PHYSQ 126, Quiz 6 8 mars 2012

63. **Picture the Problem**: Four resistors and two batteries are connected as shown in the circuit diagram at right.

Strategy: The circuit can be analyzed by applying Kirchoff's rules. First apply the Junction Rule to point A in the circuit, then apply the Loop Rule to two loops, the left-hand loop 1 and the outside loop 2 labeled in the diagram. These three equations can be combined to algebraically find I_1 , I_2 , and I_3 . From the currents we can find the potential difference between the points A and B.

Solution: 1. (a) Apply the Junction Rule to point A:

2. Apply the Loop Rule to loop 1, beginning in lower lefthand corner, and solve for I_3 :

3. Apply the Loop Rule to loop 2, beginning in lower left-hand corner, and solve for I_2 :

4. Substitute equations (ii) and (iii) into equation (i).

5. Substitute I_1 into equations (ii) and (iii):

Loop 2 I_1 I_2 V I_2 V I_2 V I_3 I_3 I_3 I_4 I_2 I_2 I_2 I_3 I_3 I_2 I_3 I_3 I_4 I_5 I_2 I_2 I_2 I_3 I_4 I_5 I_5 I_2 I_2 I_2 I_3 I_4 I_5 I_5 I_2 I_5 I_5

$$0 = 12 \text{ V} - I_1 R_1 - I_3 R_3 - I_1 R_4$$

$$I_3 = \frac{12 \text{ V}}{R_3} - \frac{R_1 + R_4}{R_3} I_1 = 10 \text{ A} - \frac{13.7 \Omega}{1.2 \Omega} I_1 \dots (ii)$$

$$0 = 12 \text{ V} - I_1 R_1 - I_2 R_2 - 9.0 \text{ V} - I_1 R_4$$

$$I_2 = \frac{12.0 - 9.0 \text{ V}}{R_2} - \frac{R_1 + R_4}{R_2} I_1 = \left(\frac{3.0 \text{ V}}{6.7 \Omega}\right) - \left(\frac{13.7 \Omega}{6.7 \Omega}\right) I_1 \dots (iii)$$

$$I_{1} = 10 \text{ A} - \left(\frac{13.7}{1.2}\right)I_{1} + \left(\frac{3.0}{6.7} \text{ A}\right) - \left(\frac{13.7}{6.7}\right)I_{1}$$
$$\left(1 + \frac{13.7}{1.2} + \frac{13.7}{6.7}\right)I_{1} = 10 \text{ A} + \frac{3}{6.7} \text{ A}$$
$$I_{1} = \frac{10 \text{ A} + \frac{3}{6.7} \text{ A}}{1 + \frac{13.7}{1.2} + \frac{13.7}{6.7}} = \underline{0.72 \text{ A}}$$
$$I_{3} = 10 \text{ A} - \frac{13.7}{1.2}(0.72 \text{ A}) = \underline{1.8 \text{ A}}$$
$$I_{2} = \left(\frac{3.0}{6.7} \text{ A}\right) - \frac{13.7}{6.7}(0.72 \text{ A}) = \underline{-1.0 \text{ A}}$$

6. The currents through each resistor are as follows: 3.9Ω , 9.8Ω : 0.72 A; 1.2Ω : 1.8 A; 6.7Ω : 1.0 A.

7. The potential at point A is greater than that at point B because I_3 flows in the direction shown in the diagram and produces a potential drop across R_3 .

 $I_1 = I_2 + I_3 \dots (i)$

8. Find the potential drop across R_3 :

$$V_{\rm A} - V_{\rm B} = I_3 R_3 = (1.8 \text{ A})(1.2 \Omega) = 2.2 \text{ V}$$

Insight: Because we obtained a negative value for I_2 , it must be flowing in the direction opposite that indicated by the arrow in the circuit diagram.