0 and (xn) ⊂ H1
loc(R) satisfy J(xn) ≤ A for all

n ∈ N, then there exists subsequence of (xn), still denoted by (xn), and
a function x ∈ H1

loc(R) such that for all T > 0,

xn→ x uniformly in [−T, T ] and

xn ⇀ x in H1(−T, T )
.

General Idea for the Main Theorem

For all the cases of g we follow almost the same way: and that is to work
with minimizers sequences for J in the set W . For that, let (un) ⊂ W be
a minimizer sequence for J , i. e., J(un) → B when n → ∞. First of all,
we can take for each n ∈ N, −1 ≤ un(t) ≤ 1, for all t ∈ R.

Now, for each particular case of g, we obtain for ε0 > 0 (small and conve-
niently chosen for geometry and properties of V ) a new minimizer sequence
(Un) ⊂ W , and sequences (sn), (tn) ⊂ R, with sn < tn, such that

J(Un)→ B when n→∞,
Un(t) ∈ [−1,−1 + ε0], ∀ t ∈ (−∞, sn],

Un(t) ∈ [1− ε0, 1], ∀ t ∈ [tn,∞), (5)

Un(t) ∈ [−1 + ε0, 1− ε0], ∀ t ∈ [sn, tn],

Un(sn) = −1 + ε0 e Un(tn) = 1− ε0,

(tn − sn)n∈N is bounded in R.

For A = sup
n∈N

J(Un) we obtain by Lemma 4 that there exists subsequence

of (Un), still denoted by (Un), and a function U ∈ H1
loc(R) such that for

all T > 0,
Un→ U uniformly in [−T, T ] and

Un ⇀ U in H1(−T, T )
. (6)

We can note that J(U) ≤ B. Hence to finish we just have to proof that
U ∈ W .

The point now is guarantee that the sequence (sn) is bounded in R (what
implies (tn) bounded too) and in that way obtain limits for subsequences
of (sn) and (tn), apply the uniformly convergence described soon, the esti-
matives for Un in (5) and conclude with Lemma 3. Furthermore, U ∈ W .

But to have the certain that sequence (sn) is indeed bounded, it depends
a lot of the class that function g belongs. In the first case, when we have
a positive constant, the functional represented in (4) is invariant under
translations, and this is the fundamental property that allows us to choose
sn = 0 for all n ∈ N. In the case that g is a τ -periodic function, the
functional is only invariant under certain translations. But we can choose
sn ∈ [0, τ ] for all n ∈ N, and hence (sn) is bounded.

Now let g be an asymptotically periodic function and let gP be periodic as
in the hypothesis. For gP we consider

JP (x) =

∫ ∞
−∞

(
1

2
ẋ(t)2 + gP (t)V (x(t))

)
dt and BP = inf

x∈W
JP (x).

By hypothesis we note B < BP and hence there is δ > 0 such that
B + δ < BP . In order to proof that (sn) is bounded, we proceed by con-
tradiction and work with estimatives for |g − gP |; also estimatives for V
exploring its geometry and the choice of ε0; and finally facts in (5). After
those calculations we are able to find B + δ ≥ BP , which is an absurd.

If g is coercive, things change a bit because all the preliminaries results
were shown for g bounded (but of course that is not the case now). To
solve that and can proceed as before using the results already done (such
as Lemmas 2, 3 and 4) we introduce the sets:

H1
g(R) =

{
v ∈ H1(R) |

∫ ∞
−∞

g(t)v(t)2 dt <∞
}

endowed with the norm

‖v‖H1
g (R) =

(∫ ∞
−∞

v̇(t)2 dt +

∫ ∞
−∞

g(t)v(t)2 dt

)1/2

and

Wg =
{
x ∈ H1

loc(R) | x + 1 ∈ H1
g(−∞, 0) and x− 1 ∈ H1

g(0,∞)
}
.

We have the continuos embeddings

H1
g(R) ↪→ H1(R), H1

g(−∞, 0) ↪→ H1(−∞, 0) and H1
g(0,∞) ↪→ H1(0,∞)

and the previous results can be formulated in terms of these new point of
view.

Example of one of the modifications to obtain a new mini-
mizer sequence.
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