Part A: multiple choice questions

1. B
$\mathrm{F}_{\mathrm{A}}=m(g+a), \mathrm{F}_{\mathrm{B}}=\mathrm{F}_{\mathrm{C}}=m(g+a) / 2$
2. B
3. E
4. D
5. D
6. B

Work done by conservative force is path-independent and $\operatorname{dot}\left(\mathbf{F}, \mathbf{r}_{2}-\mathbf{r}_{1}\right)=12 \mathrm{~J}$.
7. A

Particle has constant speed in all cases, so only need to compare power of weight. Powers of weight in (A) and (E) both have the same magnitude, but sign in (E) is opposite to the one in the question.
8. C

Speed is independent of mass, so kinetic energy is proportional to mass.
9. C

Direction of linear momentum has changed.
10. D

Impulse of the force is $2 \times 10^{6} \times(10)^{3} \mathbf{i}+1.6 \times 10^{6} \times(10)^{4} \mathbf{j}=2 \times 10^{9} \mathbf{i}+1.6 \times 10^{10} \mathbf{j}$, so the change in velocity is $2 \times 10^{3} \mathbf{i}+1.6 \times 10^{4} \mathbf{j}$. The final velocity is therefore $5000 \mathbf{i}+12000 \mathbf{j}(\mathrm{~m} / \mathrm{s})$, and speed is $13 \mathrm{~km} / \mathrm{s}$.
11. A
12. A

Impulse from 0 to 9 s is +18 , and from 9 to 12 s is -9 , so need another -9 to get zero velocity. $9 / 6=1.5 \mathrm{~s}$ and $12+1.5=13.5 \mathrm{~s}$.
13. E

Total impulse from 0 to 9 s is 18 , and from 0 to 15 s is -9 , so maximum speed occurs at 9s.
14. C

At 9 s , speed is $18 / 2=9 \mathrm{~m} / \mathrm{s}$.
15. B

Total linear momentum is zero. Net linear momentum of A and B is to the left, so cart is moving to the right.
16. A
17. C

Linear momentum conservation: $3 \mathrm{a}=5 \mathrm{~b}, 4 \mathrm{a}+12 \mathrm{~b}=5.6$, so $\mathrm{a}=0.5$ and $\mathrm{b}=0.3$. Speed of A is $5 a=2.5 \mathrm{~m} / \mathrm{s}$; speed of B is $13 b=3.9 \mathrm{~m} / \mathrm{s}$.
18. C

The coefficient of restitution is only related to vertical component of the velocities before and after impact, so only h and d are needed.
19. A

Torque is zero when \mathbf{r} and \mathbf{F} are parallel.
20. E

Use right hand rule for cross product $(\mathbf{k} \times(-\mathbf{i})=-\mathbf{j})$.
21. C

Energy is lost when the kinetic energy decreases, or angular speed decreases, which occurs in intervals 3 and 6 .
22. A

Work done is equal to change in kinetic energy, which is: 2 (interval 1), 0 (interval 2), -2 (interval 3), 0.5 (interval 4), 0 (interval 5), -0.5 (interval 6).
23. B

Rolling without slipping: $\omega=v_{\mathrm{cm}} / \mathrm{R} . v_{\mathrm{cm}}$ is the same for front and rear wheels, so ω is inversely proportional to radius. $16 \times(15 / 8)=30 \mathrm{rpm}$.
24. C

Before the rope is shortened, $I=M d^{2} / 2$, and kinetic energy is $M d^{2} \omega_{0}^{2} / 4$. After the rope is shortened, $I=M d^{2} / 8$, angular momentum conservation gives the new angular speed as $4 \omega_{0}$, so kinetic energy is $M d^{2} \omega_{0}^{2}$. Change is $3 M d^{2} \omega_{0}^{2} / 4$.

Part B: long-answer questions

Question 1:
a) LM conservation for $\mathrm{A}+\mathrm{B}$ during collision: $m_{A} v_{A 1}+m_{B} v_{B 1}=m_{A} v_{A 2}+m_{B} v_{B 2}$
$\Rightarrow 8 v_{A 1}=8 v_{A 2}+2(4.8) \quad$ or $\quad v_{A 1}=v_{A 2}+1.2$

Coefficient of restitution: $\quad e=\frac{v_{B 2}-v_{A 2}}{v_{A 1}-v_{B 1}}$
$\Rightarrow \quad 0.5=\frac{4.8-v_{A 2}}{v_{A 1}} \quad$ or $\quad 0.5 v_{A 1}=4.8-v_{A 2}$
Adding (1.1) and (1.2) yields: $\quad v_{A 1}=\frac{4.8+1.2}{1.5}=4 \mathrm{~m} / \mathrm{s}$
Energy conservation for sphere A during its swing: $m_{A} g l(1-\cos \alpha)=\frac{1}{2} m_{A} v_{A 1}^{2}$
$\Rightarrow \quad 10(1.6)(1-\cos \alpha)=\frac{1}{2}\left(4^{2}\right) \Rightarrow \cos \alpha=\frac{1}{2}$ and $\alpha=60^{\circ}$
b) Stretch in the spring is

$$
s=\sqrt{3} L-\sqrt{2} L=(\sqrt{3}-\sqrt{2})(2.6)=0.826 \mathrm{~m}
$$

Energy conservation for sphere B: $\frac{1}{2} m_{B} v_{B 2}^{2}+m_{B} g L(1-\cos \theta)=\frac{1}{2} m_{B} v_{B 3}^{2}+\frac{1}{2} k s^{2}$

$$
\Rightarrow \frac{2(4.8)^{2}}{2}+2(10)(2.6)\left(1-\cos 30^{\circ}\right)=\frac{2 v_{B 3}^{2}}{2}+\frac{52(0.826)^{2}}{2} \Rightarrow v_{B 3}=3.50 \mathrm{~m} / \mathrm{s}
$$

FBD/KD of sphere B:

In the normal direction: $m_{B} g \cos 30^{\circ}+k s \cos 30^{\circ}-T=m_{B} a_{n}=m_{B} \frac{v_{B 3}^{2}}{L}$
$\Rightarrow \quad T=2(10) \cos 30^{\circ}+52(0.826) \cos 30^{\circ}-2\left(\frac{3.50^{2}}{2.6}\right)=45.1 \mathrm{~N}$

Question 2:
Define position of block $\mathrm{A}\left(s_{A}\right)$ downward from the lowest pulley.
Then: $s_{A}+2 x=\mathrm{constant} \Rightarrow v_{A}=-2 v_{B}$

As block A falls through a height of $2 \mathrm{~m}: \Delta s_{A}=2 \mathrm{~m}$ and $\Delta x=-1 \mathrm{~m}$.
Principle of work and energy for A and B:

$$
\begin{aligned}
& m_{A} g \Delta s_{A}+\mu_{k} m_{B} g \Delta x+\int_{1.5}^{0.5} F(x) d x=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}, \text { so } \\
& \begin{aligned}
\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B}\left(\frac{v_{A}}{2}\right)^{2} & =m_{A} g \Delta s_{A}+\mu_{k} m_{B} g \Delta x+\int_{1.5}^{0.5}\left[2 K\left(x_{e}-x\right)+4 Q\left(x_{e}-x\right)^{3}\right] d x \\
& =m_{A} g \Delta s_{A}+\mu_{k} m_{B} g \Delta x+\left[-K\left(x_{e}-x\right)^{2}-Q\left(x_{e}-x\right)^{4}\right]_{1.5}^{0.5}
\end{aligned}
\end{aligned}
$$

Substitute in numbers:

$$
\begin{aligned}
& \frac{1}{2}\left(4+\frac{8}{4}\right) v_{A}^{2}=4(10)(2)+0.5(8)(10)(-1)-6\left(2^{2}-1^{2}\right)-0.4\left(2^{4}-1^{4}\right) \\
& \Rightarrow \quad v_{A}=2.31 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Question 3:
a) Let A = pulley and B = sphere, energy conservation:
$M g x \sin \theta=\frac{1}{2} k x^{2}+\frac{1}{2} I_{A} \omega_{A}^{2}+\frac{1}{2} M v_{B, c m}^{2}+\frac{1}{2} I_{B} \omega_{B}^{2}$
No-slip conditions for the cylinder and for the sphere: $\omega_{A}=\frac{v_{B, c m}}{R}, \quad \omega_{B}=\frac{v_{B, c m}}{R}$
$\Rightarrow \quad M g x \sin \theta=\frac{1}{2} k x^{2}+\frac{1}{2}\left(\frac{1}{2} M R^{2}\right)\left(\frac{v_{B, c m}}{R}\right)^{2}+\frac{1}{2} M v_{B, c m}^{2}+\frac{1}{2}\left(\frac{2}{5} M R^{2}\right)\left(\frac{v_{B, c m}}{R}\right)^{2}$
$\Rightarrow 20 M g x \sin \theta=10 k x^{2}+19 M v_{B, c m}^{2}$
$\Rightarrow \quad v_{B, c m}=\sqrt{\frac{20}{19} g x \sin \theta-\frac{10 k}{19 M} x^{2}}$
b) $\mathrm{FBD} / \mathrm{KD}$ for A and B :

No-slip conditions for the cylinder and for the sphere: $\alpha_{A}=\frac{a_{B, c m}}{R}, \quad \alpha_{B}=\frac{a_{B, c m}}{R}$
For A:
CW " + " $\Rightarrow(T-k x) R=\left(\frac{1}{2} M R^{2}\right) \frac{a_{B, c m}}{R} \quad$ or $\quad T-k x=\frac{1}{2} M a_{B, c m}$
For B:
Down the incline " + " $\Rightarrow M g \sin \theta-f_{s}-T=M a_{B, c m}$
CW "+" $\quad \Rightarrow \quad f_{s} R=\left(\frac{2}{5} M R^{2}\right) \frac{a_{B, c m}}{R} \quad$ or $\quad M a_{B, c m}=\frac{5}{2} f_{s}$
Adding (3.1) and (3.2) and substituting in (3.3) $\Rightarrow f_{s}=\frac{4}{19}(M g \sin \theta-k x)$

