PHYSQ 126 - Quiz 5 (3 mars 2016) Solution

Problem 21.86

The capacitor in an $R C$ circuit is initially uncharged.

Part A

In terms of R and C, determine the time required for the charge on the capacitor to rise to 50% of its final value.

Express your answer in terms of the variables R and C.

Part B

In terms of R and C, determine the time required for the initial current to drop to 10% of its initial value.

Express your answer in terms of the variables R and C.

Solutions

86. Picture the Problem: A battery, a resistor, and a capacitor form a series $R C$ circuit.

Strategy: Equation 21-18 determines the charge on a capacitor in a series $R C$ circuit as a function of time. Solve equation 21-18 for the time required to charge the capacitor to 50% of its full charge. Then solve equation 21-19 for the time required for the current to drop to 10% of its initial value.

Solution: 1. (a) Set $q(t)=0.50 q_{\text {max }}=0.50 C \boldsymbol{\varepsilon}$ in equation 21-18 and solve for the time t :

$$
\begin{aligned}
0.50 C \mathcal{E} & =C \mathcal{E}\left(1-e^{-t / R C}\right) \\
0.50 & =1-e^{-t / R C} \\
e^{-t / R C} & =1-0.50 \\
-\frac{t}{R C} & =\ln 0.50 \\
t & =-R C \ln 0.50=R C \ln 2.0
\end{aligned}
$$

2. (b) Set $I(t)=0.10 I(0)=0.10 \frac{\varepsilon}{R}$ and solve for t :

$$
\begin{aligned}
0.10 \frac{\varepsilon}{R} & =\frac{\varepsilon}{R} e^{-t / R C} \\
0.10 & =e^{-t / R C} \\
\ln 0.10 & =-\frac{t}{R C} \Rightarrow t=R C \ln 10
\end{aligned}
$$

Insight: When a single time constant has passed, the charge has increased from zero to 63.2% of its final value, and the current has dropped to 36.8% of its initial value.

