Proof of the Relative Velocity Formula

The figure below represents two coordinate systems A and B, and a point P.

- $\quad r_{\mathrm{PB}}$ is a vector representing the position of P relative to the system B
- $\quad \boldsymbol{r}_{\mathrm{PA}}$ represents the position of P relative to the system A
- $\quad r_{B A}$ is the position of system B relative to the system A
[Each vector has the form $r=(x, y)$]
We see from the figure that

$$
\boldsymbol{r}_{\mathrm{PA}}=\boldsymbol{r}_{\mathrm{PB}}+\boldsymbol{r}_{\mathrm{BA}}
$$

If we use the definition of instantaneous velocity, $\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta \mathrm{t}}$, to each term, then we obtained the desired result:

$$
v_{\mathrm{PA}}=\boldsymbol{v}_{\mathrm{PB}}+\boldsymbol{v}_{\mathrm{BA}}
$$

