PHYSQ 124 - Particules et ondes Mastering Physics
 Quiz 4-9 octobre 2014

A roller-coaster car may be represented by a block of mass 50.0 kg . The car is released from rest at a height $h=51.0 \mathrm{~m}$ above the ground and slides along a frictionless track. The car encounters a loop of radius $R=17.0 \mathrm{~m}$ at ground level, as shown. As you will learn in the course of this problem, the initial height 51.0 m is great enough so that the car never loses contact with the track.
A. Find an expression for the kinetic energy K of the car at the top of the loop.
B. Find the minimum initial height h min at which the car can be released that still allows the car to stay in contact with the track at the top of the loop.

$\square=\square$

Solutions

A. $K=\operatorname{mg}(h-2 R)=8330 J$
B. $\mathrm{h}_{\text {min }}=5 \mathrm{R} / 2=42.5 \mathrm{~m}$

If you solve the problem using variables instead of numbers, you will find that the minimum height required is given by $h \min =2.5 R$.

For $h>2.5 R$ the car can still complete the loop, of course. In this case, the normal force will be greater than zero even at the top of the loop.

For $h<R$ the car would oscillate in the bottom part of the loop. Could you predict this?
For $R<h<2.5 R$, the car would lose contact with the track before reaching the top. That is why roller coasters must have a lot of safety features. If you like, you can check that the angle at which the car loses contact with the track is given by $\theta=\arcsin 23(h R-1)$.

Interestingly, if you try to check your result in a school or a univeristy lab with a steel or glass marble, you will see that the necessary minimum height is greater than $2.5 R$. This is because a marble also has rotational kinetic energy in addition to translational kinetic energy.

