Description: ± Includes Math Remediation. Several conceptual and computational questions: Given force and displacement, what is the work done?

Learning Goal:

To be able to calculate work done by a constant force directed at different angles relative to displacement

If an object undergoes displacement while being acted upon by a force (or several forces), it is said that *work is being done* on the object. If the object is moving in a straight line and the displacement and the force are known, the work done by the force can be calculated as

$$W = Fs \cos \theta$$
,

where W is the work done by force \vec{F} on the object that undergoes displacement \vec{s} directed at angle θ relative to \vec{F} .

Note that depending on the value of $\cos \theta$, the work done can be positive, negative, or zero.

In this problem, you will practice calculating work done on an object moving in a straight line. The first series of questions is related to the accompanying figure.

Part A

What can be said about the sign of the work done by the force \vec{F}_1 ? ANSWER:

When $ heta=90^\circ$, the cosine of $ heta$ is zero, and therefore the work do	one is zero.
O There is not enough information to answer the question.	
It is zero.	
O It is negative.	
O It is positive.	

What can be said about the work done by force $ec{F_2}$?

ANSWER:

It is positive.	
It is negative.	
O It is zero.	
When $0^\circ < heta < 90^\circ$, $\cos heta$ is positive, and s	to the work done is positive.

Part C

The work done by force $ec{F}_3$ is

ANSWER:

0	positive
۲	negative
0	zero

When $90^{\circ} < heta < 180^{\circ}$, $\cos heta$ is negative, and so the work done is negative.

Part D

```
The work done by force ec{F}_4 is
```

ANSWER:

۲	positive
0	negative
0	zero

Part E

The work done by force $ec{F}_5$ is ANSWER:

o positive	
negative	
O zero	

Part F

The work done	by force	\overline{F}_6	is
---------------	----------	------------------	----

ANSWER:

o positive	
negative	
zero	

Part G

			_	
The wor	rk done	by force	F_7	is

ANSWER:

In the next series of questions, you will use the formula $W = Fs \cos \theta$ to calculate the work done by various forces on an object that moves 160 meters to the right as shown in .

Part H

Find the work W done by the 18-newton force.

Use two significant figures in your answer. Express your answer in joules.

ANSWER:

W = 2900 J

Part I

Find the work W done by the 30-newton force.

Use two significant figures in your answer. Express your answer in joules.

ANSWER:

W = 4200 J

Part J

Find the work \boldsymbol{W} done by the 12-newton force.

Use two significant figures in your answer. Express your answer in joules.

ANSWER:

W = -1900 J

Part K

Find the work W done by the 15-newton force.

Use two significant figures in your answer. Express your answer in joules.

ANSWER:

W= -1800 J