PHYSQ 126, Quiz 6
 8 mars 2012

63. Picture the Problem: Four resistors and two batteries are connected as shown in the circuit diagram at right.

Strategy: The circuit can be analyzed by applying Kirchoff's rules. First apply the Junction Rule to point A in the circuit, then apply the Loop Rule to two loops, the left-hand loop 1 and the outside loop 2 labeled in the diagram. These three equations can be combined to algebraically find I_{1}, I_{2}, and I_{3}. From the currents we can find the potential difference between the points A and B.

Solution: 1. (a) Apply the Junction Rule to point A:

$$
I_{1}=I_{2}+I_{3} \ldots \ldots \text { (i) }
$$

2. Apply the Loop Rule to loop 1, beginning in lower lefthand corner, and solve for I_{3} :

$$
\begin{align*}
& 0=12 \mathrm{~V}-I_{1} R_{1}-I_{3} R_{3}-I_{1} R_{4} \\
& I_{3}=\frac{12 \mathrm{~V}}{R_{3}}-\frac{R_{1}+R_{4}}{R_{3}} I_{1}=10 \mathrm{~A}-\frac{13.7 \Omega}{1.2 \Omega} I \tag{ii}
\end{align*}
$$

3. Apply the Loop Rule to loop 2 , beginning in lower lefthand corner, and solve for I_{2} :

$$
\begin{aligned}
0 & =12 \mathrm{~V}-I_{1} R_{1}-I_{2} R_{2}-9.0 \mathrm{~V}-I_{1} R_{4} \\
I_{2} & =\frac{12.0-9.0 \mathrm{~V}}{R_{2}}-\frac{R_{1}+R_{4}}{R_{2}} I_{1}=\left(\frac{3.0 \mathrm{~V}}{6.7 \Omega}\right)-\left(\frac{13.7 \Omega}{6.7 \Omega}\right) I_{1} \ldots \ldots . \text { (iii }
\end{aligned}
$$

4. Substitute equations (ii) and (iii) into equation (i).

$$
\begin{aligned}
I_{1} & =10 \mathrm{~A}-\left(\frac{13.7}{1.2}\right) I_{1}+\left(\frac{3.0}{6.7} \mathrm{~A}\right)-\left(\frac{13.7}{6.7}\right) I_{1} \\
\left(1+\frac{13.7}{1.2}+\frac{13.7}{6.7}\right) I_{1} & =10 \mathrm{~A}+\frac{3}{6.7} \mathrm{~A} \\
I_{1} & =\frac{10 \mathrm{~A}+\frac{3}{6.7} \mathrm{~A}}{1+\frac{13.7}{1.2}+\frac{13.7}{6.7}}=\underline{\underline{0.72 \mathrm{~A}}}
\end{aligned}
$$

5. Substitute I_{1} into equations (ii) and (iii):

$$
\begin{aligned}
& I_{3}=10 \mathrm{~A}-\frac{13.7}{1.2}(0.72 \mathrm{~A})=\underline{\underline{1.8 \mathrm{~A}}} \\
& I_{2}=\left(\frac{3.0}{6.7} \mathrm{~A}\right)-\frac{13.7}{6.7}(0.72 \mathrm{~A})=\underline{\underline{-1.0 \mathrm{~A}}}
\end{aligned}
$$

6. The currents through each resistor are as follows: $3.9 \Omega, 9.8 \Omega: 0.72 \mathrm{~A} ; 1.2 \Omega: 1.8 \mathrm{~A} ; 6.7 \Omega: 1.0 \mathrm{~A}$.
7. The potential at point A is greater than that at point B because I_{3} flows in the direction shown in the diagram and produces a potential drop across R_{3}.
8. Find the potential drop across R_{3} :

$$
V_{\mathrm{A}}-V_{\mathrm{B}}=I_{3} R_{3}=(1.8 \mathrm{~A})(1.2 \Omega)=2.2 \mathrm{~V}
$$

Insight: Because we obtained a negative value for I_{2}, it must be flowing in the direction opposite that indicated by the arrow in the circuit diagram.

