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Research Proposal   
 

Kinematical Symmetries in Field Theory  
My research program deals with field theory and space-time (or kinematical) symmetries, such 

as Poincaré or Galilei, and their representations, as well as the related topics of Lie algebra contractions 
and deformations, with a view to concrete physical applications to low-energy systems. Specifically, 
my research projects aim at describing various non-relativistic systems via the explicit use of Galilean 
invariance. Although it was superseded by the Poincaré and Lorentz invariance as a fundamental 
symmetry of nature, the Galilei algebra and its representations is more intricate and very relevant for 
describing concrete physical systems. This intricacy is illustrated by the fact that the representation 
theory of the Galilei algebra was worked out in the early 1960s by Lévy-Leblond, even though the 
symmetry had been identified 300 years before. By comparison, the Poincaré invariance was identified 
in the late 19th century whereas Wigner worked out its representation theory a mere forty years later. 
Thus the existence of the Galilean symmetry is very well established, perhaps at a phenomenological 
rather than a fundamental level, but many of its consequences and applications remain unexplored. 
Galilean invariance is an active, yet not a mainstream, field of research, and I expect that a proper 
formulation of this symmetry will help describe non-relativistic phenomena and provide answers to 
open problems in low-energy physics and many-body systems.  The development of a coherent 
approach is crucial to avoid incorrect conclusions that may result from the naive limits of Lorentz-
covariant relativistic equations; e.g. there exist not one, but two Galilean limits of electromagnetism.  

A well-known difficulty with non-relativistic theories is that they are not covariant, since space 
and time are not treated on an equal footing therein. We and many other authors circumvented this 
difficulty by defining Lorentz-covariant models on a 4+1 Minkowski manifold with light-cone 
coordinates, and then projecting these equations onto a 3+1 Galilean space-time. This covariant method 
is a helpful guide in formulating non-relativistic models for many-body systems. We will use this and 
other formalisms of Galilean invariance. In the recent years, my collaborators and I have investigated 
Galilean wave equations for arbitrary-spin fields, fluid models, weak-field gravitational systems with 
local Galilean covariance, Galilean electromagnetism, and Galilean non-linear equations admitting 
solitons, just to name a few examples. I plan to study applications of the Lévy-Leblond equation 
(Galilean version of the Dirac equation). We can also use this five-dimensional manifold in other 
contexts; for instance, we already applied it to general relativity in the context of brane-based solutions.   
 The research projects described hereafter revolve mainly around the study of (1) Galilean linear 
wave equations (à la Bhabha, Dirac, Duffin-Kemmer-Petiau) with various potentials, with and without 
gauge fields, in commutative and non-commutative spaces; (2) non-linear Galilean equations, 
integrability and solitons, and (3) other projects such as spin systems, branes in five dimensions and 
contractions of Lie algebras. My research program depends first and foremost on collaborations, 
internationally and with members of the U of A Physics Department, because my expertise lies in the 
Lie-algebras and their representations and appropriate expertise is required for specific physical 
applications. In the recent years, I have been fortunate to have collaborators and students visiting the 
University of Alberta; an NSERC grant would further invigorate my research program by allowing me 
to travel to meet with collaborators and attend conferences. In parallel with this proposal, I am a co-
applicant for a separate NSERC Project renewal entitled The Moedal Experiment at the Large Hadron 
Collider (Principal investigator: James Pinfold, Physics, Univ. of Alberta). That proposal has no budget 
overlap whatsoever with the current proposal. [Hereafter, citations marked with C are the numbered 
publications listed in my CCV.] 
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Recent Progress 

Even though Galilean invariance was superseded by Poincaré invariance as a fundamental 
symmetry for high-energy phenomena, the former remains present in many active fields of research, 
motivated by its capability to describe a wide range of low-energy phenomena (e.g. condensed matter 
physics, fluids and superfluids, nuclear physics, many-body theory, interior of neutron stars, etc.) or by 
its mathematical intricacies compared to Poincaré invariance. Indeed, in the recent literature only, we 
can find several investigations pertaining to Galilean invariance, whether in relation to conformal 
symmetry [1], gravitation and cosmology [2], particle physics [3], condensed matter physics [4], non-
commutative geometry [5], supersymmetry [6], representations of the Galilei algebra and its 
generalizations [7], just to mention a few. 

For the past fifteen years, my research has dealt largely with Galilean covariance: a description 
of Galilean, non-relativistic, field theories based on metric tensor methods, as its Lorentz relativistic 
analogue. In fact, a “Galilean covariant” theory is a Lorentz-covariant theory defined on a 4+1 space-
time with light-cone coordinates; then, after a reduction onto a 3+1 space-time, this model describes 
Galilean systems. In principle, this unifying approach will allow us to apply the elegant and efficient 
methods of relativistic field theory to non-relativistic problems, hence leading to applications of some 
high-energy field-theoretical methods to condensed matter physics, nuclear physics, many-body 
problems, collective phenomena, and so on. My general motivation for studying Galilean invariant 
field theory is twofold:  (1) to construct new models to describe concrete low-energy physical systems 
(as in Ref. [8]), and (2) to clarify some misconceptions that may result from naive low-velocity limits.  

As far as I know, Susskind was the first to observe that the Galilean symmetry manifests itself 
via a dimensional reduction from a relativistic system, in his investigation of the infinite-momentum 
frame [9]. Many authors, such as Duval, Künzle, Horváthy, Bergman and Thorn, Nikitin, and 
Takahashi, have utilized this dimensional-reduction approach with various perspectives; typically, their 
interest consisted in the symmetries and other mathematical aspects. Instead, my purpose is oriented to 
applications such as field interactions and scattering processes, which can be applied and compared 
with experiments. My initial motivation for studying Galilean covariance stemmed from papers by 
Takahashi and his collaborators, whose work on Galilean covariance was intended to propose new 
models of fluids, superfluids and many-body systems [8].  

My collaborators, students, and I have exploited Galilean covariance to revisit Lorentz-
covariant results and to analyze their Galilean versions: linear wave equations with arbitrary-spin fields 
in commutative [C5,10] and non-commutative [C7,C8] spaces, the spin-statistics connection for 
Galilean fields [C11], fluid and superfluid models [11], Fokker-Planck dynamics [12,13], general 
Lagrangian formalism and Galilean electrodynamics [13-17], the canonical and path-integral 
approaches to quantization [18,19], and gravitational theories in the weak-field approximation [C14]. 
We also used the five-dimensional manifold in a non-Galilean context when describing brane-world 
spherically symmetric solutions for the classic tests of general relativity [C4]. This Lorentz-like tensor 
approach was quite helpful for describing the two Galilean limits of electrodynamics [14,15], and it is 
very promising for the analyses of further interactions expressed in a covariant form. I should mention 
that the Galilean version of a relativistic model does not only describe the corresponding physical 
counterpart. For example, our preliminary work on Galilean general relativity models suggests 
applications to condensed matter physics, rather than to gravitational theories.   

 
Objectives 

The bulk of the proposed research program consists in using Galilean invariance for 
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constructing and solving the Galilean Dirac (or Lévy-Leblond) and Duffin-Kemmer-Petiau (DKP), or 
Bhabha, equations with several potentials, within commutative and non-commutative geometry. The 
DKP equation, introduced in the 1930s in order to describe mesons, is a first-order linear wave 
equation for spin-zero and spin-one particles analogous to the Dirac equation. My collaborators and I 
have already constructed Galilean DKP and Dirac equations in Ref. [10]. My former PDF (postdoctoral 
fellow) Esdras Santos and his collaborators have pursued the study of Galilean DKP equation in Ref. 
[20]. Recently, we have started to work on non-trivial potentials and non-commutative spaces: in Refs. 
[C1, C2], we have solved the Dirac and DKP equations, respectively, for the oscillator in a non-
commutative space. This segment of my research program will be done in collaboration with Brazilian 
researchers such as E. Santos (now professor in Bahia) and my recent PDF Genilson de Melo. These 
projects are well defined, consistent with my long-term research program and accessible to a graduate 
student or PDF. I expect to submit three to four manuscripts on that topic for publication within the 
next two years. We will begin with commutative spaces, and solve these Galilean wave equations with 
various potentials (e.g. central, Coulomb, (deformed) Hulthen, step-potential, deformed oscillator, etc.). 
The priority will be given to concrete physical applications. This will require financial support for an 
MSc student (a potential candidate, Gustavo Petronilo from Bahia, already contacted me) and for 
collaborative travel in both ways: Brazil and Canada.  

Another objective is to make use of Galilean covariance with our works in [C12,21], and 
construct new models for spin systems and magnetization. My main collaborators for this are Fuad 
Saradzhev and E. Santos, and it would be suitable for a graduate student. Motivated by emails from an 
author of Ref. [22], we will exploit the method of [21] for the problem of “diffusive spin transfer” in 
spintronics [22]. An undergraduate student could help with numerical computations. The priority of 
these projects will be dictated by the pertinence to concrete applications.  

 Throughout my five-year grant cycle, I also plan to return to my long-standing interest in 
contractions of Lie algebras. I firmly believe that the most significant accomplishments of these limit 
procedures are yet to come! I plan to exploit contraction techniques for boson- and fermion-realizations 
of Lie algebras and introduce contraction parameters within the products of creation and annihilation 
operators, which are of interest, for instance, in the theory of coherent states or with algebraic models 
of rotation-vibration spectra of molecules and nuclei (e.g. interacting boson model).  

 
Literature Review 

The fact that Eugene Wigner classified the unitary irreducible representations of the Poincaré 
group in 1939 and recognized their critical importance in quantum theory [23], almost 25 years before 
Lévy-Leblond performed an equivalent study for the Galilei group [24], although Galilean invariance 
was recognized centuries prior to Poincaré invariance, indicates that the structure of Galilean 
kinematics is more intricate than relativistic kinematics. In an elegant paper, which deeply influenced 
my long-term research interests, Bacry and Lévy-Leblond classified the kinematical groups and utilized 
contractions to interconnect and interpret them physically [25]. The importance of studying Galilean 
invariance in its own right, as opposed to flippantly looking at it as the c → ∞ limit of relativity, is 
shown by Lévy-Leblond’s argumentation that spin is not a purely relativistic concept since it can be 
entirely understood within a Galilean-invariant framework [26]. Another case in point is the existence 
of two Galilean limits of electrodynamics [27]. Both limits are used in engineering and fluid mechanics 
(see Refs. [15,17] and references therein). Other researchers who have investigated Galilean invariance 
(some with the extended space-time approach) include Duval and Künzle [28], Kapuścik [29], 
Horváthy et al. [30],  Elizalde and Gomis [31], Nikitin and Niederle [32], just to mention a few.  
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My research program will consist mainly in expanding our previous work on the Galilean DKP 
and Dirac equations [10,C7,C8]. The Dirac equation is well known, but for the DKP equation, let me 
mention the excellent references [1-7] in Ref. [33]. The Galilean version of the Dirac equation is 
sometimes called “Lévy-Leblond equation”, after Jean-Marc Lévy-Leblond’s paper [34], which we 
formulated with Galilean covariance in Ref. [14]. The systems described below were mostly in a 
relativistic context; we intend to revisit many of them with Galilean covariance. General properties of 
the DKP equations and the spinless DKP boson in a central field have been discussed in Ref. [35]. In a 
post-mortem paper [36], Gribov formulated an asymptotically free theory that contains both 
perturbative and non-perturbative phenomena, and he utilized the DKP formalism to replace the usual 
description of gluons and their interactions. The energy levels of massive spin-one DKP particles in a 
constant magnetic field were found in Ref. [37]. Boumali studied the spin-zero DKP field in a 
Aharanov–Bohm potential in Ref. [38]. The spin-zero DKP field in a deformed Hulthen potential was 
solved in Ref. [39]. I will definitely consider the Galilean DKP equation for spin-zero and spin-one 
with the Woods-Saxon potential (relativistic solutions in Ref. [40]). Cardoso et al. considered the non-
minimal vector coupling of a DKP field and the confinement of massive bosons with a linear potential 
[41]. The Dirac equation with position-dependent mass for the Hulthen potential was solved with the 
asymptotic iteration method (AIM) in Ref. [42]. We will utilize the Nikifurov-Uvarov method [43] and 
AIM [44] to solve our equations for the energy eigenvalues and the corresponding eigenfunctions. 

My collaborators and I studied spin Hamiltonians in [C12], and magnetization damping of spin 
systems in [21]. In a phenomenological analysis of diffusive spin transfer, a group of experimentalists 
interpreted the action of the relaxing spin of the conduction electrons as an out-of-equilibrium 
perturbation to the ferromagnetic order parameter [22]. Their purpose was to show that the 
experimental spin-transfer is described by introducing a new Onsager cross-coefficient, which relates 
the ferromagnetic current to the spins of the conduction electrons.  

 General references about contractions are given in Ref. [45]. I expect that the opposite 
procedure of contractions, called “deformations” [46], will help achieve a breakthrough by pointing 
towards new physical models with “simple” (in its Lie-algebraic sense) structure.  
 
Methodology 

Galilean covariance consists in writing non-relativistic field equations as Lorentz-like field 
equations in a 4+1 manifold with light-cone coordinates; a subsequent projection on a 3+1 space-time 
then leads to Galilean equations. The group-theoretical justification for this embedding of the 3+1 
Galilean space-time into a 4+1 Lorentz manifold is that the Galilei algebra is a Lie subalgebra of the 
Poincaré algebra with one more dimension [14]. The method consists in replacing the 4+1 Lorentz 
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is the reduction from the 4+1 relativistic Klein-Gordon equation to the 3+1 non-relativistic Schrödinger 
equation. The former equation, with Galilean metric on a complex scalar field φ, takes the form: 
!µ!

µ" # k2" = $2" + 2!4!5" # k
2" = 0  in 4+1 dimensions.  If we take k = 0 and choose the field such 

that !4" = !t"  and !5" = im" , then the previous equation leads to !2" + 2mi#t" = 0 , which is the free 

Schrödinger equation, i!t" = # 1
2m

$2" , in 3+1 dimensions. The reduction to 3+1 space-time is a 

delicate aspect of the procedure, since it can lead also to relativistic equations. For the main part of my 
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research program, we will construct and solve the Galilean Dirac and DKP equations with various 
potentials (described in the second paragraph of the literature review) in analogy with Refs. [35]-[44], 
in (non-)commutative spaces, with the representations found in Refs. [10,C7,C8]. We will also study 
non-linear Galilean differential equations and the existence of solitons. We will also use the 4+1 
manifold in a non-Galilean context, as we did in Ref. [C4], and analyze brane-world solutions in 
relation with gravitation theories. 

Also related to Galilean covariance is the diffusive spin transfer, described phenomenologically 
four years ago by means of a new Onsager cross-coefficient connecting the ferromagnetic current to the 
spins of electrons [22]. The lead author of Ref. [22] suggested to me that a proper explanation of their 
cross-coefficients could result from using the formalism in Ref. [21]. In connection with spin and 
magnetization, Saradzhev and I plan to express equations (e.g. the phenomenological Laudau-Lifschitz-
Gilbert equation) in a Galilean covariant form, and thereby explore various generalizations. 

 The last component of my research program deals with contractions and deformations of Lie 
algebras. In order to contract boson- and fermion-realizations, we will employ constructions such as 
those given in Ref. [47]. Then the contraction parameters will be introduced directly within the creation 
and annihilation operators (and combinations thereof), thus describing at once contractions of the Lie 
algebras and their representations. Finally, let me point out recent interest in the Newton-Hooke 
kinematics; this “contraction cousin” of the Poincaré algebra may be seen as a Lie subalgebra of the de 
Sitter algebra with one additional dimension [48]. This suggests that an approach similar to Galilean 
covariance could be applied in this context too, with potential applications to cosmology. 

 
Impact 

The principal objective of my research proposal is to exploit a unified framework for non-
relativistic and relativistic kinematics, and to broaden the applications of Galilean invariance. As 
illustrated in my literature review, many researchers have been working on relativistic Bhabha wave 
equations (Dirac, DKP) with various potentials; our non-relativistic treatment should attract the 
attention of these researchers. At some point, the DKP equation might even warrant an international 
workshop or conference. In many instances, the Galilean covariance formalism will provide the first 
fully non-relativistic treatment that would circumvent the need for (sometimes misleading, as 
mentioned above) low-velocity limits by using instead a Galilean approach throughout the whole 
calculations. Also, our analysis of the exact wave functions and energy levels of non-commutative 
Galilean wave equations will allow us to assess the effects of non-commutativity in a Galilean 
framework, and to compare those effects with their relativistic analogues.  

The community of researchers working on symmetries and coherent states, and 
contractions/deformations of Lie algebras should appreciate our work on boson/fermion realizations. 
Finally, our original use of extended space-time to describe Newton-Hooke kinematics should attract 
the attention of cosmologists.   

 
Conclusion 

In this proposal, I summarized my proposed research program and its anticipated outcomes. My 
interest for symmetry and phenomenology stems from my wide-ranging training (MSc on 
phenomenology of leptoquarks, and PhD on contractions of Lie algebras). I reiterate that collaborations 
will be crucial, and may even at times reorient my priorities. I have a strong interest in developing 
international collaborations. My research program is dynamic and appropriate for the training of HQP. 
I respectfully request that the selection committee strongly support my proposal, so that NSERC will 
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continue to provide support of paramount importance to help me achieve my research goals. 
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