
Chapitre 21 – Charges et champs électriques   [9 au 12 mai] 
 
DEVOIR : 21.78, 21.84, 21.56, 21.90, 21.71 
 
21.1. Charge électrique et structure de la matière 

• À lire rapidement. Concepts déjà familiers. 
 
21.2. Conducteurs, isolants, charges induites 

• Surtout Charging by Induction et Electric Forces on Uncharged Objects 
 
21.3. Loi de Coulomb 

• Eq. (21.2) 
• P. 719 Superposition of Forces 
• Lire tous les exemples 
• Autres exemples: 

 
21.10. (a) IDENTIFY: The electrical attraction of the proton gives the electron an acceleration equal to the 

acceleration due to gravity on earth. 
SET UP: Coulomb’s law gives the force and Newton’s second law gives the acceleration this force 

produces. 
   
ma = 1

4πP0

q1q2

r 2
and

   
 r = e2

4πP0ma
. 

EXECUTE: r =

 

9.00×109  N ⋅m2 /C2( ) 1.60×10−19  C( )
2

9.11×10−31  kg( ) 9.80 m/s2( )
 = 5.08 m 

EVALUATE: The electron needs to be about 5 m from a single proton to have the same acceleration as 
it receives from the gravity of the entire earth. 
(b) IDENTIFY: The force on the electron comes from the electrical attraction of all the protons in the 
earth. 
SET UP: First find the number n of protons in the earth, and then find the acceleration of the electron 
using Newton’s second law, as in part (a). 

n = mE/mp = (5.97 × 1024 kg)/(1.67 ×  10−27  kg) = 3.57 × 1051 protons. 

a = F/m =
   

1
4πP0

qpqe

RE
2

me

=

1
4πP0

ne2

me RE
2

. 

EXECUTE: a = (9.00 × 109 N ⋅ m2/C2)(3.57 × 1051)(1.60 ×  10−19  C)2/[(9.11 ×  10−31  kg)(6.38 × 106 
m)2] = 2.22 × 1040 m/s2. One can ignore the gravitation force since it produces an acceleration of only 
9.8 m/s2 and hence is much much less than the electrical force. 
EVALUATE: With the electrical force, the acceleration of the electron would nearly 1040 times greater 
than with gravity, which shows how strong the electrical force is. 

 
 
 
21.16. IDENTIFY: Apply Coulomb’s law and find the vector sum of the two forces on  q2 . 

SET UP: 
   

F2 on 1  is in the +y-direction. 



EXECUTE: 

  

F2on 1 =
(9.0 × 109 N ⋅m2 C2 ) (2.0 × 10−6 C) (2.0 ×10−6 C)

0.60 m( )2
= 0.100 N . 

  
F2 on 1( )x

= 0 and

  
F2 on 1( ) y

= +0.100 N . 
  
FQ  on 1  is equal and opposite to 

  
F1 on Q (Example 21.4), so 

  
FQ  on 1( )x

= −0.23N  

and
  

FQ  on 1( ) y
= 0.17 N .

  
Fx = F2 on 1( )x

+ FQ  on 1( )x
= −0.23 N .

  
Fy = F2 on 1( ) y

+ FQ  on 1( ) y
= 0.100 N + 0.17 N = 0.27 N . The magnitude of the total force is 

  
F = 0.23 N( )2

+ 0.27 N( )2
= 0.35 N.

 
tan−1 0.23

0.27
= 40° , so   


F is   40∞counterclockwise from the +y 

axis, or   130∞ counterclockwise from the +x axis. 
EVALUATE: Both forces on   q1 are repulsive and are directed away from the charges that exert them. 

 
 
21.23. IDENTIFY: Apply Coulomb’s law to calculate the force exerted on one of the charges by each of the 

other three and then add these forces as vectors. 
(a) SET UP: The charges are placed as shown in Figure 21.23a. 

 

  q1 = q2 = q3 = q4 = q  

Figure 21.23a  

Consider forces on   q4 .  The free-body diagram is given in Figure 21.23b. Take the y-axis to be parallel 

to the diagonal between   q2  and   q4  and let  +y  be in the direction away from   q2 .  Then 
   

F2  is in the  +y

-direction. 

 

EXECUTE: 
   
F3 = F1 =

1
4πP0

q2

L2
  

   
F2 =

1
4πP0

q2

2L2
 

  F1x = −F1 sin45° = −F1 / 2  

  
F1y = +F1 cos45° = +F1 / 2  

  F3x = +F3 sin45° = +F3 / 2  

  
F3y = +F3 cos45° = +F3 / 2  

  
F2x = 0,  F2 y = F2  

Figure 21.23b  

(b)   Rx = F1x + F2x + F3x = 0  

   
Ry = F1y + F2 y + F3y = (2/ 2) 1

4πP0

q2

L2
+

1
4πP0

q2

2L2
=

q2

8πP0 L2
(1+ 2 2)  



   
R =

q2

8πP0 L2
(1+ 2 2). Same for all four charges. 

EVALUATE: In general the resultant force on one of the charges is directed away from the opposite 
corner. The forces are all repulsive since the charges are all the same. By symmetry the net force on one 
charge can have no component perpendicular to the diagonal of the square. 

 

21.24. IDENTIFY: Apply 
  
F =

k q ʹ′q

r 2
 to find the force of each charge on +q . The net force is the vector sum 

of the individual forces. 
SET UP: Let   q1 = +2.50 µC  and  q2 = −3.50 µC . The charge  +q  must be to the left of   q1 or to the right 

of   q2  in order for the two forces to be in opposite directions. But for the two forces to have equal 

magnitudes,  +q must be closer to the charge  q1 , since this charge has the smaller magnitude. Therefore, 

the two forces can combine to give zero net force only in the region to the left of  q1 . Let  +q be a distance 

d to the left of  q1 , so it is a distance   d + 0.600 m from  q2 . 

EXECUTE:   F1 = F2  gives
  

kq q1

d 2
=

kq q2

(d + 0.600 m)2
.

  

d = ±
q1

q2

(d + 0.600 m) = ±(0.8452)(d + 0.600 m) . d must be positive, so

  
d =

(0.8452)(0.600 m)
1− 0.8452

= 3.27 m . The net force would be zero when  +q  is at  x = −3.27 m . 

EVALUATE: When  +q is at  x = −3.27 m , 
   

F1  is in the  −x direction and 

   

F2 is in the +x direction. 

 
 
21.4. Champs électriques et forces électriques 

• Eq. (21.3) est la définition de E.  En principe, on utilise plutôt Eq. (21.4), car étant 
donné un champ E, si on y place une charge q0, elle subira une force donnée par 
Eq. (21.4). 

• En général, la force obtenue de Eq. (21.4) n’est pas la loi de Coulomb, Eq. (21.2). 
• Le cas particulier d’une charge source ponctuelle est donné par Eq. (21.7). 
• Lire tous les exemples. 
• Autres exemples: 

 
 
21.28. IDENTIFY: Use constant acceleration equations to calculate the upward acceleration a and then apply 

   

F = q


E to calculate the electric field. 

SET UP: Let +y be upward. An electron has charge q = −e . 

EXECUTE: (a) 
  
v0 y = 0 and

 
ay = a , so 

  
y − y0 = v0 yt + 1

2 ayt
2 gives  y − y0 =

1
2 at2 . Then

  
a =

2( y − y0 )
t2

=
2(4.50 m)

(3.00 × 10−6 s)2
= 1.00 × 1012 m s

2
. 

  
E =

F
q
=

ma
q
=

(9.11× 10−31 kg) (1.00 × 1012 m s
2
)

1.60 × 10−19 C
= 5.69 N C  

The force is up, so the electric field must be downward since the electron has negative charge. 



(b) The electron’s acceleration is ~  1011 g , so gravity must be negligibly small compared to the 
electrical force. 
EVALUATE: Since the electric field is uniform, the force it exerts is constant and the electron moves 
with constant acceleration. 
 
 

21.33. IDENTIFY: Eq. (21.3) gives the force on the particle in terms of its charge and the electric field 
between the plates. The force is constant and produces a constant acceleration. The motion is similar to 
projectile motion; use constant acceleration equations for the horizontal and vertical components of the 
motion. 
(a) SET UP: The motion is sketched in Figure 21.33a. 

 

For an electron   q = −e.  

Figure 21.33a  

    

F = q


E  and q negative gives that   


F  and   


E  are in opposite directions, so   


F  is upward. The free-body 

diagram for the electron is given in Figure 21.33b. 

 

EXECUTE: 
 

Fy = may∑   

 eE = ma  

Figure 21.33b  
Solve the kinematics to find the acceleration of the electron: Just misses upper plate says that 

  x − x0 = 2.00 cm  when   y − y0 = +0.500 cm.  
x-component 

  v0x = v0 = 1.60×106  m/s, ax = 0,  x − x0 = 0.0200 m, t = ?  

  x − x0 = v0xt + 1
2 axt

2  

  
t =

x − x0

v0x

=
0.0200 m

1.60×106  m/s
= 1.25×10−8  s  

In this same time t the electron travels 0.0050 m vertically: 
y-component 

  
t = 1.25×10−8 s, v0 y = 0,  y − y0 = +0.0050 m, ay = ?  

  
y − y0 = v0 yt + 1

2 ayt
2  

  
ay =

2( y − y0 )
t2

=
2(0.0050 m)

(1.25×10−8  s)2
= 6.40×1013  m/s2  

(This analysis is very similar to that used in Chapter 3 for projectile motion, except that here the 
acceleration is upward rather than downward.) This acceleration must be produced by the electric-field 
force:  eE = ma  

  
E =

ma
e
=

(9.109×10−31  kg)(6.40×1013  m/s2 )
1.602×10−19  C

= 364 N/C  

Note that the acceleration produced by the electric field is much larger than g, the acceleration produced 
by gravity, so it is perfectly ok to neglect the gravity force on the elctron in this problem. 

(b) 
  
a = eE

mp

=
(1.602×10−19  C)(364 N/C)

1.673×10−27  kg
= 3.49×1010  m/s2  



This is much less than the acceleration of the electron in part (a) so the vertical deflection is less and the  
proton won’t hit the plates. The proton has the same initial speed, so the proton takes the same time 

  t = 1.25×10−8  s  to travel horizontally the length of the plates. The force on the proton is downward (in 
the  
same direction as    


E,  since q is positive), so the acceleration is downward and 

  
ay = −3.49×1010  m/s2 .   

  
y − y0 = v0 yt + 1

2 ayt
2 = 1

2 (−3.49×1010  m/s2 )(1.25×10−8  s)2 = −2.73×10−6  m.  The displacement is 

 2.73×10−6  m,  downward. 
(c) EVALUATE: The displacements are in opposite directions because the electron has negative charge 
and the proton has positive charge. The electron and proton have the same magnitude of charge, so the 
force the electric field exerts has the same magnitude for each charge. But the proton has a mass larger 
by a factor of 1836 so its acceleration and its vertical displacement are smaller by this factor. 

 
 
21.40. IDENTIFY: The net force on each charge must be zero. 

SET UP: The force diagram for the  −6.50 µC  charge is given in Figure 21.40. FE is the force exerted 
on the charge by the uniform electric field. The charge is negative and the field is to the right, so the 
force exerted by the field is to the left. Fq is the force exerted by the other point charge. The two 
charges have opposite signs, so the force is attractive. Take the +x axis to be to the right, as shown in 
the figure. 
EXECUTE: (a) 

  
F = q E = (6.50×10−6  C)(1.85×108  N/C) = 1.20×103  N  

  
Fq = k

q1q2

r 2
= (8.99×109  N ⋅m2 /C2 ) (6.50×10−6  C)(8.75×10−6  C)

(0.0250 m)2
= 8.18×102  N  

  
Fx = 0∑ gives 

  
T + Fq − FE = 0  and

  
T = FE − Fq = 382 N . 

(b) Now Fq is to the left, since like charges repel. 

  
Fx = 0∑ gives 

  
T − Fq − FE = 0  and

  
T = FE + Fq = 2.02×103  N . 

EVALUATE: The tension is much larger when both charges have the same sign, so the force one 
charge exerts on the other is repulsive. 

 
Figure 21.40 

 
 
 
21.5. Champs électriques: points, dipôles, lignes chargées, sphères, disques,… 

• Section très pratique.  Le principe fondamental est la superposition.  Lire les 
exemples des pp. 728-733. 

• Autres exemples: 
 

21.44. IDENTIFY: For a point charge,
  
E = k

q

r 2
. For the net electric field to be zero, 

   

E1 and 

   

E2  must have 

equal magnitudes and opposite directions. 
SET UP: Let   q1 = +0.500 nC  and   q2 = +8.00 nC.    


E  is toward a negative charge and away from a 

positive charge. 



EXECUTE: The two charges and the directions of their electric fields in three regions are shown in 
Figure 21.44. Only in region II are the two electric fields in opposite directions. Consider a point a 

distance x from   q1 so a distance   1.20 m − x from  q2 .   E1 = E2 gives
  
k 0.500 nC

x2
= k 8.00 nC

(1.20 − x)2
.

  16x2 = (1.20 m − x)2 .   4x = ±(1.20 m − x)  and   x = 0.24 m  is the positive solution. The electric field is 
zero at a point between the two charges, 0.24 m from the 0.500 nC charge and 0.96 m from the 8.00 nC 
charge. 
EVALUATE: There is only one point along the line connecting the two charges where the net electric 
field is zero. This point is closer to the charge that has the smaller magnitude. 

 

 
Figure 21.44 

 
21.48. IDENTIFY: A positive and negative charge, of equal magnitude q, are on the x-axis, a distance a from 

the origin. Apply Eq.(21.7) to calculate the field due to each charge and then calculate the vector sum of 
these fields. 
SET UP:   


E  due to a point charge is directed away from the charge if it is positive and directed 

toward the charge if it is negative. 

EXECUTE: (a) Halfway between the charges, both fields are in the   −x-direction and 
   
E =

1
4πP0

2q
a2

,  in 

the  −x-direction . 

(b) 
   
Ex =

1
4πP0

−q
(a + x)2

−
q

(a − x)2

⎛

⎝
⎜

⎞

⎠
⎟ for  | x |< a . 

   
Ex =

1
4πP0

−q
(a + x)2

+
q

(a − x)2

⎛

⎝
⎜

⎞

⎠
⎟ for x > a . 

   
Ex =

1
4πP0

−q
(a + x)2

−
q

(a − x)2

⎛

⎝
⎜

⎞

⎠
⎟  for x < −a .  Ex  is graphed in Figure 21.48. 

EVALUATE: At points on the x axis and between the charges,  Ex is in the   −x-direction because the 
fields from both charges are in this direction. For  x < −a and x > +a , the fields from the two charges 
are in opposite directions and the field from the closer charge is larger in magnitude. 



 
Figure 21.48 

  
21.54. (a) IDENTIFY: The field is caused by a finite uniformly charged wire. 

SET UP: The field for such a wire a distance x from its midpoint is

   
E =

1
2πP0

λ

x (x / a)2 +1
= 2 1

4πP0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

λ

x (x / a)2 +1
. 

EXECUTE: E = 

 

18.0×109  N ⋅m2 / C2( ) 175×10−9  C/m( )

(0.0600 m) 6.00 cm
4.25 cm
⎛

⎝
⎜

⎞

⎠
⎟

2

+1

 = 3.03 × 104 N/C, directed upward. 

(b) IDENTIFY: The field is caused by a uniformly charged circular wire. 

SET UP: The field for such a wire a distance x from its midpoint is
   
E =

1
4πP0

Qx
(x2 + a2 )3/ 2

. We first 

find the radius of the circle using 2πr = l. 
EXECUTE: Solving for r gives r = l/2π = (8.50 cm)/2π = 1.353 cm 
The charge on this circle is Q = λl = (175 nC/m)(0.0850 m) = 14.88 nC 
The electric field is 

   

E =
1

4πP0

Qx

x2 + a2( )
3/2

= 

 

9.00×109 N ⋅m2 /C2( ) 14.88×10−9 C/m( ) 0.0600 m( )
(0.0600 m)2 + (0.01353 m)2⎡
⎣

⎤
⎦

3/2
 

E = 3.45 × 104 N/C, upward. 
EVALUATE: In both cases, the fields are of the same order of magnitude, but the values are different 
because the charge has been bent into different shapes. 

  
 
  
21.6. Lignes de champ électrique 

• À lire rapidement 
 
 
21.7. Dipôles électriques 

• Un dipôle est tout simplement une paire de charges de même grandeur et de 
signes opposés.  



• Le vecteur “moment dipolaire électrique” (ou electric dipole moment) a la 
grandeur donnée par Eq. (21.14) et la direction pointe de la charge – vers la 
charge +.  Unités : C⋅m. 

• Moment de force de E sur p : Eq. (21.16). Grandeur par Eq. (21.15) 
• Énergie potentielle de p dans E : Eq. (21.18). Grandeur par Eq. (21.17).  L’angle 

φ est l’angle entre p et E, φ = 0 est la position où p est parallèle à E. 
• Lire l’exemple de la p. 738 
• Autres exemples : 

 
21.65. IDENTIFY: Follow the procedure specified in part (a) of the problem. 

SET UP: Use that y >> d . 

EXECUTE: (a)  
  

1
( y − d 2)2

−
1

( y + d 2)2
=

( y + d 2)2 − ( y − d 2)2

( y2 − d 2 4)2
=

2yd
( y2 − d 2 4)2

. This gives 

   
Ey =

q
4πP0

2yd
( y2 − d 2 4)2

=
qd

2πP0

y
( y2 − d 2 4)2

. Since  y
2 >> d 2 / 4 ,

   
Ey ≈

p
2πP0 y3

. 

(b) For points on the  −y-axis , 
  

E
−

is in the +y direction and 
  

E
+

is in the  −y direction. The field point is 

closer to −q , so the net field is upward. A similar derivation gives
   
Ey ≈

p
2πP0 y3

. 
 
Ey  has the same 

magnitude and direction at points where  y >> d as where y << −d . 

EVALUATE: E falls off like   1 / r3 for a dipole, which is faster than the   1 / r 2 for a point charge. The 
total charge of the dipole is zero. 

  
 
21.67. IDENTIFY: Like charges repel and unlike charges attract. The force increases as the distance between 

the charges decreases. 
SET UP: The forces on the dipole that is between the slanted dipoles are sketched in Figure 21.67a. 
EXECUTE: The forces are attractive because the + and − charges of the two dipoles are closest. The 
forces are toward the slanted dipoles so have a net upward component. In Figure 21.67b, adjacent 
dipoles charges of opposite sign are closer than charges of the same sign so the attractive forces are 
larger than the repulsive forces and the dipoles attract. 
EVALUATE: Each dipole has zero net charge, but because of the charge separation there is a non-zero 
force between dipoles. 

  
Figure 21.67 

  
 
21.70. IDENTIFY: The plates produce a uniform electric field in the space between them. This field exerts 

torque on a dipole and gives it potential energy. 
SET UP: The electric field between the plates is given by    E = σ / P0 , and the dipole moment is p = ed. 

The potential energy of the dipole due to the field is    U = −
p ⋅

E = −pE cosφ , and the torque the field 

exerts on it is τ = pE sin φ. 



EXECUTE: (a) The potential energy,     U = −
p ⋅

E = −pE cosφ , is a maximum when φ = 180°. The field 

between the plates is    E = σ / P0 , giving 

Umax = (1.60 × 10–19 C)(220 × 10–9 m)(125 × 10–6 C/m2)/(8.85 × 10–12 C2/N ⋅ m2) = 4.97 × 10–19 J 
The orientation is parallel to the electric field (perpendicular to the plates) with the positive charge of 
the dipole toward the positive plate. 
(b) The torque, τ = pE sin φ, is a maximum when φ = 90° or 270°. In this case 

    τmax = pE = pσ / P0 = edσ / P0  

 
 
τmax = 1.60×10−19  C( ) 220×10−9  m( ) 125×10−6  C/m2( ) 8.85×10−12  C2 / N ⋅m2( )  

  τmax = 4.97 ×10−19  N ⋅m  

The dipole is oriented perpendicular to the electric field (parallel to the plates). 
(c) F = 0. 
EVALUATE: When the potential energy is a maximum, the torque is zero. In both cases, the net force 
on the dipole is zero because the forces on the charges are equal but opposite (which would not be true 
in a nonuniform electric field). 

 


