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The Fourier Transform 

€ 

F (ω) = f (t)e
−iωt

dt∫

f (t) =
1

2π
F (ω)eiωt dω∫

€ 

f (t)← →  F (ω)

Fourier Transform 	


Inverse  Transform 	
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Forward / Inverse Pairs 

€ 

F (ω)

€ 

f (t)

  

€ 

FT

  

€ 

FT
-1
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Amplitude and Phase 

•  Amplitude and Phase of a complex number 

 

€ 

X = R + i G

α = tan
−1 G

R

A = (R
2

+G
2
)

€ 

X = R + i G

€ 

R

€ 

G

€ 

α

€ 

A
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Amplitude and Phase 

•  Amplitude and Phase of the FT 

 

€ 

F (ω) = R(ω) + i G (ω)

α(ω) = tan
−1 G (ω)

R(ω)

A(ω) = (R(ω)2 +G (ω)2)

€ 

X = R + i G

€ 

R

€ 

G

€ 

α

€ 

A
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Symmetries of the FT 

•  If the signal is real, then 

 

€ 

R(ω) =R(−ω)

A(ω) = A(−ω)

G (ω) =−G (−ω)

α(ω) = −α (ω)

Odd 

Even 

€ 

ω

€ 

ω
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FT: a simple physical interpretation   

 A signal can  be represented as a superposition of elementary signals (complex 
exponentials) of frequency         scaled by a complex amplitude  

€ 

f (t) =
1

2π
F (ω)eiωt dω∫ ≈

Δω

2π
F (ωk )e

iω k t

k

∑

f (t) ≈ fk (t)

k

∑ , fk (t) =
Δω

2π
F (ωk )e

iω k t

€ 

ω
k

€ 

F (ω
k
)
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Properties of the FT 

•  Linearity 

•  Scale 

•  Shifting 

•  Modulation in time 

•  Convolution 

•  Convolution in Frequency 

€ 

f (t)↔ F (ω)
g(t)↔G (ω)

€ 

f (t) + g(t)↔ F (ω) +G (ω)

€ 

f (ta)↔
1

| a |
F (
ω

a
)

€ 

f (t −τ )↔ F (ω)e−iωτ

€ 

f (τ )g(t −τ )dτ∫ ↔ F (ω)G (ω)

€ 

f (t)g(t)↔
1

2π
F (ϕ )G (ω −ϕ )dϕ∫

€ 

f (t)e
iϕ t ↔ F (ω −ϕ )
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Delta function 

€ 

f (t)← →  F (ω)

δ (t)← →  1

€ 

ω

€ 

t€ 

f (t) = δ (t)

€ 

F (ω) = 1

€ 

∞

€ 

−∞

€ 

1

represents the delta function which cannot be drawn 
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f (t)← →  F (ω) = R(ω) + iG (ω)

cos(ω0t)← →  πδ (ω −ω0) + πδ (ω +ω0)

Cosine 

€ 

ω

€ 

t
€ 

f (t)

€ 

R(ω)

€ 

ω€ 

G (ω)

€ 

f (t) = cos(ω0t), −∞ < t <∞
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Sine 

€ 

f (t)← →  F (ω) = R(ω) + iG (ω)

sin(ω0t)← →  −i πδ (ω −ω0) + i πδ (ω +ω0)

€ 

ω

€ 

t
€ 

f (t)

€ 

R(ω)

€ 

ω€ 

G (ω)

€ 

f (t) = sin(ω0t), −∞ < t <∞
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Truncation: zeros or ? 

Atmospheric pressure FCAG - UNLP - La Plata (1909 - 1989) 

? ? 
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Boxcar 

•  FT of the truncation operator (Boxcar) 

€ 

t

€ 

ω

€ 

t

€ 

ω
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The truncation problem 

€ 

ω
€ 

ω

€ 

ω

€ 

t

€ 

t€ 

t

Time Frequency 

€ 

0

€ 

0

€ 

0

X 

= 

* 

= 

Desire Aperture 

Acquisition 
window 

Data 

1 Peak 

2 Peaks 
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The discrete world 

•  Analog signals (waveforms) are transformed into digital signals by acquisition systems 
•  How  the FT of the true underlying continue signal/process relates to its discrete 

version?? 
–  This is answered by Nyquist theorem 

*

Time (s) Sample 

Acquisition  
System 
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The discrete world 

€ 

s(t
n
)← →  S

d
(ω)

t
n

= (n −1)Δt

€ 

s(t)← →  S(ω)

Digital Signal sampled every       secs 

€ 

ΔtAnalog signal 
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Nyquist theorem 

€ 

S
d
(ω) =

1

Δt
S(ω − kω0)

k=−∞

∞

∑ , ω0 =
2π

Δt

The FT of the discrete signal is a distorted version of the FT of the 
analog signal. The distortion is given by Poisson Formula: 

What you can 
measure 

     is what you would 
have liked to 

measure 

€ 

S(ω)

This formula can be found in any book 
on harmonic analiyis 
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Nyquist theorem 

•  Nyquist theorem or formula provides the sampling condition to compute the FT of the discrete 
signal is such a way that it is a perfect representation of the FT of the analog signal. The theorem is 
derived by simple inspection of Poisson formula. In a graphical manner:  

€ 

S
d
(ω) =

1

Δt
S(ω − kω0)

k=−∞

∞

∑ , ω0 =
2π

Δt

€ 

ω
0

€ 

S(ω)

€ 

ω

€ 

ω
max

€ 

−ω
max

€ 

−ω
0

€ 

2ω
0

€ 

−2ω
0

€ 

ω
€ 

S
d
(ω)

€ 

ω
max

€ 

−ω
max

Non-aliased Spectrum 

€ 

2ω
max

<ω
0

€ 

S(ω +ω0)

€ 

S(ω − 2ω0)

€ 

S(ω + 2ω0)

€ 

S(ω)

€ 

S(ω −ω0)



10 

Part 1 Review of DSP	
 19 

Nyquist theorem 

€ 

S
d
(ω) =

1

Δt
S(ω − kω0)

k=−∞

∞

∑ , ω0 =
2π

Δt

€ 

ω
0

€ 

S(ω)

€ 

ω

€ 

ω
max

€ 

−ω
max

€ 

−ω
0

€ 

2ω
0

€ 

−2ω
0

€ 

ω
€ 

S
d
(ω)

€ 

ω
max

€ 

−ω
max

Non-aliased Spectrum 

€ 

2ω
max

=ω
0

€ 

S(ω +ω0)

€ 

S(ω − 2ω0)

€ 

S(ω + 2ω0)

€ 

S(ω)

€ 

S(ω −ω0)
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Nyquist theorem 

€ 

S
d
(ω) =

1

Δt
S(ω − kω0)

k=−∞

∞

∑ , ω0 =
2π

Δt

€ 

ω
0

€ 

S(ω)

€ 

ω

€ 

ω
max

€ 

−ω
max

€ 

−ω
0

€ 

2ω
0

€ 

−2ω
0

€ 

ω
€ 

S
d
(ω)

Non-aliased Spectrum 

€ 

2ω
max

>ω
0

€ 

S(ω +ω0)

€ 

S(ω − 2ω0)

€ 

S(ω + 2ω0)

€ 

S(ω)

€ 

S(ω −ω0)
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Nyquist theorem 

€ 

S
d
(ω) =

1

Δt
S(ω − kω0)

k=−∞

∞

∑ , ω0 =
2π

Δt

€ 

ω
0

€ 

S(ω)

€ 

ω

€ 

ω
max

€ 

−ω
max

€ 

−ω
0

€ 

2ω
0

€ 

−2ω
0

€ 

ω
€ 

S
d
(ω)

Non-aliased Spectrum 

€ 

2ω
max

>ω
0

Alias, the true spectrum is 
distorted!! 

€ 

S(ω − 2ω0)

€ 

S(ω −ω0)

€ 

S(ω)

€ 

S(ω +ω0)

€ 

S(ω + 2ω0)
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Nyquist theorem 

€ 

2ω
max

<ω
0

ω
0

= 2π /Δt

⇒ ω
max

< π /Δt

2π f
max

< π /Δt ⇒ Δt <
1

2 f
max

From the previous figures we have found the condition to 
avoid aliasing: 

If we prefer to use frequency (Hz) rather than angular 
frequency (rad/sec): 

Famous Nyquist condition 
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Nyquist theorem 

•  From  now on, we consider signals  where the sampling interval satisfies the Nyquist 
condition.  

•  It is clear that discrete signals must arise from the discretization of a band-limited 
analog signal. Electronic filters are often placed prior to discretization to guarantee that 
the signal to  sample does contain not energy above a maximum frequency. 

•  Nyquist condition is easy to satisfied in the time domain (temporal sampling) 
•  Spatial sampling is often dictated by cost & logistics not by hardware!!  

•  Multi-dimensional sampling in space is a problem of current research since prestack 
seismic data are often under sampled in one or more coordinates (4 spatial 
coordinates) 

x 

€ 

Δx

Part 1 Review of DSP	
 24 

DFT 
•  When dealing with discrete time series or evenly sample data along the spatial domain 

we will use the Discrete Fourier Transform (DFT) 

  

€ 

S(ω) = s
k
e
−iωk

k= 0

N−1

∑

ω :  angular frequency [rads, no dimensions]

ω
l

=
2π l

N
, l = 0,...N −1   discrete angular frequency

S(ω
l
) = s

k
e
−iω l k

k= 0

N−1

∑

€ 

ω = 0,k = 0

€ 

ω = π / 2,k = 2

€ 

ω = π , k = 4

€ 

ω = −π / 2,k = 6

Example 
N=8 
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IDFT 
 
•  We also need a transform to come back Inverse  Discrete Fourier Transform (IDFT) 
 

•  A note about frequency  

€ 

s
k

=
1

N
S(ω

l
)e

iω l k

k= 0

N−1

∑

  

€ 

ω l =
2π l

N
, l = 0,...N −1    discrete angular frequency

ω l =
2π l

N Δt
,                      radians/secs

f l =
ω l

2π
=

l

N Δt
,              Hertz

Notes 

•  Wrong wording àThe FFT Spectrum,  
•  You should say the DFT Spectrum because the FFT is just the tool that is used to 

compute the DFT in a fast way 
•  Remember that to apply the DFT is equivalent to multiply a Matrix times a Vector (N2 

operations) 
•  FFT is a simple matrix multiplication via a faster algorithm ( N log2N operations )  
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•  Linear systems 
–  An easy way of describing physical phenomena 
–  A good approximation to some inverse problems in geophysics 
–  Given 

€ 

x1(t)→ y1(t)

x2 (t)→ y2 (t)

αx1(t) + β x2 (t)→α y1(t) + β y2 (t)

The system is linear if  

Linear systems 
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€ 

x1(t)

€ 

α y1(t) + β y2 (t)

€ 

αx1(t) + β x2 (t)
€ 

x2 (t)

€ 

y1(t)

€ 

y2 (t)

LS 

LS 

LS 

LS: Linear System (the Earth, if you do not consider important phenomena!) 

Linear systems 
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•  Invariance [Linear Time Invariant System]  
–  Consider a system that is linear and also impose the condition of invariance: 

€ 

x (t)→ y(t)

x(t −τ )→ y(t −τ )

€ 

x(t)

€ 

x(t −τ )

€ 

y(t)

€ 

y(t −τ )

LTIS 

LTIS 

€ 

τ

€ 

τ

Example: deconvolution operator 

Linear systems and Invariance 
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•  If the system is linear and time invariant, input and output are related by the following 
expression (it can be proven)  

•  We are saying that if our process is represented by an  LTIS then the I/O can be 
represented via a convolution integral 

•  The new signal            is called the impulse response of the system 

€ 

y(t) = ∫ h(t −τ )x(τ )dτ = h(t) * x(t)

Convolution Symbol 

€ 

h(t)

Linear systems and Invariance 
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•  Impulse response (hitting the system with an impulse)  

€ 

y(t) = ∫ h(t −τ )x(τ )dτ = h(t) * x(t)

€ 

h(t)

€ 

x(t) = δ (t)

€ 

x(t)

€ 

y(t)

€ 

h(t)

€ 

h(t)

Linear systems and Invariance 
 

Input Input 

€ 

h(t)

€ 

δ (t)
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•  Convolution Sum 

•  Signals are time series or vectors  

€ 

yn =

k

∑ hk−n xk = hn * xn

€ 

x = [1,0,0,0,0,0...]

Linear systems and Invariance - Discrete case 
 

€ 

h = [h0,h1,h2,...]

€ 

x = [ x0, x1, x2,...]

€ 

y = [ y0, y1, y2,...]€ 

h

€ 

h
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Discrete convolution 

•  Formula 

•  Finite length signals 

•  How  do we do the convolution with finite length signals? 
–  With paper and pencil 
–  Computer code 
–  Matrix times vector 
–  Polinomial multiplication 
–  DFT 

€ 

yn =

k

∑ hn−k xk = hn * xn

€ 

xk , k = 0,NX −1

yk , k = 0,NY −1

hk , k = 0,NH −1

Part 1 Review of DSP	
 34 

Discrete convolution 

  

€ 

% Initialize output

  y(1: NX + HH-1) = 0

% Do convolution sum
 
  for i = 1: NX
    for j =  1: NH
     y(i+ j -1) =  y(i+ j -1) + x(i)h(j)
    end
  end
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=
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0 0   x4

" 

# 

$ 
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Discrete convolution 

€ 

x = [ x0, x1, x2, x3, x4 ] , NX = 5

h = [h0,h1,h2 ] , NH = 3

y0 = x0h0

y1 = x1h0 + x0h1

y2 = x2h0 + x1h1 + x0h2

y3 = x3h0 + x2h1 + x1h2

y4 = x4h0 + x3h1 + x2h2

y5 = x4h1 + x3h2

y6 = x4h2

€ 

yn =

k

∑ hk−n xk = hn * xn

Example: 

Transient-free Convolution Matrix 
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=
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x2 x1  x0

x3 x2 x1
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0 0   x4
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& 
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€ 

y2

y3

y4

" 

# 

$ 
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$ 

% 

& 

' 
' 
' 

=

x2 x1  x0

x3 x2 x1

x4 x3 x2

" 

# 
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$ 

% 

& 

' 
' 
' 

h0

h1
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" 

# 
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$ 

% 

& 
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' 
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Classical convolution Transient-free convolution 
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Discrete convolution and the z-transform 

•  Z-transform: a compact way of dealing with time series 

•  Example: 
€ 

x = [ x0, x1, x2, x3, x4 ] , NX = 5

X (z) = x0 + x1z + x2z
2

+ x3z
3

+ x4z
4

The z-transform of  

is given by   

€ 

x = [2,−1,3]

X (z) = 2−1z + 3z
2

€ 

x = [−1,2,−1,3]

X (z) = −1z
−1

+ 2−1z + 3z
2

Indicates sample n=0 

Casual Non-causal 
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What can we do with the z-transform? 

•  Convolve series 

•  Design inverse filters (finally some seismology…) 

•  Let’s see how one can use the z-transform to find “Inverse Filters” of simple signals 

€ 

x = [ x0, x1, x2, x3, x4 ]

h = [h0,h1,h2 ]

y = x * h

€ 

X (z) = x0 + x1z + x2z
2

+ x3z
3

+ x4z
4

H (z) = h0 + h1z + h2z

Y (z) = X (z).H (z)

€ 

x

€ 

y

Unknown 
Filter h	
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Dipoles and inverse of a dipole 

Dipole: a signal  made of two elements 

Unknown Inverse filter 
that turns the dipole into 

a spike 

€ 

x = [1,a]

€ 

y = [1,0]

€ 

h

Find the inverse filter with the z-transform: 

€ 

X (z) = 1+ az, Y (z) = 1

y = x * h↔ Y (z) = X (z).H (z)

H (z) =
Y (z)

X (z)
=

1

1+ az
= 1− az + a

2
z
2
− a

3
z
3

+ a
4
z
4
.....................

h = [1,−a,a
2
,−a

3
,a
4
,............]

Geometric Series 
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Inversion of a dipole using geometric series 

€ 

x = [1,a]

€ 

h

€ 

y

€ 

a = −0.5

€ 

a = 0.5
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€ 

x = [1,a]

€ 

h

€ 

y

€ 

a = −0.99

€ 

a = 0.99

Inversion of a dipole using geometric series: 
Truncation of the operator 
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€ 

a = −0.5

Filter design 

€ 

x = [1,a]

€ 

h

€ 

y

€ 

s = x * r

€ 

r

€ 

r = h * s

Filter Application 

Inversion of a dipole using geometric series: 
Deconvolution of a simple reflectivity series 
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•  Truncation in the operator introduces false reflections in the deconvolution output 

€ 

a = −0.99

Filter design 

€ 

s = x * r

€ 

r

€ 

x = [1,a]

€ 

h

€ 

y

Wrong estimate of the reflectivity 

Filter Application 
€ 

r = h * s

Inversion of a dipole using geometric series: 
Deconvolution of a simple reflectivity series 
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Minimum and Maximum Phase dipoles 

•  In simple terms  

•  Minimum Phase  

•  Maximum Phase 

€ 

x = [1,a], | a |< 1

€ 

x = [1,a], | a |> 1

Min Max 
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Dipoles and Phase duality 

•  Take two dipoles 

•  You can show that 

•  Same amplitude spectrum 
•  Different phase spectrum 
•  If only the amplitude spectrum is measured, one cannot uniquely determine the dipole (two 

dipoles produce the same amplitude)   
€ 

x
MIN

= [1,a], | a |< 1

x
MAX

= [a,1] = a[1,1/a] = a[1,b], |b |> 1

| X
MAX

(ω) |=| X
MIN

(ω) |

θ
MAX

(ω) ≠θ
MIN

(ω)
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Dipoles and Phase duality 

€ 

x
MIN

= [1,a], | a |< 1

€ 

x
MAX

= [a,1] = a[1,1/a]
= a[1,b], |b |> 1
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Dipole filters - careful here 

•  Some signal processing schemes attempt o increase BW by convolution with dipole 
filters. The amplitude spectrum of the dipole filter can be Low Pass or High Pass 
according to the sign of a 

Examples: 

•  Low Pass 

•  High Pass    € 

x
MIN

= [1,a], a = 0.9

€ 

x
MIN

= [1,a], a = −0.9
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Dipole filters - careful here 

•  Differentiator (Extreme High Pass dipole) 

Examples: 
 

•  High Pass    

€ 

x = [1,a], a = −1

Wavelet convolved n times with 
differentiator - Cosmetic freq. 
enhancement ?? 

N=1 

N=4 

Wavelet 
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Dipole filters - careful here 

•  N=2 (two differentiations) 

Reflectivity Data Data after 2 differentiations 
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Dipole filters - careful here 

•  N=2 (two differentiations) 

Data after 2 differentiations Data Reflectivity 

Oops!! 
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More about dipoles: Spectral Decomposition 

•  Some modern seismic interpretation methods are based on properties of dipoles filters 
•  Spectral Decomposition attempts to image thing layers by the spectral behaviour of 

signals similar to dipoles 

Impedance     Reflectivity       Trace     Amplitude Spectrum  

Fr
eq

ue
nc

y 

Tim
e 

Spectral notch is proportional to 
layer thickness 

One, for instance, can map the 
amplitude at that particular 
frequency. This will provide an 
attribute for the x-y variability of 
layer thickness 

This is the basis of spectral decomposition.   

Partyka, G., 2005, Spectral Decomposition: 
Recorder, 30 (www.cseg.ca).  

Interesting to point out that  
rather than whitening (flattening) 
the spectrum like in conventional 
decon, spectral decomposition 
attempts to track spectral 
features/attributes 

Tim
e 

Tim
e 
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More about dipoles: Spectral Decomposition 

€ 

r = [a,0,0,0,0,b,0,0,0...]

R(ω) = a + be
−iωτ

| R(ω) |2= a2 + b
2

+ 2ab cos(ωτ )

d | R(ω) |2

dω
= 0⇒ sin(ωτ ) = 0⇒ωτ = πk, k = 0,1,2,3,4

fs = k /(2τ )

Thin Layer  

Spectrum  

Min/Max 
condition 

The second derivative can be used to determine if the stationary 
point is a min or max. Min or max  depends on the signs of  the 
reflection coefficients a and b. 

Frequency at 
stationary point 

€ 

τ = 4.Δt
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More about dipoles: Spectral Decomposition 

T (s) f (Hz) 

€ 

τ = 0.028s

fs = 17.8, 35.7, 53.6, 71.4Hz

For  trace #3: 
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More about dipoles: Spectral Decomposition 

T (s) f (Hz) 

€ 

τ = 0.028s

fs = 17.8, 35.7, 53.6, 71.4Hz

For  trace #3: 



28 

Part 1 Review of DSP	
 55 

More about dipoles: Spectral Decomposition 

T (s) f (Hz) 

€ 

τ = 0.028s

fs = 17.8, 35.7, 53.6, 71.4Hz

For  trace #3: 


