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Introduction

Quantum Mechanics is a powerful theory, which revolutionized the
understanding of phenomena at small scales together with the study
of the energy levels In these systems. Its consistency has
experimentally been proven In a huge range of applications.
Nevertheless, there are still different problems which are not
sufficiently well described by these postulates.

Within this theory, the Schrodinger equation plays a fundamental
role, since it describes the changes over time of a physical system In
which quantum effects are significant. A simple way to construct this
equation is by combining the momentum p and energy E operators
and their general interpretations.

If we now consider fractional generalizations of these operators,
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which can be obtained by replacing the regular plane wave
Y(x,t) = ettx=@) by g fractional approximation,

Particle in an infiinite potential well (independent of t)
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The FSE with V(x) = - reads
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with either even or odd solutions
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Y(x,t)+ [e* =V (x)]|¥(x,t) =0,

P(x) =

A serves as normalization constant and k can be obtained with the
continuity condition, _

sin,(k%a%) = 0.
This also implies that the energy states are quantized, but unlike the
classical approach, there are finite many energy states, depending
on a (a can be fixed in order to obtain as many states as desired).
For a potential W(x) = V(x — ¢) the exact same result is obtained by

W(x,t) = Eq1(ik*x)E, 1 (—iw®t*), where

the resulting Fractional
Equation (FSE) is given by

Schrodinger
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Fractional analysis

Fig. 3: Solution to the particle in an infinite potential well

Fig. 1: Fractional wave W(x,t) = Ey 1 (ik*x%)E, 1 (—iw%t%)

shifting the center of derivation.

Particle in a finite potential well
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Definition: Caputo Fractional Derivative

The left and right CFD of order « € R* and starting point a of f are
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Definition: Fractional sine and cosine functions
The fractional sine and cosine functions of parameter « € R* are
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Free particle with zero angular momentum (independent of t)
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The FSE with V(x) = 0 reads 2% 93 9xC P(x,t)+e*¥(x,t) =0,
. . (AE,(ik*(—x)%) + BE,(—ik*(—x)%), x<0
with solution Y(X) =1 4 g (ikex@) + BE, (~ik*x®), x >0,

wave number k4 = % and priviliged point/singularity at 0.

Fig. 2: Modulus of the fractional wave W(x, t) The FSE W|th V(_'X') — < reads
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For % < V,* there are either even or odd
_ IS solutions
Eq(k%(—x)%), X € (=00, —a)
W(x) = —Asin, (k*(—x)%), x € [—a, 0]
2a _ 2u* (Vo™ +€%) Asing (k%x%), x € [0, a]
h2a E,(k%x%), x € (a, )

To obtain the discrete energy states, the following transcendental
eguation can be used.
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Operators p and E are not self-adjoint in L?(R). A suitable space of
functions, In which these operators are self-adjoint, has to be
constructed.

Study of scattering phenomena (finite potential well with €* > V,%)
and quantum tunneling (finite potential barrier with &% < V,4),
physical implications of the singularity point, amongst others.

Study of applications of the fractional guantum mechanical model to
physical mathematics and quantum mechanics.
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