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When students are introduced to the one-dimensional
Schrodinger equation, there is a tendency to limit its
application to a few forms of potential for which exact
analytic solutions are readily obtainable—notably, of
course, the simple square well. We have found, however,
that students can easily be trained to make quali-
tatively correct pencil and paper plots of stationary
state wave funections for arbitrary one-dimensional
binding potentials. This developed ability gives the
student a chance to take a first rough cut at a new
problem, gain a qualitative insight into the properties
of a particular state, and achieve an independent basis
of judgment as to whether or not an analytic formula
or a computer-generated solution is approximately
correct. Moreover, the same skill can be used in
analyzing three-dimensional systems that are analyti-
cally separable into equivalent one-dimensional prob-
lems. We suspect that many instructors have diseovered
the usefulness of qualitative plots in teaching quantum
physies, but to our knowledge the results have not
found their way into textbooks.

The essential background for making qualitative
plots is a knowledge of the de Broglie relation, a (largely
implicit) understanding of the continuity requirements
on the wave function, and an acquaintance with the
exponential-type decrease of the wave function with
distance into any classically forbidden regions. In
addition to this minimum background, our students
have had a first contact with the time-independent
Schradinger equation and have solved the finite square
well problem using graphical methods.

An emphasis on the importance of curvature begins
the conversion of square-well results to the more general
case of potentials that vary with position. The lowest
possible energy state, for example, implies the smallest
possible momentum at every point in the potential,
which implies the longest possible “local wavelength,”
which implies the smallest possible curvature of the
wave function consistent with matching to the decaying
functions at the boundaries. The second energy state
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F1a. 1. Potential plot used to analyze peak heights of wave
function as a function of well depth.

Notes and Discussions

wave function has the next-higher local curvature at
every point consistent with the boundary conditions.
These results are applicable also to space-varying
potentials and lead to the following common features
of every stationary state wave function in a one-
dimensional potential.

1. The wave function for the nth energy level has
n—1 nodes.

2. Inside the well the “local wavelength” is longer in
shallower portions of the potential well.

3. Inside the well the amplitude of the wave function
(the height of the peaks) is greater at places where the
well is shallower. (This point is discussed more fully
below.)

4. Wherever the potential energy V is greater than
the total energy E, the local “exponential decay con-
stant” of the wave function with distance is greater for
a larger value of V—E.

5. In potentials that are symmetrical with respect
to a given point, stationary state wave functions are
alternately odd and even with respect to the point of
symmetry, the lowest-energy wave function being even.

Statement 3 may not be generally appreciated, even
among professionals. That it follows directly from the
de Broglie relation plus continuity requirements can be
seen from a simple example. Consider a solution of
energy E in the step potential shown in Fig. 1. Within
the well the solutions are sinusoidal:

Y= A sin (kz+¢) (inside well), (1)

where k=2n/A=p/h. The values of 4, k, and ¢ will, in
general, each be different for regions I and II. We want
to show that the maximum value 4 is larger in region IT
than in region I. This is done by considering the slope
dy/dx of the wave function. Call this slope m. Then

dy/dr=m= Ak cos (kz+¢) (inside well)., (2)
Rewrite (1) and (2) as

sin (kz+¢)=y/ 4,
cos (kx+¢)=m/kA.

These equations can be squared and added to eliminate
the phase ¢ and yield an expression for the maximum
value A:

A= *-+m?/k2)12 (inside well). (3)
Now recall that both the value of ¢ and its slope m are
continuous across the step, but that the value of k
changes discontinuously. Continuity demands that
infinitesimally close to the step the values of both 2
and m? in BEq. (3) have the same magnitude on either
side. Therefore at the step the maximum value A of the
wave function tncreases as k decreases (except for the
special case m=0). The momentum p (and hence the
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F1e. 2. Sample qualitative plot of wave function for the
fifth energy level in a ramp-bottomed potential well.

wave number k) is smaller in region II than in region I.
Therefore the maximum value A4 is greater in region II
than in region I. QED

In the special case that the slope m equals zero at the
step, continuity can be maintained with the same value
of A in both regions,.

Now, any potential function whatever can be ap-
proximated by a series of superposed step functions.
The preceding analysis is valid for each such step, so

the conclusion can be applied to any continuously
varying potential, and thus to a potential well of any
shape: regions of smaller momentum have larger
maximum values of the wave function than regions of
larger momentum. This completes the analysis of
feature number 3 in the list above.

We have found that students are able to draw a wave
function without error in any of the five features
listed above provided they are given the drawn figure
of the one-dimensional potential, are told which energy
level it is (for example, the fifth), and have the energy
of the level indicated by a horizontal line drawn on the
potential plot. Figure 2 shows just such a case. One
reason that qualitative plotting works so well from a
pedagogic point of view is that, by indicating the
energy on the potential plot and giving the state
number, we provide implicit dimensional scales of
distance and energy that allow the student to ignore,
for the limited purposes of a rough plot, the magnitudes
of Planck’s constant and the mass of the trapped
particle that lie behind atomic units of distance and
energy.

Single copies of programmed study material, intro-
ducing qualitative plots of this kind, are available
without charge through the FEducation Research
Center, Room 20C-228, Massachusetts Institute of
Technology, Cambridge, Mass. 02139.
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An experiment which would demonstrate the princi-
ples of successive radioactive decay was required as
part of an undergraduate laboratory course in reactor
and nuclear physics, the intention being to measure the
decay constants of the chain members. There were a
number of restrictions on the choice of chain to be
investigated. A chain with two active members presents
a sufficiently complex problem and makes it feasible
that the experiment be performed and the calculations
completed in the course of one 3-h laboratory period,
provided that the half-lives in question are of the order
of minutes. The parent isotope had to be produced in a
measurable quantity by neutron irradiation in a
research reactor (in a thermal neutron flux of ap-
proximately 10 em~2 sec™) for & time short compared
with either the parent or the daughter half-life, that is
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for a few seconds. Both parent and daughter substances
should emit v radiation so that the decays can be
easily followed using secintillation detectors which
should also allow the decays to be distinguished one
from the other. Finally, there should be negligible
contamination by other active isotopes.

Examination of the decay schemes of the active
isotopes accessible by neutron activation showed that
the only chain meeting the above (fairly exacting)
requirements was:

8~ B~

I —1Ru (stable).
14.6 min 14.0 min

101V o

The values of the half-lives are those given by Lederer
et all It should be mentioned that, while the value
14.6 min for the ™Mo half-life has been obtained by
three different investigators, there is a spread in the
values quoted for the *T¢ half-life, the value 14.0 min
having been found most often.

About 100 mg of molybdenum oxide (Moog)
irradiated for 5 sec in the above thermal neutron flux
yields sufficient aetivity to be measured with good
statistical accuracy in a counting time of 30 sec. A
series of such counts at 1-min intervals over a period of
an hour or so gives enough data to show the decay of



