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Introduction

Quantum Mechanics is a powerful theory, which revolutionized the

understanding of phenomena at small scales together with the study

of the energy levels in these systems. Its consistency has

experimentally been proven in a huge range of applications.

Nevertheless, there are still different problems which are not

sufficiently well described by these postulates.

Within this theory, the Schrödinger equation plays a fundamental

role, since it describes the changes over time of a physical system in

which quantum effects are significant. A simple way to construct this

equation is by combining the momentum ො𝑝 and energy ෠𝐸 operators

and their general interpretations.

If we now consider fractional generalizations of these operators,
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which can be obtained by replacing the regular plane wave

Ψ 𝑥, 𝑡 = 𝑒𝑖(𝑘𝑥−𝜔𝑡) by a fractional approximation,
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the resulting Fractional Schrödinger
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Fractional analysis

Definition: Caputo Fractional Derivative

The left and right CFD of order 𝛼 ∈ ℝ+ and starting point 𝑎 of 𝑓 are
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Free particle with zero angular momentum (independent of 𝑡)

Definition: Fractional sine and cosine functions
The fractional sine and cosine functions of parameter 𝛼 ∈ ℝ+ are
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𝛹 𝑥, 𝑡 + ε𝛼𝛹 𝑥, 𝑡 = 0,The FSE with 𝑉 𝑥 = 0 reads

𝜓 𝑥 = ቊ
𝐴𝐸𝛼 𝑖𝑘𝛼(−𝑥)𝛼 + 𝐵𝐸𝛼 −𝑖𝑘𝛼(−𝑥)𝛼 , 𝑥 < 0

𝐴𝐸𝛼 𝑖𝑘𝛼𝑥𝛼 + 𝐵𝐸𝛼 −𝑖𝑘𝛼𝑥𝛼 , 𝑠𝑥 ≥ 0,
with solution

wave number 𝑘2 =
2𝜇𝜀

ℏ2
and priviliged point/singularity at 0.

Particle in an infiinite potential well (independent of 𝑡)
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The FSE with 𝑉 𝑥 = ቊ
0, 𝑥 ∈ −𝑎, 𝑎
∞, 𝑒𝑙𝑠𝑒

reads

𝜓 𝑥 = ൞
𝐴𝑠𝑖𝑛𝛼 𝑘𝛼 −𝑥 𝛼 , 𝑥 ∈ −𝑎, 0

−𝐴𝑠𝑖𝑛𝛼 𝑘𝛼𝑥𝛼 , 𝑥 ∈ 0, 𝑎
0, 𝑒𝑙𝑠𝑒.

with either even or odd solutions

𝐴 serves as normalization constant and 𝑘 can be obtained with the

continuity condition,
𝑠𝑖𝑛𝛼 𝑘𝛼𝑎𝛼 = 0.

This also implies that the energy states are quantized, but unlike the

classical approach, there are finite many energy states, depending

on 𝛼 (𝛼 can be fixed in order to obtain as many states as desired).

For a potential 𝑊 𝑥 = 𝑉 𝑥 − 𝑐 the exact same result is obtained by

shifting the center of derivation.

Particle in a finite potential well
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The FSE with 𝑉 𝑥 = ቊ
𝑉0

𝛼 , 𝑥 ∈ −𝑎, 𝑎
0, 𝑒𝑙𝑠𝑒

reads
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𝜕𝑥𝛼
𝛹 𝑥, 𝑡 + ε𝛼 − 𝑉(𝑥) 𝛹 𝑥, 𝑡 = 0.

For ε𝛼 < 𝑉0
𝛼 there are either even or odd

solutions

𝜓 𝑥 =

𝐸𝛼 𝑘𝛼(−𝑥)𝛼 , 𝑥 ∈ (−∞,−𝑎)

−𝐴𝑠𝑖𝑛𝛼 𝜅𝛼 −𝑥 𝛼 , 𝑥 ∈ −𝑎, 0

𝐴𝑠𝑖𝑛𝛼 𝜅𝛼𝑥𝛼 , 𝑥 ∈ 0, 𝑎

𝐸𝛼 𝑘𝛼𝑥𝛼 , 𝑥 ∈ (𝑎,∞)

To obtain the discrete energy states, the following transcendental

equation can be used.
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Future work

Operators ො𝑝 and ෠𝐸 are not self-adjoint in 𝐿2 ℝ . A suitable space of

functions, in which these operators are self-adjoint, has to be

constructed.

Study of scattering phenomena (finite potential well with ε𝛼 > 𝑉0
𝛼)

and quantum tunneling (finite potential barrier with ε𝛼 < 𝑉0
𝛼 ),

physical implications of the singularity point, amongst others.

Study of applications of the fractional quantum mechanical model to

physical mathematics and quantum mechanics.

Fig. 1: Fractional wave Ψ 𝑥, 𝑡 = 𝐸𝛼,1 𝑖𝑘𝛼𝑥𝛼 𝐸𝛼,1 −𝑖𝜔𝛼𝑡𝛼 Fig. 2: Modulus of the fractional wave Ψ 𝑥, 𝑡

Fig. 3: Solution to the particle in an infinite potential well Fig. 4: Solution to the particle in a finite potential well


