
Chapitre 29 – Induction électromagnétique   [13 au 15 juin]   
 
DEVOIR :  29.8; 29.20; 29.22; 29.30; 29.36 
 
29.1. Expériences d'induction 

• Il n’est pas nécessaire de lire cette section. 
• Ce qu’il faut retenir de la Fig. 29.1, c’est que, quand on déplace l’aimant (ou une 

seconde bobine), c’est l’intensité de B dans la bobine initiale. 
 
29.2. Loi de Faraday 

• Eq. (29.3) est la loi de Faraday.  Le signe sera expliqué après l’exemple 29.1. 
• Lire l’exemple 29.1 
• P. 997: Lire Direction of Induced EMF et consulter la Fig. 29.6 
• Eq. (29.4) : N est le nombre d’enroulements 
• Lire les exemples 29.2, 4, 5, 6 et 7 
• Autres exemples: 

 
29.7.  IDENTIFY: Calculate the flux through the loop and apply Faraday’s law. 

SET UP: To find the total flux integrate  dΦB  over the width of the loop. The magnetic field of a long 

straight wire, at distance r from the wire, is 
  
B =

µ0 I
2πr

. The direction of   

B is given by the right-hand 

rule. 

EXECUTE: (a) When 
  
B =

µ0i
2πr

, into the page. 

(b) 
  
dΦB = BdA =

µ0i
2πr

Ldr.  

(c) 
  
ΦB = dΦBa

b
∫ =

µ0iL
2π

dr
ra

b
∫ =

µ0iL
2π

ln(b/a).  

(d) 
   
E =

dΦB

dt
=
µ0 L
2π

ln(b a ) di
dt

.  

(e) 
  
E =

µ0 (0.240 m)
2π

ln(0.360/0.120)(9.60 A/s) = 5.06×10−7  V.  

EVALUATE: The induced emf is proportional to the rate at which the current in the long straight wire 
is changing 

 
29.9.  IDENTIFY and SET UP: Use Faraday’s law to calculate the emf (magnitude and direction). The 

direction of the induced current is the same as the direction of the emf. The flux changes because the 
area of the loop is changing; relate dA/dt to dc/dt, where c is the circumference of the loop. 
(a) EXECUTE:   c = 2πr  and A = πr 2  so A = c2 /4π  

  ΦB = BA = (B/4π )c2  

   
E =

dΦB

dt
=

B
2π
⎛

⎝
⎜

⎞

⎠
⎟c

dc
dt

 

At   t = 9.0 s, c = 1.650 m − (9.0 s)(0.120 m/s) = 0.570 m  

  E = (0.500 T)(1/2π )(0.570 m)(0.120 m/s) = 5.44 mV  

(b) SET UP: The loop and magnetic field are sketched in Figure 29.9. 



 

Take into the page to be the 
positive direction for    


A.  Then 

the magnetic flux is positive. 

Figure 29.9  

EXECUTE: The positive flux is decreasing in magnitude;   dΦB / dt  is negative and  E  is positive. By 

the right-hand rule, for   

A  into the page, positive  E  is clockwise. 

EVALUATE: Even though the circumference is changing at a constant rate,   dA/dt  is not constant and  E  

is not constant. Flux ⊗  is decreasing so the flux of the induced current is ⊗  and this means that I is 
clockwise, which checks. 

 
29.10. IDENTIFY: A change in magnetic flux through a coil induces an emf in the coil. 

SET UP: The flux through a coil is Φ = NBA cos φ and the induced emf is    E = dΦ/dt.  
EXECUTE: (a) and (c) The magnetic flux is constant, so the induced emf is zero. 
(b) The area inside the field is changing. If we let x be the length (along the 30.0-cm side) in the field, 
then  
A = (0.400 m)x. ΦB = BA = (0.400 m)x 

 E = dΦ/dt = B d[(0.400 m)x]/dt = B(0.400 m)dx/dt = B(0.400 m)v 

 E = (1.25 T)(0.400 m)(0.0200 m/s) = 0.0100 V 
EVALUATE: It is not a large flux that induces an emf, but rather a large rate of change of the flux. The 
induced emf in part (b) is small enough to be ignored in many instances. 

 
29.12. IDENTIFY: Use the results of Example 29.5. 

SET UP:    Emax = NBAω.  
  
Eav =

2
π

Emax .  
 
ω = (440 rev/min) 2π  rad/rev

60 s/min
⎛

⎝
⎜

⎞

⎠
⎟ = 46.1 rad/s.  

EXECUTE: (a)    Emax = NBAω = (150)(0.060 T)π(0.025 m)2 (46.1 rad/s) = 0.814 V  

(b) 
  
Eav =

2
π

Emax =
2
π

(0.815 V) = 0.519 V  

EVALUATE: In    Emax = NBAω,  ω must be in rad/s. 

 
29.3. Loi de Lenz  

• La loi de Lenz est une autre façon de déterminer la direction de la fém 
• Voir l’encadré jaune de la P. 1004 
• “cause of the effect” veut dire “la variation de flux” 
• La loi de Lenz découle essentiellement de la conservation de l’énergie, comme 

expliqué dans le paragraphe précédant l’exemple 29.8 
• Lire les exemples 29.8 et 29.9 
• Autres exemples : 

 
29.16. IDENTIFY: By Lenz’s law, the induced current flows to oppose the flux change that caused it. 

SET UP and EXECUTE: The magnetic field is outward through the round coil and is decreasing, so the 
magnetic field due to the induced current must also point outward to oppose this decrease. Therefore 
the induced current is counterclockwise. 
EVALUATE: Careful! Lenz’s law does not say that the induced current flows to oppose the magnetic 
flux. Instead it says that the current flows to oppose the change in flux. 

 
29.18. IDENTIFY: Apply Lenz’s law. 



SET UP: The field of the induced current is directed to oppose the change in flux in the primary 
circuit. 
EXECUTE: (a) The magnetic field in A is to the left and is increasing. The flux is increasing so the 
field due to the induced current in B is to the right. To produce magnetic field to the right, the induced 
current flows through R from right to left. 
(b) The magnetic field in A is to the right and is decreasing. The flux is decreasing so the field due to 
the induced current in B is to the right. To produce magnetic field to the right the induced current flows 
through R from right to left. 
(c) The magnetic field in A is to the right and is increasing. The flux is increasing so the field due to the 
induced current in B is to the left. To produce magnetic field to the left the induced current flows through 
R from left to right. 
EVALUATE: The direction of the induced current depends on the direction of the external magnetic 
field and whether the flux due to this field is increasing or decreasing. 

 
 
29.4. Fém de mouvement 

• Lire la section, y compris les deux exemples 
• Eq. (29.7) décrit un conducteur de forme quelconque dans un champ B.  Elle suit 

de 

€ 

ε =
W
q

=
1
q

F E + FB( )∫ ⋅ dl =
1
q

q E + v × B( )∫ ⋅ dl  dans laquelle E = 0. 

• Autres exemples : 
 
29.21. IDENTIFY: A conductor moving in a magnetic field may have a potential difference induced across it, 

depending on how it is moving. 
SET UP: The induced emf is  E = vBL sin φ, where φ is the angle between the velocity and the 
magnetic field.  
EXECUTE: (a)  E = vBL sin φ = (5.00 m/s)(0.450 T)(0.300 m)(sin 90°) = 0.675 V 
(b) The positive charges are moved to end b, so b is at the higher potential. 
(c) E = V/L = (0.675 V)/(0.300 m) = 2.25 V/m. The direction of   


E is from, b to a.  

(d) The positive charge are pushed to b, so b has an excess of positive charge. 
(e) (i) If the rod has no appreciable thickness, L = 0, so the emf is zero. (ii) The emf is zero because no 
magnetic force acts on the charges in the rod since it moves parallel to the magnetic field. 
EVALUATE: The motional emf is large enough to have noticeable effects in some cases. 

 
29.25. IDENTIFY and SET UP:    E = vBL.  Use Lenz's law to determine the direction of the induced current. 

The force   Fext  required to maintain constant speed is equal and opposite to the force  FI  that the 
magnetic field exerts on the rod because of the current in the rod. 
EXECUTE: (a)    E = vBL = (7.50 m/s)(0.800 T)(0.500 m) = 3.00 V  

(b)   

B is into the page. The flux increases as the bar moves to the right, so the magnetic field of the 

induced current is out of the page inside the circuit. To produce magnetic field in this direction the 
induced current must be counterclockwise, so from b to a in the rod. 

(c) 
   
I = E

R
=

3.00 V
1.50 Ω

= 2.00 A.     FI = ILBsinφ = (2.00 A)(0.500 m)(0.800 T)sin90∞= 0.800 N . 
   

FI  is to 

the left. To keep the bar moving to the right at constant speed an external force with magnitude

  Fext = 0.800 N  and directed to the right must be applied to the bar. 

(d) The rate at which work is done by the force   Fext is   Fextv = (0.800 N)(7.50 m/s) = 6.00 W.  The rate 

at which thermal energy is developed in the circuit is   I
2 R = (2.00 A)(1.50 Ω) = 6.00 W.  These two 

rates are equal, as is required by conservation of energy. 
EVALUATE: The force on the rod due to the induced current is directed to oppose the motion of the 
rod. This agrees with Lenz’s law. 

 
29.27. IDENTIFY: A bar moving in a magnetic field has an emf induced across its ends. 



SET UP: The induced potential is  E = vBL sin φ. 
EXECUTE: Note that φ = 90° in all these cases because the bar moved perpendicular to the magnetic 
field. But the effective length of the bar, L sin θ, is different in each case. 
(a)  E = vBL sin θ = (2.50 m/s)(1.20 T)(1.41 m) sin (37.0°) = 2.55 V, with a at the higher potential 
because positive charges are pushed toward that end. 
(b) Same as (a) except θ = 53.0°, giving 3.38 V, with a at the higher potential. 
(c) Zero, since the velocity is parallel to the magnetic field. 
(d) The bar must move perpendicular to its length, for which the emf is 4.23 V. For Vb > Va, it must 
move upward and to the left (toward the second quadrant) perpendicular to its length. 
EVALUATE: The orientation of the bar affects the potential induced across its ends. 

 
 
29.5. Champs électriques induits 

• À l’Eq. (28.20), on avait la circulation de B proportionnelle au courant. Pour le 
champ E, l’Eq. (29.10) nous montre que la circulation est proportionnelle au taux 
de variation du flux magnétique. (Nous verrons à l’Eq. (29.20) que quelque chose 
manque dans Eq. (28.20) qui rendra les équations semblables.) 

• Lire la section et l’exemple 29.12. 
• Autres exemples : 

 
29.28. IDENTIFY: Use Eq.(29.10) to calculate the induced electric field E at a distance r from the center of 

the solenoid. Away from the ends of the solenoid,   B = µ0nI  inside and B = 0 outside. 
(a) SET UP: The end view of the solenoid is sketched in Figure 29.28. 

 

Let R be the radius of the solenoid. 

Figure 29.28  

Apply 
    ú

E ⋅ d

l = −

dΦB

dt
 to an integration path that is a circle of radius r, where r < R. We need to 

calculate just the magnitude of E so we can take absolute values. 
EXECUTE:  

     ú

E ⋅ d

l =  E(2πr)  

  
ΦB = Bπr 2 ,  −

dΦB

dt
= πr 2 dB

dt
 

     
úE ⋅ d


l = −

dΦB

dt
 implies E(2πr) = πr 2 dB

dt
 

  
E = 1

2 r dB
dt

 

  
B = µ0nI ,  so dB

dt
= µ0n dI

dt
 

Thus 
  
E = 1

2 rµ0n dI
dt
= 1

2 (0.00500 m)(4π ×10−7  T ⋅m/A)(900 m−1)(60.0 A/s) = 1.70×10−4  V/m  

(b) r = 0.0100 cm is still inside the solenoid so the expression in part (a) applies. 

  
E = 1

2 rµ0n dI
dt
= 1

2 (0.0100 m)(4π ×10−7  T ⋅m/A)(900 m−1)(60.0 A/s) = 3.39×10−4  V/m  

EVALUATE: Inside the solenoid E is proportional to r, so E doubles when r doubles. 
 



 
29.31. IDENTIFY: Apply Eq.(29.1) with   ΦB = µ0niA . 

SET UP:   A = πr 2 , where   r = 0.0110 m . In Eq.(29.11),   r = 0.0350 m . 

EXECUTE: 
   
E =

dΦB

dt
=

d
dt

(BA) = d
dt

(µ0niA) = µ0nA di
dt

 and 
   E = E(2πr).  Therefore, 

  

di
dt

=
E2πr
µ0nA

.  
  

di
dt

=
(8.00×10−6  V/m)2π(0.0350 m)
µ0 (400 m−1)π(0.0110 m)2

= 9.21 A/s.  

EVALUATE: Outside the solenoid the induced electric field decreases with increasing distance from 
the axis of the solenoid. 

  
29.32. IDENTIFY: A changing magnetic flux through a coil induces an emf in that coil, which means that an 

electric field is induced in the material of the coil. 

SET UP: According to Faraday’s law, the induced electric field obeys the equation 
    ú

E ⋅ d

l = −

dΦB

dt
.  

EXECUTE: (a) For the magnitude of the induced electric field, Faraday’s law gives  
E2πr = d(Bπr2)/dt = πr2 dB/dt  

  
E =

r
2

dB
dt

=
0.0225 m

2
(0.250 T/s) = 2.81×10−3  V/m  

(b) The field points toward the south pole of the magnet and is decreasing, so the induced current is 
counterclockwise. 
EVALUATE: This is a very small electric field compared to most others found in laboratory 
equipment. 

 
 
 
29.7. Courant de déplacement et équations de Maxwell 

• Le concept de courant de déplacement consiste à ajouter un terme dans la loi 
d’Ampère Eq. (28.20) pour la rendre semblable à l’Eq. (29.10). 

• Ce terme supplémentaire est Eq. (29.14) 
• Lire les pages 1013 et 1014 
• Exemples : 

 
29.34. IDENTIFY: Apply Eq.(29.14). 

SET UP:   P= 3.5×10−11  F/m  

EXECUTE: 
   
iD = PdΦE

dt
= (3.5×10−11  F/m)(24.0×103  V ⋅m/s3 )t2 .    iD = 21× 10−6 A  gives   t = 5.0 s.  

EVALUATE:   iD depends on the rate at which  ΦE is changing. 
  
29.35. IDENTIFY: Apply Eq.(29.14), where    P= KP0 .  

SET UP:   dΦE / dt = 4(8.76×103  V ⋅m/s4 )t3 .   P0 = 8.854×10−12  F/m.  

EXECUTE: 
   
P= iD

dΦE / dt( )
=

12.9×10−12  A
4(8.76×103  V ⋅m/s4 )(26.1×10−3  s)3

= 2.07 ×10−11  F/m.  The dielectric 

constant is 
   
K = P

P0

= 2.34.  

EVALUATE: The larger the dielectric constant, the larger is the displacement current for a given 

  dΦE /dt.  



29.38. IDENTIFY and SET UP: Use   iC = q / t  to calculate the charge q that the current has carried to the 
plates in time t. The two equations preceeding Eq.(24.2) relate q to the electric field E and the potential 
difference between the plates. The displacement current density is defined by Eq.(29.16). 
EXECUTE: (a)   iC = 1.80×10−3  A  

  q = 0 at t = 0  
The amount of charge brought to the plates by the charging current in time t is 

  q = iCt = (1.80×10−3  A)(0.500×10−6  s) = 9.00×10−10  C  

   
E =

σ
P0

=
q

P0 A
=

9.00×10−10  C
(8.854×10−12  C2 / N ⋅m2 )(5.00×10−4  m2 )

= 2.03×105  V/m  

  V = Ed = (2.03×105  V/m)(2.00×10−3  m) = 406 V  

(b)    E = q / P0 A  

   

dE
dt

=
dq / dt
P0 A

=
iC
P0 A

=
1.80×10−3  A

(8.854×10−12  C2 / N ⋅m2 )(5.00×10−4  m2 )
= 4.07 ×1011  V/m ⋅ s  

Since   iC  is constant dE/dt does not vary in time. 

(c) 
   
jD = P0

dE
dt

 (Eq.(29.16)), with  P  replaced by   P0  since there is vacuum between the plates.) 

  jD = (8.854×10−12  C2 / N ⋅m2 )(4.07 ×1011  V/m ⋅ s) = 3.60 A/m2  

  iD = jD A = (3.60 A/m2 )(5.00×10−4  m2 ) = 1.80×10−3  A; iD = iC  

EVALUATE:   iC = iD .  The constant conduction current means the charge q on the plates and the 

electric field between them both increase linearly with time and   iD  is constant. 

29.39. IDENTIFY: Ohm’s law relates the current in the wire to the electric field in the wire. 
   
jD = PdE

dt
.  Use 

Eq.(29.15) to calculate the magnetic fields. 
SET UP: Ohm’s law says  E = ρJ . Apply Ohm’s law to a circular path of radius r. 

EXECUTE: (a) 
  
E = ρJ = ρ I

A
=

(2.0×10−8  Ω ⋅m)(16 A)
2.1×10−6  m2

= 0.15 V/m.  

(b) 
   

dE
dt

=
d
dt
 I
A

⎛

⎝
⎜

⎞

⎠
⎟ =

A

dI
dt
=

2.0×10−8  Ω ⋅m
2.1×10−6  m2

(4000 A/s) = 38 V/m ⋅ s.  

(c) 
   
jD = P0

dE
dt

= P0 (38 V/m ⋅ s) = 3.4×10−10  A/m2.  

(d)   iD = jD A = (3.4×10−10  A/m2 )(2.1×10−6  m2 ) = 7.14×10−16  A.  Eq.(29.15) applied to a circular path 

of radius r gives 
  
BD =

µ0 ID

2πr
=
µ0 (7.14×10−16  A)

2π(0.060 m)
= 2.38×10−21  T,  and this is a negligible contribution. 

  
BC =

µ0 IC

2πr
=
µ0

2π
(16 A)

(0.060 m)
= 5.33×10−5  T.  

EVALUATE: In this situation the displacement current is much less than the conduction current. 
 

• Lire les pp. 1015 et 1016. Remarquer la symétrie dans les équations de Maxwell. 


