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INTRODUCTION
The forward filtering in HMM possesses the prop-
erty of exponential loss of memory with some mild
assumptions. We will estimate this asymptotic rate
numerically and apply it to SG-MCMC algorithm.

• Latent state sequence {Xn} in the finite set
S with N states follows an irreducible and
aperiodic Markov Chain M and initial prob-
ability distribution p0.

• The pdf for observation sequences {Yn} in
Rd is P (Yn ∈ dy|Xn = i, φi) = bi(y)µ(dy).
Generally, it will be a Gaussian.

• The parameter of an HMM is θ = (M,φ).
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The forward algorithm gives

pn = P (Xn, Y1:n|θ) = p0MD1 . . .MDn (1)

where Dj = diag(bi(Yj)). One could think Dj

are random matrices sampled in i.i.d manner. The
conditional probability ρρρn = P (Xn|Y1:n, θ) =
pn/(pn · 1).
For two sequences ρρρn and ρρρ′n, starting with two
different initial conditions, p0 and p′0 will synchro-
nize eventually,

‖ρρρn − ρρρ′n‖ →n→+∞ 0

Atar et al prove the asymptotic rate of exponential
loss of memory is bounded above by the gap of
the first two Lyapunov exponents of eq (1). How-
ever, explicit estimate of the gap is not practically
useful.

lim sup
n→+∞

1

n
log ‖ρρρn − ρρρ′n‖ ≤ λ2 − λ1
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SYNCHRONIZATION

RDS
Project ρρρ to r:

[ρ1 . . . ρN ]
↓

[ln
ρ1

ρN︸ ︷︷ ︸
r1

. . . ln
ρN−1

ρN︸ ︷︷ ︸
rN−1

, 0]

It is a 1-to-1 mapping
for interior points.
The derivative of the
map and its inverse
exist.

The dynamics for ρρρ in SN−1 induces a random
map for r in RN−1.

r(n) = d(n)︸︷︷︸
random translation

+ F (r(n−1))︸ ︷︷ ︸
deterministic map

(2)

d(n) = [ln
b1(Yn)

bN (Yn)
. . . ln

bN−1(Yn)

bN (Yn)
, 0] (3)

Fi(r) = ln
( ∑N

j=1 exp(rj)Mji∑N
j=1 exp(rj)MjN

)
(4)

It naturally defines an i.i.d induced random dy-
namical system (RDS) in RN−1. The Jacobian
J(r) = ∇F (r) doesn’t dependent on d. The maxi-
mum Lyapunov exponent of induced RDS is

λmax = λ2 − λ1 = lim sup
n→+∞

1

n
log ‖J(rn−1) . . . J(r0)‖

(5)
The distance of two sequences with different initial
conditions has the following behavior,

‖ρρρn − ρρρ′n‖ ≤ C exp(λmaxn)‖ρρρ0 − ρρρ′0‖ (6)

SYNTHETIC EXAMPLE
Diagonally Dominant

Reversed Cycles

ION CHANNEL EXAMPLE
Inference of ion channel data. For a given param-
eter set θ (not shown),

ION CHANNEL EXAMPLE
The potential function is defined

U(θ) ∝ − lnP (θ|Y1:n) (7)
(Bayes Rule, marginalize X) ∝ − ln(pn · 1)− lnP (θ)

The gradient of potential function is

∂U(θ)

∂θi
∝−

n∑
j=1

p0MD1 . . .
∂(MDj)

∂θi
. . .MDn1

pn · 1
−
∂ lnP (θ)

∂θi

(8)

When n is massive, eq (8) is not feasible. But one
can harness the memory decay property,

Approximate eq (8) by using the memory length
L(θ)

−
n∑
j=1

p0P (yLM )
∂(MDj)
∂θi

P (yRM )1

p0P (yLM )MDjP (yRM )1
(9)

P (yLM ) =MDj−L · · ·MDj−1

P (yRM ) =MDj+1 · · ·MDj+L


