
Chapitre 24 – Capacité et diélectriques  [24 au 26 mai] 
 
DEVOIR :  24.50, 24.60, 24.64, 24.68, 24.70 
 
24.1. Condensateurs et capacité 

• P. 816: définitions de condensateur et capacité (Eq. (24.1)) 
• Unité de capacité : farad (F) 
• Eq. (24.2) :  plaques parallèles 
• Les exemples aux pp. 818-820 contiennent les principaux cas. 

 

24.6.  IDENTIFY: 
 
C =

Q
Vab

.
   
C =

P0 A
d

. 

SET UP: When the capacitor is connected to the battery, enough charge flows onto the plates to make 

  Vab = 12.0 V.  
EXECUTE: (a) 12.0 V 

(b) (i) When d is doubled, C is halved. 
 
Vab =

Q
C

and Q is constant, so V doubles.  V = 24.0 V . 

(ii) When r is doubled, A increases by a factor of 4. V decreases by a factor of 4 and  V = 3.0 V . 
EVALUATE: The electric field between the plates is   E = Q / P0 A . Vab = Ed . When d is doubled E is 
unchanged and V doubles. When A is increased by a factor of 4, E decreases by a factor of 4 so V 
decreases by a factor of 4. 

 

24.8.  INCREASE: 
 
C =

Q
Vab

. Vab = Ed .
   
C =

P0 A
d

. 

SET UP: We want   E = 1.00×104  N/C  when  V = 100 V . 

EXECUTE: (a)
  
d =

Vab

E
=

1.00×102  V
1.00×104  N/C

= 1.00×10−2  m = 1.00 cm .

   
A =

Cd
P0

=
(5.00×10−12  F)(1.00×10−2  m)

8.854×10−12  C2 / (N ⋅m2 )
= 5.65×10−3  m2 .   A = πr 2 so

  
r = A

π
= 4.24×10−2  m = 4.24 cm . 

(b)   Q = CVab = (5.00×10−12  F)(1.00×102  V) = 5.00×10−10  C = 500 pC  

EVALUATE: 
   
C =

P0 A
d

. We could have a larger d, along with a larger A, and still achieve the required 

C without exceeding the maximum allowed E. 
  
24.12. IDENTIFY: Apply the results of Example 24.3.  C = Q / V . 

SET UP:   ra = 15.0 cm . Solve for rb . 

EXECUTE: (a) For two concentric spherical shells, the capacitance is
  
C =

1
k

rarb

rb − ra

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ . 

 kCrb − kCra = rarb  and
  
rb =

kCra

kC − ra

=
k(116×10−12  F)(0.150 m)
k(116×10−12  F) − 0.150 m

= 0.175 m . 

(b)   V = 220 V and  Q = CV = (116×10−12  F)(220 V) = 2.55×10−8  C . 



EVALUATE: A parallel-plate capacitor with   A = 4πrarb = 0.33 m2 and   d = rb − ra = 2.5×10−2  m  has

   
C =

P0 A
d

= 117 pF , in excellent agreement with the value of C for the spherical capacitor. 

 
 
24.2. Condensateurs en série et en parallèle 

• Série : mêmes Q, on additionne les V. Ceq en Eq. (24.5) 
• Parallèle: mêmes B, on additionne les Q, Ceq en Eq. (24.7) 
• Lire p. 823, exemple 24.6 

 
24.15. IDENTIFY: Replace series and parallel combinations of capacitors by their equivalents. In each 

equivalent network apply the rules for Q and V for capacitors in series and parallel; start with the 
simplest network and work back to the original circuit. 
SET UP: Do parts (a) and (b) together. The capacitor network is drawn in Figure 24.15a. 

 

  C1 = C2 = C3 = C4 = 400 µF  

  Vab = 28.0 V  

Figure 24.15a  
EXECUTE: Simplify the circuit by replacing the capacitor combinations by their equivalents: 

  C1  and C2 are in series and are equivalent to   C12  (Figure 24.15b). 

   

1
C12

=
1

C1

+
1

C2

 

Figure 24.15b  

  
C12 =

C1C2

C1 +C2

=
4.00×10−6  F( ) 4.00×10−6  F( )
4.00×10−6  F+ 4.00×10−6  F

= 2.00×10−6  F  

  C12  and C3 are in parallel and are equivalent to   C123  (Figure 24.15c). 

 

  C123 = C12 +C3  

  C123 = 2.00×10−6  F+ 4.00×10−6  F  

  C123 = 6.00×10−6  F  
Figure 24.15c  

  C123  and C4 are in series and are equivalent to   C1234  (Figure 24.15d). 

 
  

1
C1234

=
1

C123

+
1

C4

 

Figure 24.15d  

  
C1234 =

C123C4

C123 +C4

=
6.00×10−6  F( ) 4.00×10−6  F( )
6.00×10−6  F+ 4.00×10−6  F

= 2.40×10−6  F  

The circuit is equivalent to the circuit shown in Figure 24.15e. 



 

  V1234 =V = 28.0 V  

  
Q1234 = C1234V = 2.40×10−6  F( ) 28.0 V( ) = 67.2 µC  

Figure 24.15e  

Now build back up the original circuit, step by step.   C1234 represents   C123  and C4  in series (Figure 
24.15f). 

 

  Q123 = Q4 −Q1234 = 67.2 µC  
(charge same for capacitors in series) 

Figure 24.15f  

Then 
  
V123 =

Q123

C123

=
67.2 µC
6.00 µF

= 11.2 V  

  
V4 =

Q4

C4

=
67.2 µC
4.00 µF

= 16.8 V  

Note that   V4 +V123 = 16.8 V +11.2 V = 28.0 V, as it should.  
Next consider the circuit as written in Figure 24.15g. 

 

  V3 =V12 = 28.0 V −V4  

  V3 = 11.2 V  

  
Q3 = C3V3 = 4.00 µF( ) 11.2 V( )  

  Q3 = 44.8 µC  

  
Q12 −C12V12 = 2.00 µF( ) 11.2 V( )  

  Q12 = 22.4 µC  
Figure 24.15g  

Finally, consider the original circuit, as shown in Figure 24.15h. 

 

  Q1 = Q2 = Q12 = 22.4 µC  
(charge same for capacitors in series) 

  
V1 =

Q1

C1

=
22.4 µC
4.00 µF

= 5.6 V  

  
V2 =

Q2

C2

=
22.4 µC
4.00 µF

= 5.6 V  

Figure 24.15h  

Note that   V1 +V2 = 11.2 V,  which equals   V3  as it should. 

Summary:   Q1 = 22.4 µC, V1 = 5.6 V  

  Q2 = 22.4 µC, V2 = 5.6 V  

  Q3 = 44.8 µC, V3 = 11.2 V  

  Q4 = 67.2 µC, V4 = 16.8 V  

(c)   Vad =V3 = 11.2 V  

EVALUATE:   V1 +V2 +V4 =V ,  or V3 +V4 =V . Q1 = Q2 ,  Q1 +Q3 = Q4  and Q4 = Q1234 .   

  



24.18. IDENTIFY: For capacitors in parallel the voltages are the same and the charges add. For capacitors in 
series, the charges are the same and the voltages add.  C = Q / V . 
SET UP:   C1  and   C2 are in parallel and   C3 is in series with the parallel combination of   C1 and  C2 . 

EXECUTE: (a)   C1 and C2 are in parallel and so have the same potential across them:

  
V1 =V2 =

Q2

C2

=
40.0×10−6  C
3.00×10−6  F

= 13.33 V . Therefore,

  Q1 =V1C1 = (13.33 V)(3.00×10−6  F) = 80.0×10−6  C . Since   C3  is in series with the parallel 

combination of  C1 and C2 , its charge must be equal to their combined charge:

  C3 = 40.0×10−6  C+ 80.0×10−6  C = 120.0×10−6  C . 

(b) The total capacitance is found from 
  

1
Ctot

=
1

C12

+
1

C3

=
1

9.00×10−6  F
+

1
5.00×10−6  F

 and

  Ctot = 3.21 µF .
  
Vab =

Qtot

Ctot

=
120.0×10−6 C
3.21×10−6 F

= 37.4 V . 

EVALUATE: 
  
V3 =

Q3

C3

=
120.0×10−6  C
5.00×10−6  F

= 24.0 V .  Vab =V1 +V3 . 

  
24.22. IDENTIFY: Simplify the network by replacing series and parallel combinations of capacitors by their 

equivalents. 

SET UP: For capacitors in series the voltages add and the charges are the same; 
   

1
Ceq

=
1

C1

+
1

C2

+

For capacitors in parallel the voltages are the same and the charges add; 
   
Ceq = C1 +C2 +

 
C =

Q
V

. 

EXECUTE: (a) The equivalent capacitance of the  5.0 µF  and  8.0 µF  capacitors in parallel is 

 13.0 µF.  When these two capacitors are replaced by their equivalent we get the network sketched in 
Figure 24.22. The equivalent capacitance of these three capacitors in series is  3.47 µF.  
(b)   Qtot = CtotV = (3.47 µF)(50.0 V) = 174 µC  
(c) Qtot is the same as Q for each of the capacitors in the series combination shown in Figure 24.22, so 
Q for each of the capacitors is  174 µC.  

EVALUATE: The voltages across each capacitor in Figure 24.22 are
  
V10 =

Qtot

C10

= 17.4 V , 

  
V13 =

Qtot

C13

= 13.4 V  and
  
V9 =

Qtot

C9

= 19.3 V .  V10 +V13 +V9 = 17.4 V +13.4 V +19.3 V = 50.1 V . The sum 

of the voltages equals the applied voltage, apart from a small difference due to rounding. 

 
Figure 24.22 

  
 
 
24.3. Stockage de l’énergie dans les condensateurs et énergie du champ  

• Eq. (24.9) donne l’énergie emmagasinée dans un condensateur.  La preuve est 
contenue dans Eq. (24.8). 

• Eq. (24.10) définit la densité d’énergie, donnée par Eq. (24.11). 
• Eq. (24.11) est générale, pour tout champ E, même si elle n’a été obtenue que 



pour un condensateur plan. 
 

24.24. IDENTIFY: Apply  C = Q / V .
   
C =

P0 A
d

. The work done to double the separation equals the change in 

the stored energy. 

SET UP: 
  
U =

1
2

CV 2 =
Q2

2C
. 

EXECUTE: (a)   V = Q / C = (2.55 µC) (920×10−12  F) = 2770 V  

(b) 
   
C =

P0 A
d

says that since the charge is kept constant while the separation doubles, that means that the 

capacitance halves and the voltage doubles to 5540 V. 

(c)
  
U =

Q2

2C
=

(2.55×10−6  C)2

2(920×10−12  F)
= 3.53×10−3  J . When if the separation is doubled while Q stays the 

same, the capacitance halves, and the energy stored doubles. So the amount of work done to move the 
plates equals the difference in energy stored in the capacitor, which is  3.53× 10−3 J.  
EVALUATE: The oppositely charged plates attract each other and positive work must be done by an 
external force to pull them farther apart. 

  
 
24.28. IDENTIFY: After the two capacitors are connected they must have equal potential difference, and their 

combined charge must add up to the original charge. 

SET UP:   C = Q / V . The stored energy is 
  
U =

Q2

2C
=

1
2

CV 2  

EXECUTE: (a)   Q = CV0 .  

(b) 
  
V =

Q1

C1

=
Q2

C2

and also  Q1 +Q2 = Q = CV0 .   C1 = C  and 
  
C2 =

C
2

 so 
  

Q1

C
=

Q2

(C 2)
 and

  
Q2 =

Q1

2
.

  
Q =

3
2

Q1 . 
  
Q1 =

2
3

Q  and
  
V =

Q1

C
=

2
3

Q
C
=

2
3

V0 . 

(c) 
  
U =

1
2

Q1
2

C1

+
Q2

2

C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

1
2

( 2
3 Q)2

C
+

2( 1
3 Q)2

C

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

1
3

Q2

C
=

1
3

CV0
2  

(d) The original U was  U = 1
2 CV0

2 , so
  
ΔU = −

1
6

CV0
2 . 

(e) Thermal energy of capacitor, wires, etc., and electromagnetic radiation. 
EVALUATE: The original charge of the charged capacitor must distribute between the two capacitors 
to make the potential the same across each capacitor. The voltage V for each after they are connected is 
less than the original voltage   V0 of the charged capacitor. 

  

24.32. IDENTIFY: The two capacitors are in series. 
   

1
Ceq

=
1

C1

+
1

C2

+
 
C =

Q
V

.  U = 1
2 CV 2 . 

SET UP: For capacitors in series the voltages add and the charges are the same. 

EXECUTE: (a) 
  

1
Ceq

=
1

C1

+
1

C2

so
  
Ceq =

C1C2

C1 +C2

=
(150 nF)(120 nF)
150 nF+120 nF

= 66.7 nF . 

  Q = CV = (66.7 nF)(36 V) = 2.4×10−6  C = 2.4 µC  
(b)   Q = 2.4 µC for each capacitor. 

(c) 
  
U = 1

2 CeqV
2 = 1

2 (66.7 ×10−9  F)(36 V)2 = 43.2 µJ  



(d) We know C and Q for each capacitor so rewrite U in terms of these quantities. 

  U = 1
2 CV 2 = 1

2 C(Q / C)2 = Q2 / 2C  

150 nF:
  
U =

(2.4×10−6  C)2

2(150×10−9  F)
= 19.2 µJ ; 120 nF: 

  
U =

(2.4×10−6  C)2

2(120×10−9  F)
= 24.0 µJ  

Note that 19.2 µJ + 24.0 µJ = 43.2 µJ , the total stored energy calculated in part (c). 

(e) 150 nF:
  
V =

Q
C
=

2.4×10−6  C
150×10−9  F

= 16 V ; 120 nF: 
  
V =

Q
C
=

2.4×10−6  C
120×10−9  F

= 20 V  

Note that these two voltages sum to 36 V, the voltage applied across the network. 
EVALUATE: Since Q is the same the capacitor with smaller C stores more energy (  U = Q2 / 2C ) and 
has a larger voltage (  V = Q / C ). 

 
24.36. IDENTIFY: Apply Eq.(24.11). 

SET UP: Example 24.3 shows that 
   
E =

Q
4πP0r

2
between the conducting shells and that

   

Q
4πP0

=
rarb

rb − ra

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟Vab . 

EXECUTE: 
  
E =

rarb

rb − ra

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
Vab

r 2
=

[0.125 m][0.148 m]
0.148 m − 0.125 m

⎛

⎝
⎜

⎞

⎠
⎟
120 V

r 2
=

96.5 V ⋅m
r 2

  

(a) For  r = 0.126 m ,  E = 6.08×103  V/m .   u =
1
2 P0 E2 = 1.64×10−4  J/m3 . 

(b) For  r = 0.147 m ,  E = 4.47 ×103  V/m .   u =
1
2 P0 E2 = 8.85×10−5  J/m3 . 

EVALUATE: (c) No, the results of parts (a) and (b) show that the energy density is not uniform in the 
region between the plates. E decreases as r increases, so u decreases also. 

  
 
 
24.4. Diélectriques 

• Commencer par la Fig. 24.15, qui montre que la présence d’un matériau 
diélectrique entre les plaques d’un condensateur réduit le champ électrique, tel 
que donné par Eq. (24.14). 

• Le tableau 24.1 donne les constantes diélectriques K de divers matériaux. 
• Eqs. (24.12) et (24.13) décrivent l’effet de K sur la capacité et le potentiel, 

respectivement. 
• Eq. (24.17) décrit la permittivité. 
• Eq. (24.20) décrit la densité d’énergie. 

 
 
24.38.  IDENTIFY:  V = Ed  and  C = Q / V . With the dielectric present,  C = KC0 . 

SET UP:  V = Ed  holds both with and without the dielectric. 
EXECUTE: (a)  V = Ed = (3.00×104  V/m)(1.50×10−3  m) = 45.0 V .

  Q = C0V = (5.00×10−12  F)(45.0 V) = 2.25×10−10  C . 

(b) With the dielectric,  C = KC0 = (2.70)(5.00 pF) = 13.5 pF . V is still 45.0 V, so

  Q = CV = (13.5×10−12  F)(45.0 V) = 6.08×10−10  C . 
EVALUATE: The presence of the dielectric increases the amount of charge that can be stored for a 
given potential difference and electric field between the plates. Q increases by a factor of K. 

  
 



 
24.40. IDENTIFY: Capacitance depends on geometry, and the introduction of a dielectric increases the 

capacitance. 
SET UP: For a parallel-plate capacitor,    C = KP0 A/d.  
EXECUTE: (a) Solving for d gives 

   
d =

KP0 A
C

=
(3.0)(8.85×10−12  C2 /N ⋅m2 )(0.22 m)(0.28 m)

1.0×10−9   F
= 1.64×10−3   m = 1.64  mm . 

Dividing this result by the thickness of a sheet of paper gives
 

1.64  mm
0.20  mm/sheet

≈ 8  sheets . 

(b) Solving for the area of the plates gives
   
A =

Cd
KP0

=
(1.0×10−9   F)(0.012  m)

(3.0)(8.85×10−12   C2 /N ⋅m2 )
= 0.45  m2 . 

(c) Teflon has a smaller dielectric constant (2.1) than the posterboard, so she will need more area to 
achieve the same capacitance. 
EVALUATE: The use of dielectric makes it possible to construct reasonable-sized capacitors since the 
dielectric increases the capacitance by a factor of K. 

  
 
24.44. IDENTIFY:   C = Q / V .  C = KC0 . V = Ed . 

SET UP: Table 24.1 gives   K = 3.1for mylar. 
EXECUTE: (a)  ΔQ = Q −Q0 = (K −1)Q0 = (K −1)C0V0 = (2.1)(2.5×10−7 F)(12 V) = 6.3×10−6 C . 

(b)   σ i = σ (1−1 / K ) so  Qi = Q(1−1/K ) = (9.3×10−6  C)(1−1 / 3.1) = 6.3×10−6  C . 
(c) The addition of the mylar doesn’t affect the electric field since the induced charge cancels the 
additional charge drawn to the plates. 
EVALUATE:   E =V / d  and V is constant so E doesn't change when the dielectric is inserted. 

  
 
24.46. IDENTIFY:   C = KC0 .  C = Q / V . V = Ed . 

SET UP: Since the capacitor remains connected to the battery the potential between the plates of the 
capacitor doesn't change. 
EXECUTE: (a) The capacitance changes by a factor of K when the dielectric is inserted. Since V is 

unchanged (the battery is still connected),
  

Cafter

Cbefore

=
Qafter

Qbefore

=
45.0 pC
25.0 pC

= K = 1.80 . 

(b) The area of the plates is   πr 2 = π(0.0300 m)2 = 2.827 ×10−3 m2  and the separation between them is 

thus
   
d =

P0 A
C

=
(8.85×10−12  C2 N ⋅m2 )(2.827 ×10−3  m2 )

12.5×10−12  F
= 2.00×10−3  m . Before the dielectric is 

inserted, 
   
C =

P0 A
d

=
Q
V

and
   
V =

Qd
P0 A

=
(25.0×10−12  C)(2.00×10−3  m)

(8.85×10−12  C2 /N ⋅m2 )(2.827 ×10−3  m2 )
= 2.00 V . The battery 

remains connected, so the potential difference is unchanged after the dielectric is inserted. 

(c) Before the dielectric is inserted, 
   
E =

Q
P0 A

=
25.0×10−12  C

(8.85×10−12  C2 /N ⋅m2 )(2.827 ×10−3  m2 )
= 1000 N/C  

Again, since the voltage is unchanged after the dielectric is inserted, the electric field is also unchanged. 

EVALUATE: 
  
E =

V
d
=

2.00 V
2.00×10−3  m

= 1000 N/C , whether or not the dielectric is present. This agrees 

with the result in part (c). The electric field has this value at any point between the plates. We need d to 
calculate E because V is the potential difference between points separated by distance d. 

 
 
 


