Description: \pm Includes Math Remediation. Several conceptual and computational questions: Given force and displacement, what is the work done?

Learning Goal:

To be able to calculate work done by a constant force directed at different angles relative to displacement
If an object undergoes displacement while being acted upon by a force (or several forces), it is said that work is being done on the object. If the object is moving in a straight line and the displacement and the force are known, the work done by the force can be calculated as

$$
W=F s \cos \theta
$$

where W is the work done by force \vec{F} on the object that undergoes displacement \vec{s} directed at angle θ relative to \vec{F}.
Note that depending on the value of $\cos \theta$, the work done can be positive, negative, or zero.
In this problem, you will practice calculating work done on an object moving in a straight line. The first series of questions is related to the accompanying figure.

Part A

What can be said about the sign of the work done by the force \vec{F}_{1} ?
ANSWER:

It is positive.It is negative.
(It is zero.
There is not enough information to answer the question.

When $\theta=90^{\circ}$, the cosine of θ is zero, and therefore the work done is zero.

Part B

What can be said about the work done by force \vec{F}_{2} ?
ANSWER:It is positive.It is negative.It is zero.

When $0^{\circ}<\theta<90^{\circ}, \cos \theta$ is positive, and so the work done is positive.

Part C

The work done by force \vec{F}_{3} is
ANSWER:positivenegativezero

When $90^{\circ}<\theta<180^{\circ}, \cos \theta$ is negative, and so the work done is negative.

Part D

The work done by force \vec{F}_{4} is
ANSWER:positivenegativezero

Part E

The work done by force \vec{F}_{5} is
ANSWER:positivenegative
zero

Part F

The work done by force \vec{F}_{6} is
ANSWER:positivenegativezero

Part G

The work done by force \vec{F}_{7} is
ANSWER:

In the next series of questions, you will use the formula $W=F s \cos \theta$ to calculate the work done by various forces on an object that moves 160 meters to the right as shown in .

160 m

Part H

Find the work W done by the 18 -newton force.
Use two significant figures in your answer. Express your answer in joules.
ANSWER:

$$
W=2900 \mathrm{~J}
$$

Part I

Find the work W done by the 30-newton force.
Use two significant figures in your answer. Express your answer in joules.
ANSWER:

$$
W=4200 \mathrm{~J}
$$

Part J

Find the work W done by the 12-newton force.
Use two significant figures in your answer. Express your answer in joules.
ANSWER:

$$
W=-1900 \mathrm{~J}
$$

Part K

Find the work W done by the 15 -newton force.
Use two significant figures in your answer. Express your answer in joules.
ANSWER:

$$
W=-1800 \mathrm{~J}
$$

