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• Markov processes on general (uncountable) state spaces may have slow (sub-exponential or polynomial)
convergence to steady-states. Examples are seen in many models in statistical physics.

• Rigorous proof towards sub-exponential convergence rate is difficult in general.
• We introduce a hybrid method to capture the slow-convergence phenomenon for Markov processes.

The problem is reduced to the numerical computation of first-passage times.
• Two numerical examples for the microscopic heat conduction are exhibited..
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Setting
• Markov chain Ψn on a measurable state space (X, B). Ψn has a transition kernel P .

P (x, A) = P[Ψn+1 ∈ A | Ψn = x].
• Invariant probability measure π:

π(A) =
∫

X
π(dx)P (x, A) for any A ∈ B

• Interested in : Speed of convergence in total variation norm
∥P n(x, ·) − π(·)∥TV := ϕ(n) .

Exponential convergence: ϕ(n) ∼ rn, 0 < r < 1; Polynomial convergence: ϕ(n) ∼ n−β, β > 0.
• Decay of correlation ( or mixing )

Cη,ξ(n) = |
∫

X
(P nη)(x)ξ(x)π(dx) −

∫
X

η(x)π(dx)
∫

X
ξ(x)π(dx)|

is closely related to the speed of convergence, where η, ξ are integrable functions on X .

Difficulty
• The total variation norm on uncountable state spaces is difficult to compute numerically.
• Correlation decay is more computable through Monte Carlo simulation.
• Example: If Cη,ξ(n) ∼ n−2, the tolerance of relative error is ϵ, then sample size for Cη,ξ(N) is ∼ N 4ϵ−2.

Usually large N is necessary to capture the asymptotic trend of Cη,ξ(n). When N = 102 and ϵ = 0.01.
Computational cost ∼ 1014.

• However, large N is necessary to precisely capture the asymptotic trend of the convergence.
.
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Notation and definition
Let Ψn be a Markov chain with transition kernel P (x, ·).
• Ψn is irreducible with respect to a reference measure λ on B if for any x ∈ X , A ∈ B with λ(A) > 0,

there exists n > 0 such that P n(x, A) > 0.
• A set C is called a uniform reference set if there exist δ > 0 and probability measure ν(·) such that

P (x, ·) ≥ δν(·) for all x ∈ C .

• For A ∈ B, τA = infn>0{Ψn ∈ A} is the first passage time to A.

Results
Suppose Ψn is an aperiodic, λ-irreducible Markov chain that admits a uniform reference
set C.
• If supx∈C[τC] < ∞, then there exists an invariant probability measure π. (Theorem

10.0.1 in [2])
• For any β > 0, if Ex0[τ

β
C] < ∞ for some x0 ∈ X , then Ex[τβ

C] < ∞ for λ-almost every
x ∈ X .

• If there exists β > 0 such that
sup
x∈C

Ex[τβ
C] < ∞,

then for any probability measures µ, ν on X satisfying
Eµ[τβ

C] < ∞ and Eν[τβ
C] < ∞ ,

we have
lim

n→∞ nβ∥µPn − νPn∥TV = 0 ,

where ∥ · ∥TV is the total variation norm. (Theorem 2.7 in [1])
.
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Easier to verify analytically
Some conditions can be verified analytically.
• Ψn is an aperiodic Markov chain.
• Ψn is irreducible with respect to a reference measure λ.
• Ψn admits a uniform reference set C.

Easier to verify numerically
Verifying some conditions rigorously may be extremely difficult . . . . . .

• For a given probability measure µ and the given uniform reference set, there exists a β such that
Eµ[τβ

C] < ∞ .
Method: Simulate τC. Numerically compute the slope of Pµ[τC > n] on a log-log plot.
Pµ[τC > n] ∼ n−β implies Eµ[τβ−ϵ

C ] < ∞ for any ϵ > 0.
Here µ could be δx0 for some x0, any given probability measure, and the numerically obtained invariant
measure π.

• The function
γ(x) := sup

n≥1

Px[τC > n]
n−β

is uniformly bounded for all x in the given set C and β > 0.
Method: Search a grid of lattice points in C, find monotonicity of γ(x), or use some gradient-free
numerical optimization algorithms..
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• We apply our method to two Markov processes in statistical mechanics. Both of them model the 1-D
microscopic heat conduction in nonequilibrium setting.

• Optimal convergence rates of these models are difficult to obtain analytically.
• Both Markov processes are reduced from deterministic dynamical systems models, in which particles

have kinetic motion.
• These models aim to study the microscopic derivation of macroscopic thermodynamic laws. This is a

century-old challenge to mathematicians and physicists.
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Model Description
• A chain of N lattice sites {1, · · · , N} is connected to two heat

baths with temperatures TL and TR, named as site 0 and site
N + 1, respectively.

• Site i carries a finite amount of energy, denoted by Ei.
• An exponential clock is associated with each pair of adjacent

sites, with rate R =
√

min{Ei, Ei+1}.

• When the i-th clock rings, sites i and i + 1 exchange energy
(E ′

i, E ′
i+1) = (p(Ei + Ei+1), (1 − p)(Ei + Ei+1)) p ∼ U(0, 1) . E0 ∼ Exp(TL), EN+1 ∼ Exp(TR)

Verification of conditions
• The time-1 sample chain Φn generated by this model is irreducible with respect to the Lebesgue measure on RN

+ .
• Set C = {(E1, · · · , EN) | 0.1 ≤ Ei ≤ 100, i = 1 ∼ N} is a uniform reference set of Φn.
• The tail of the first passage time to C, or P[τC > t], is ∼ t−2 when starting from the numerically generated invariant measure. See

Figure 1.
• For 1 < β < 2, γ(E) increases with the decrease of each Ei. See Figure 2.
• At E∗ = (0.1, · · · , 0.1), which is the numerical maximal of γ(E) for E ∈ C and 1 ≤ β ≤ 2, P[τC > t] ∼ t−2. See Figure 3.

Conclusion
• The stochastic energy exchange model admits a unique invariant measure π, which is the nonequilibrium steady-state (NESS).
• π is absolutely continuous with respect to the Lebesgue measure on RN

+ .
• For (Lebesgue measure) almost every x ∈ RN

+ , ∥P t(x, ·) − π(·)∥TV ∼ t−2 .

Figure: 1, Pπ[τC > t], π is the numerical
steady-state obtained from long time
averaging.

Figure: 2, Change of γ(E) for varying E
when only one site energy changes.

Figure: 3, PE∗[τC > t] for
E∗ = (0.1, 0.1, 0.1).
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Model Description
• A chain of N lattice sites {1, · · · , N} is connected to two heat

baths with temperatures TL and TR. One “energy tank” is placed
at each site.

• Particles are injected from heat baths with rates ρL and ρR. The
initial distribution of each particle’s energy depends on bath
temperatures.

• An exponential clock with rate
√

particle energy is associated
with each particle.

• When one clock rings, P[ jump to neighbors ] = pm,
P[ exchange energy with tank ] = 1 − pm. A particle exits the
system if it jumps to the bath.

• Rule of energy exchange: x ∼ particle energy, s ∼ tank energy.
(x′, s′) = ((1 − u2)x + s, u2x) u ∼ U(0, 1) .

• State space: Ω. A state of the model: ω = {(k1, · · · , kN), ({x1
1, · · · , x1

k1
}, s1), · · · , ({xN

1 , · · · , xN
kN

}, sN)}. ki ∼ number of particles at
site i.

Verification of conditions
• The time-1 sample chain Φn generated by this model is irreducible with respect to a reference measure λ on Ω. λ resembles the

Lebesgue measure.
• Set C =

{
ω ∈ Ω | ki ≤ 40, 0.1 ≤ xj

ki
≤ 100, sj ≤ 100, i = 0 ∼ 40, j = 1 ∼ N

}
is a uniform reference set. (Particle number ≤ 40,

tank energy ≤ 100, 0.1 ≤ particle energy ≤ 100 ).
• The tail of the first passage time to C, or P[τC > t], is ∼ t−2 when starting from the numerically generated invariant measure. See

Figure 4.
• For 1 < β < 2, γ(ω), ω ∈ C increases with (i) decreasing site energy at each site, (ii) decreasing particle energy at each site, and (iii)

increasing number of particles in each site. See Figures 5, 6, and 7.
• At ω∗ = {(40, · · · , 40), ({0.1, · · · , 0.1}, 0), · · · , ({0.1, · · · , 0.1}, 0)} ( 40 particles with energy 0.1 at each site), the numerical

maximal of γ(ω), ω ∈ C, P[τC > t] ∼ t−2. See Figure 8.

Conclusion
• The stochastic energy exchange model admits a unique invariant measure π, which is the nonequilibrium steady-state (NESS).
• π is absolutely continuous with respect to the reference measure λ.
• For λ-almost every ω ∈ Ω, ∥P t(ω, ·) − π(·)∥TV ∼ t−2 .

Figure: 4, Pπ[τC > t], π
is the numerical
steady-state obtained
from long time
averaging.

Figure: 5, Change of
γ(ω) Change of γ(ω) for
varying ω when site
energy at only one site
changes.

Figure: 6, Change of
γ(ω) Change of γ(ω) for
varying ω when particle
energy at only one site
changes.

Figure: 7, Change of
γ(ω) Change of γ(ω) for
varying ω when number
of particles at only one
site changes.

Figure: 8, Pω∗[τC > t],
ω∗ is the numerically
obtained maximal of
γ(ω) when ω ∈ C.
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